Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Quinoline as a Privileged Structure: A Recent Update on Synthesis and Biological Activities

Author(s): Pragati Kushwaha*

Volume 24, Issue 27, 2024

Published on: 11 September, 2024

Page: [2377 - 2419] Pages: 43

DOI: 10.2174/0115680266314303240830074056

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Among heterocyclic compounds, quinoline is one of the best ubiquitous heterocyclic rings for medicinal chemistry purposes. Quinoline appears to be a powerful chemical structure to develop new drug entities. The quinoline derivatives own a wide array of biological activities such as anticancer, antimalarial, antimicrobial, anti-inflammatory, anti-leishmanial, etc. Because of the wide spectrum of bioactivities, the scientific communities are still looking for more efficient synthetic routes to form quinoline derivatives. Therefore, the primary focus of this review is to provide a thorough and inclusive, updated report on quinoline analogs that may pave the way for more efficient drug development.

Keywords: Quinoline, Synthesis, Anti-inflammatory, Anticancer, Antibacterial, Antimalarial.

« Previous
Graphical Abstract
[1]
Alajarin, R.; Burgos, C. Six-membered heterocyles: Quinoline and IsoquinolineHeterocyclic Chemistry; Wiley & Sons: New York, 2011.
[2]
(a) Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 1996, 14, 605-618.;
(b) Balasubramanian, M. Comprehensive Heterocyclic Chemistry II; eds.,, 1996.
[3]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: a review. RSC Advances, 2014, 4(47), 24463-24476.
[http://dx.doi.org/10.1039/C4RA01814A]
[4]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[5]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[6]
Sonawane, H.R.; Vibhute, B.T.; Aghav, B.D.; Deore, J.V.; Patil, S.K. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview. Eur. J. Med. Chem., 2023, 258, 115549.
[http://dx.doi.org/10.1016/j.ejmech.2023.115549] [PMID: 37321110]
[7]
Kaur, T.; Bhandari, D.D. Annotated review on various biological activities of quinoline molecule. Biointerface Res. Appl. Chem., 2023, 13, 355.
[8]
Van de Walle, T.; Cools, L.; Mangelinckx, S.; D’hooghe, M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem., 2021, 226, 113865.
[http://dx.doi.org/10.1016/j.ejmech.2021.113865] [PMID: 34655985]
[9]
Mittal, R.K.; Aggarwal, M.; Khatana, K.; Purohit, P. Quinoline: Synthesis to Application. Med. Chem., 2022, 19(1), 31-46.
[PMID: 35240965]
[10]
(a) Agrawal, A.K.; Jenekhe, S.A. Electrochemical properties and electronic structures of conjugated Polyquinolines and Polyanthrazolines. Chem. Mater., 1996, 8(2), 579-589.
[http://dx.doi.org/10.1021/cm9504753];
(b) Jenekhe, S.A.; Lu, L.; Alam, M.M. New Conjugated Polymers with Donor−Acceptor Architectures: Synthesis and photophysics of carbazole−quinoline and phenothiazine−quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules, 2001, 34(21), 7315-7324.
[http://dx.doi.org/10.1021/ma0100448]
[11]
Combes, A. Quinoline synthesis. Bull. Chim. Soc. France., 1888, 49, 89-94.
[12]
Bergstrom, F.W. Heterocyclic nitrogen compounds. Part IIA. Hexacyclic compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev., 1944, 35(2), 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[13]
Xiang, D.; Xin, X.; Liu, X.; Kumar, S.; Dong, D. One-pot synthesis of Pyrano[2,3-b]quinolines from enaminones under solvent-free conditions. Synlett, 2011, 15, 2187-2190.
[14]
Friedlaender, P. Ueber o‐Amidobenzaldehyd. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2572-2575.
[http://dx.doi.org/10.1002/cber.188201502219]
[15]
(a) Eckert, H. Selective reduction of the nitro to the amino functional group by means of the phthalocyaninecobalt (I) anion; synthesis of N-Heterocycles and alkaloids. Angew. Chem. Int. Ed. Engl., 1981, 20(2), 208-210.
[http://dx.doi.org/10.1002/anie.198102081];
(b) Gladiali, S.; Chelucci, G.; Mudadu, M.S.; Gastaut, M.A.; Thummel, R.P. Friedländer synthesis of chiral alkyl-substituted 1,10-phenanthrolines. J. Org. Chem., 2001, 66(2), 400-405.
[http://dx.doi.org/10.1021/jo0009806] [PMID: 11429806];
(c) De, S.K.; Gibbs, R.A. A mild and efficient one-step synthesis of quinolines. Tetrahedron Lett., 2005, 46(10), 1647-1649.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.075]
[16]
(a) Huang, H.; Jiang, H.; Chen, K.; Liu, H. A simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature. J. Org. Chem., 2009, 74(15), 5476-5480.
[http://dx.doi.org/10.1021/jo901101v] [PMID: 19572501];
(b) Kulkarni, A.; Török, B. Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolines. Green Chem., 2010, 12(5), 875-978.
[http://dx.doi.org/10.1039/c001076f]
[17]
Povarov, L.S. αβ-UNSATURATED ETHERS AND THEIR ANALOGUES IN REACTIONS OF DIENE SYNTHESIS. Russ. Chem. Rev., 1967, 36(9), 656-670.
[http://dx.doi.org/10.1070/RC1967v036n09ABEH001680]
[18]
Kouznetsov, V.V. Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron, 2009, 65(14), 2721-2750.
[http://dx.doi.org/10.1016/j.tet.2008.12.059]
[19]
Doebner, O.; von Miller, W. “Ueber Chinaldinbasen” Chemische Berichte. Ber. deut. Chem. Ges, 1883, 16, 2460-2464.
[20]
Conrad, M.; Limpach, L. synthesen von Chinolinderivaten mittelst Acetessigester. Ber. Dtsch. Chem. Ges., 1887, 20(1), 944-948.
[http://dx.doi.org/10.1002/cber.188702001215]
[21]
Pfitzinger, W. Chinolinderivate aus Isatinsäure. J. Prakt. Chem., 1886, 33(1), 100.
[http://dx.doi.org/10.1002/prac.18850330110]
[22]
Shvekhgeimer, M.G.A. The Pfitzinger reaction. Chem. Heterocycl. Compd., 2004, 40(3), 257-294.
[http://dx.doi.org/10.1023/B:COHC.0000028623.41308.e5]
[23]
El Ashry, E.S.H.; Ramadan, E.S.; Abdel Hamid, H.; Hagar, M. Microwave‐Assisted Synthesis of Quinoline Derivatives from Isatin. Synth. Commun., 2005, 35(17), 2243-2250.
[http://dx.doi.org/10.1080/00397910500184719]
[24]
Bharate, J.B.; Bharate, S.B.; Vishwakarma, R.A. Metal-free, ionic liquid-mediated synthesis of functionalized quinolines. ACS Comb. Sci., 2014, 16(11), 624-630.
[http://dx.doi.org/10.1021/co500047w] [PMID: 25314670]
[25]
Borel, C.R.; Barbosa, L.C.A.; Maltha, C.R.Á.; Fernandes, S.A. A facile one-pot synthesis of 2-(2-pyridyl)quinolines via Povarov reaction. Tetrahedron Lett., 2015, 56(5), 662-665.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.016]
[26]
Mura, M.G.; Rajamaki, S.; DeLuca, L.; Cini, E.; Porcheddu, A. A mild and efficient synthesis of substituted Quinolines via a crossdehydrogenative coupling of (Bio)available alcohols and aminoarenes. Adv. Syn. Cat., 2015, 357, 576-582.
[27]
Zhang, X.; Dhawan, G.; Muthengi, A.; Liu, S.; Wang, W.; Legris, M.; Zhang, W. One-pot and catalyst-free synthesis of pyrroloquino-linediones and quinolinedicarboxylates. Green Chem., 2017, 19(16), 3851-3855.
[http://dx.doi.org/10.1039/C7GC01380A]
[28]
Jentsch, N.G.; Hume, J.D.; Crull, E.B.; Beauti, S.M.; Pham, A.H.; Pigza, J.A.; Kessl, J.J.; Donahue, M.G. Quinolines from the cyclocondensation of isatoic anhydride with ethyl acetoacetate: preparation of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate and derivatives. Beilstein J. Org. Chem., 2018, 14, 2529-2536.
[http://dx.doi.org/10.3762/bjoc.14.229] [PMID: 30344776]
[29]
Das, S.; Maiti, D.; De Sarkar, S. Synthesis of polysubstituted Quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling. J. Org. Chem., 2018, 83(4), 2309-2316.
[http://dx.doi.org/10.1021/acs.joc.7b03198] [PMID: 29345932]
[30]
Das, S.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandaõ, P.; Paul, N.D. Metal–ligand cooperative approach to achieve dehydrogenative functionalization of alcohols to quinolines and quinazolin-4(3H)-ones under mild aerobic conditions. J. Org. Chem., 2019, 84(16), 10160-10171.
[http://dx.doi.org/10.1021/acs.joc.9b01343] [PMID: 31327228]
[31]
Bains, A.K.; Singh, V.; Adhikari, D. Homogeneous nickel-catalyzed sustainable synthesis of quinoline and quinoxaline under aerobic aonditions. J. Org. Chem., 2020, 85(23), 14971-14979.
[http://dx.doi.org/10.1021/acs.joc.0c01819] [PMID: 33174416]
[32]
Talvitie, J.; Alanko, I.; Bulatov, E.; Koivula, J.; Pöllänen, T.; Helaja, J. Phenanthrenequinone-sensitized photocatalytic synthesis of polysubstituted quinolines from2-Vinylarylimines. Org. Lett., 2022, 24(1), 274-278.
[http://dx.doi.org/10.1021/acs.orglett.1c03934] [PMID: 34928166]
[33]
Yang, T.; Li, H.; Nie, Z.; Su, M.D.; Luo, W.P. Liu, Q.; Guo, C.C. [3+1+1+1] Annulation to the pyridine structure in quinoline molecules based on DMSO as a nonadjacent dual-methine synthon: Simple synthesis of 3-Arylquinolines from arylaldehydes, arylamines, and DMSO. J. Org. Chem., 2022, 87, 2797-2808.
[http://dx.doi.org/10.1021/acs.joc.1c02708] [PMID: 35076229]
[34]
Ma, J.T.; Chen, T.; Tang, B.C.; Chen, X.L.; Yu, Z.C.; Zhou, Y.; Zhuang, S.Y.; Wu, Y.D.; Xiang, J.C.; Wu, A.X. A pummerer reaction-enabled modular synthesis of alkyl quinoline-3-carboxylates and 3-Arylquinolines from amino acids. J. Org. Chem., 2023, 88(6), 3760-3771.
[http://dx.doi.org/10.1021/acs.joc.2c03034] [PMID: 36821870]
[35]
Lv, K.H.; Chen, L.; Zhao, K.; Yang, J.M.; Yan, S.J. Cu-catalyzed decarboxylative annulation of N-phenylglycines with maleimides: Synthesis of 1H-Pyrrolo[3,4-c]quinoline-1,3(2H)-diones. J. Org. Chem., 2023, 88(4), 2358-2366.
[http://dx.doi.org/10.1021/acs.joc.2c02757] [PMID: 36753732]
[36]
Wu, H.Y.; Cao, Z.; Li, S.Q.; Fu, Y.W.; Li, J.M.; Li, X.H.; He, C.M.; Chen, J.Y. He. C.M.; Chen, J.Y. Visible-light-mediated annulation/thiolation of 2-Isocyanobiaryls with disulfides to organoylthiophenanthridines derivatives. J. Org. Chem., 2023, 88(24), 17322-17329.
[http://dx.doi.org/10.1021/acs.joc.3c02152] [PMID: 38044560]
[37]
Hawley, S.R.; Bray, P.G.; Mungthin, M.; Atkinson, J.D.; O’Neill, P.M.; Ward, S.A. Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in Plasmodium falciparum in vitro. Antimicrob. Agents Chemother., 1998, 42(3), 682-686.
[http://dx.doi.org/10.1128/AAC.42.3.682] [PMID: 9517951]
[38]
(a) Baird, J.K.; Rieckmann, K.H. Can primaquine therapy for vivax malaria be improved? Trends Parasitol., 2003, 19(3), 115-120.
[http://dx.doi.org/10.1016/S1471-4922(03)00005-9] [PMID: 12643993];
(b) Kevin Baird, J.; Fryauff, D.J.; Hoffman, S.L. Primaquine for prevention of malaria in travelers. Clin. Infect. Dis., 2003, 37(12), 1659-1667.
[http://dx.doi.org/10.1086/379714] [PMID: 14689349]
[39]
Surolia, N.; Padmanaban, G. Chloroquine inhibits hemedependent protein synthesis in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1991, 88(11), 4786-4790.
[http://dx.doi.org/10.1073/pnas.88.11.4786] [PMID: 2052558]
[40]
Ginsburg, H.; Geary, T.G. Current concepts and new ideas on the mechanism of action of quinoline-containing antimalarials. Biochem. Pharmacol., 1987, 36(10), 1567-1576.
[http://dx.doi.org/10.1016/0006-2952(87)90038-4] [PMID: 3297064]
[41]
Vancer Jagt, D.L.; Hunsaker, L.A.; Campos, N.M. Characterization of a hemoglobin-degrading, low molecular weight protease from Plasmodium falciparum. Mol. Biochem. Parasitol., 1986, 18(3), 389-400.
[http://dx.doi.org/10.1016/0166-6851(86)90095-2] [PMID: 3515180]
[42]
(a) Cohen, S.N.; Yielding, K.L. Inhibition of DNA and RNA polymerase reactions by chloroquine. Proc. Natl. Acad. Sci. USA, 1965, 54(2), 521-527.
[http://dx.doi.org/10.1073/pnas.54.2.521] [PMID: 5324393];
(b) Meshnick, S.R. Chloroquine as intercalator: a hypothesis revived. Parasitol. Today, 1990, 6(3), 77-79.
[http://dx.doi.org/10.1016/0169-4758(90)90215-P] [PMID: 15463303]
[43]
Winstanley, P.A.; Ward, S.A.; Snow, R.W. Clinical status and implications of antimalarial drug resistance. Microbes Infect., 2002, 4(2), 157-164.
[http://dx.doi.org/10.1016/S1286-4579(01)01523-4] [PMID: 11880047]
[44]
Sashidhara, K.V.; Avula, S.R.; Palnati, G.R.; Singh, S.V.; Srivastava, K.; Puri, S.K.; Saxena, J.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2012, 22(17), 5455-5459.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.028] [PMID: 22850213]
[45]
Joshi, M.C.; Wicht, K.J.; Taylor, D.; Hunter, R.; Smith, P.J.; Egan, T.J. In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles. Eur. J. Med. Chem., 2013, 69, 338-347.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.046] [PMID: 24077524]
[46]
Vandekerckhove, S.; Müller, C.; Vogt, D.; Lategan, C.; Smith, P.J.; Chibale, K.; De Kimpe, N.; D’hooghe, M. Synthesis and antiplasmodial evaluation of novel (4-aminobutyloxy)quinolines. Bioorg. Med. Chem. Lett., 2013, 23(1), 318-322.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.094] [PMID: 23195733]
[47]
Pandey, S.; Agarwal, P.; Srivastava, K. RajaKumar, S.; Puri, S.K.; Verma, P.; Saxena, J.K.; Sharma, A.; Lal, J.; Chauhan, P.M.S. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. Eur. J. Med. Chem., 2013, 66, 69-81.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.023] [PMID: 23792317]
[48]
Teguh, S.C.; Klonis, N.; Duffy, S.; Lucantoni, L.; Avery, V.M.; Hutton, C.A.; Baell, J.B.; Tilley, L. Novel conjugated quinoline-indoles compromise Plasmodium falciparum mitochondrial function and show promising antimalarial activity. J. Med. Chem., 2013, 56(15), 6200-6215.
[http://dx.doi.org/10.1021/jm400656s] [PMID: 23837878]
[49]
Cornut, D.; Lemoine, H.; Kanishchev, O.; Okada, E.; Albrieux, F.; Beavogui, A.H.; Bienvenu, A.L.; Picot, S.; Bouillon, J.P.; Médebielle, M. Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines. Syntheses and antimalarial activities. J. Med. Chem., 2013, 56(1), 73-83.
[http://dx.doi.org/10.1021/jm301076q] [PMID: 23102258]
[50]
Opsenica, I.; Opsenica, D.; Lanteri, C.A.; Anova, L.; Milhous, W.K.; Smith, K.S.; Šolaja, B.A. New chimeric antimalarials with 4-aminoquinoline moiety linked to a tetraoxane skeleton. J. Med. Chem., 2008, 51(19), 6216-6219.
[http://dx.doi.org/10.1021/jm8006905] [PMID: 18774792]
[51]
Coslédan, F.; Fraisse, L.; Pellet, A.; Guillou, F.; Mordmüller, B.; Kremsner, P.G.; Moreno, A.; Mazier, D.; Maffrand, J.P.; Meunier, B. Selection of a trioxaquine as an antimalarial drug candidate. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17579-17584.
[http://dx.doi.org/10.1073/pnas.0804338105] [PMID: 18987321]
[52]
(a) Biot, C.; Glorian, G.; Maciejewski, L.A.; Brocard, J.S.; Domarle, O.; Blampain, G.; Millet, P.; Georges, A.J.; Abessolo, H.; Dive, D.; Lebibi, J. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue. J. Med. Chem., 1997, 40(23), 3715-3718.
[http://dx.doi.org/10.1021/jm970401y] [PMID: 9371235];
(b) Domarle, O.; Blampain, G.; Agnaniet, H.; Nzadiyabi, T.; Lebibi, J.; Brocard, J.; Maciejewski, L.; Biot, C.; Georges, A.J.; Millet, P. In vitro antimalarial activity of a new organometallic analog, ferrocene-chloroquine. Antimicrob. Agents Chemother., 1998, 42(3), 540-544.
[http://dx.doi.org/10.1128/AAC.42.3.540] [PMID: 9517929];
(c) Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Ferroquine, an ingenious antimalarial drug: thoughts on the mechanism of action. Molecules, 2008, 13(11), 2900-2907.
[http://dx.doi.org/10.3390/molecules13112900] [PMID: 19020475]
[53]
Bellot, F.; Coslédan, F.; Vendier, L.; Brocard, J.; Meunier, B.; Robert, A. Trioxaferroquines as new hybrid antimalarial drugs. J. Med. Chem., 2010, 53(10), 4103-4109.
[http://dx.doi.org/10.1021/jm100117e] [PMID: 20443628]
[54]
Chiyanzu, I.; Clarkson, C.; Smith, P.J.; Lehman, J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg. Med. Chem., 2005, 13(9), 3249-3261.
[http://dx.doi.org/10.1016/j.bmc.2005.02.037] [PMID: 15809160]
[55]
Andayi, W.A.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone–Chloroquine Hybrids. ACS Med. Chem. Lett., 2013, 4(7), 642-646.
[http://dx.doi.org/10.1021/ml4001084] [PMID: 24900724]
[56]
Stocks, P.A.; Raynes, K.J.; Bray, P.G.; Park, B.K.; O’Neill, P.M.; Ward, S.A. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum. J. Med. Chem., 2002, 45(23), 4975-4983.
[http://dx.doi.org/10.1021/jm0108707] [PMID: 12408708]
[57]
O’Neill, P.M.; Mukhtar, A.; Stocks, P.A.; Randle, L.E.; Hindley, S.; Ward, S.A.; Storr, R.C.; Bickley, J.F.; O’Neil, I.A.; Maggs, J.L.; Hughes, R.H.; Winstanley, P.A.; Bray, P.G.; Park, B.K. Isoquine and related amodiaquine analogues: a new generation of improved 4-aminoquinoline antimalarials. J. Med. Chem., 2003, 46(23), 4933-4945.
[http://dx.doi.org/10.1021/jm030796n] [PMID: 14584944]
[58]
Solomon, V.R.; Haq, W.; Srivastava, K.; Puri, S.K.; Katti, S.B. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J. Med. Chem., 2007, 50(2), 394-398.
[http://dx.doi.org/10.1021/jm061002i] [PMID: 17228883]
[59]
Vennerstrom, J.L.; Ellis, W.Y.; Ager, A.L., Jr; Andersen, S.L.; Gerena, L.; Milhous, W.K. Bisquinolines. 1. N,N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria. J. Med. Chem., 1992, 35(11), 2129-2134.
[http://dx.doi.org/10.1021/jm00089a025] [PMID: 1597862]
[60]
Ryckebusch, A.; Déprez-Poulain, R.; Debreu-Fontaine, M.A.; Vandaele, R.; Mouray, E.; Grellier, P.; Sergheraert, C. Parallel synthesis and antimalarial activity of a sulfonamide library. Bioorg. Med. Chem. Lett., 2002, 12(18), 2595-2598.
[http://dx.doi.org/10.1016/S0960-894X(02)00475-4] [PMID: 12182868]
[61]
(a) Burgess, S.J.; Selzer, A.; Kelly, J.X.; Smilkstein, M.J.; Riscoe, M.K.; Peyton, D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem., 2006, 49(18), 5623-5625.
[http://dx.doi.org/10.1021/jm060399n] [PMID: 16942036];
(b) Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53(17), 6477-6489.
[http://dx.doi.org/10.1021/jm1006484] [PMID: 20684562]
[62]
Radini, I.; Elsheikh, T.; El-Telbani, E.; Khidre, R. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21(7), 909.
[http://dx.doi.org/10.3390/molecules21070909] [PMID: 27428939]
[63]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; de Paula Dias, R.M.; Moreira, P.O.L.; Abramo, C.; Viana, G.H.R.; de Pila Varotti, F.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising anti-malarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25(11), 2308-2313.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.014] [PMID: 25920564]
[64]
Boechat, N.; Ferreira, M.L.G.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Júnior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84(3), 325-332.
[http://dx.doi.org/10.1111/cbdd.12321] [PMID: 24803084]
[65]
Tople, M.S.; Patel, N.B.; Patel, P.P.; Purohit, A.C.; Ahmad, I.; Patel, H. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases. J. Mol. Struct., 2023, 1271, 134016.
[http://dx.doi.org/10.1016/j.molstruc.2022.134016]
[66]
Kumar, A.; Jain, S.; Chauhan, S.; Aggarwal, S.; Saini, D. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction. Chem. Biol. Interact., 2023, 373, 110379.
[http://dx.doi.org/10.1016/j.cbi.2023.110379] [PMID: 36738914]
[67]
Yadav, A.; Kaushik, C.P.; Parshad, M.; Yadav, P.; Yadav, J.; Sangwan, J. Quinoline-thiazole-1,2,3 triazole hybrids: Synthesis, antimalarial, antimicrobial activity and molecular docking studies. Synth. Commun., 2024, 54(13), 1068-1085.
[http://dx.doi.org/10.1080/00397911.2024.2364848]
[68]
Yadav, J.; Kaushik, C.P. Quinoline-1,2,3-triazole hybrids: Design, synthesis, antimalarial and antimicrobial evaluation. J. Mol. Struct., 2024, 1316, 138882.
[http://dx.doi.org/10.1016/j.molstruc.2024.138882]
[69]
Choudhary, D.; Rani, P.; Rangra, N.K.; Gupta, G.K.; Khokra, S.L.; Bhandare, R.R.; Shaik, A.B. Designing novel anti-plasmodial quinoline–furanone hybrids: computational insights, synthesis, and biological evaluation targeting Plasmodium falciparum lactate dehydrogenase. RSC Advances, 2024, 14(26), 18764-18776.
[http://dx.doi.org/10.1039/D4RA01804D] [PMID: 38867738]
[70]
Cnubben, N.H.P.; Wortelboer, H.M.; van Zanden, J.J.; Rietjens, I.M.C.M.; van Bladeren, P.J. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 219-232.
[http://dx.doi.org/10.1517/17425255.1.2.219] [PMID: 16922638]
[71]
Kawase, M.; Motohashi, N. New multidrug resistance reversal agents. Curr. Drug Targets, 2003, 4(1), 31-43.
[http://dx.doi.org/10.2174/1389450033347064] [PMID: 12528988]
[72]
Levitt, M.L.; Koty, P.P. Tyrosine kinase inhibitors in preclinical development. Invest. New Drugs, 1999, 17(3), 213-226.
[http://dx.doi.org/10.1023/A:1006372102543] [PMID: 10665475]
[73]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(24), 6939-6942.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.065] [PMID: 19879135]
[74]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Ghorab, W.M. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J. Heterocycl. Chem., 2011, 48(6), 1269-1279.
[http://dx.doi.org/10.1002/jhet.749]
[75]
Heiniger, B.; Gakhar, G.; Prasain, K.; Hua, D.H.; Nguyen, T.A. Second-generation substituted quinolines as anticancer drugs for breast cancer. Anticancer Res., 2010, 30(10), 3927-3932.
[PMID: 21036704]
[76]
Guadencio, S.P.; MacMillan, J.B.; Jensen, P.R.; Fenical, W. Ammosamides A and B new cytotoxic alkaloids isolated from a marine Streptomyces sp. Planta Med., 2008, 74, 1083.
[77]
Hughes, C.C.; Fenical, W. Total synthesis of the ammosamides. J. Am. Chem. Soc., 2010, 132(8), 2528-2529.
[http://dx.doi.org/10.1021/ja9106572] [PMID: 20131899]
[78]
Hughes, C.C.; MacMillan, J.B.; Gaudêncio, S.P.; Jensen, P.R.; Fenical, W. The ammosamides: structures of cell cycle modulators from a marine-derived Streptomyces species. Angew. Chem. Int. Ed., 2009, 48(4), 725-727.
[http://dx.doi.org/10.1002/anie.200804890] [PMID: 19090514]
[79]
Hughes, C.C.; MacMillan, J.B.; Gaudêncio, S.P.; Fenical, W.; La Clair, J.J. Ammosamides A and B target myosin. Angew. Chem. Int. Ed., 2009, 48(4), 728-732.
[http://dx.doi.org/10.1002/anie.200804107] [PMID: 19097126]
[80]
Reddy, P.V.N.; Jensen, K.C.; Mesecar, A.D.; Fanwick, P.E.; Cushman, M. Design, synthesis, and biological evaluation of potent quinoline and pyrroloquinoline ammosamide analogues as inhibitors of quinone reductase 2. J. Med. Chem., 2012, 55(1), 367-377.
[http://dx.doi.org/10.1021/jm201251c] [PMID: 22206487]
[81]
Wang, Y.; Ai, J.; Wang, Y.; Chen, Y.; Wang, L.; Liu, G.; Geng, M.; Zhang, A. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J. Med. Chem., 2011, 54(7), 2127-2142.
[http://dx.doi.org/10.1021/jm101340q] [PMID: 21405128]
[82]
Shi, A.; Nguyen, T.A.; Battina, S.K.; Rana, S.; Takemoto, D.J.; Chiang, P.K.; Hua, D.H. Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem. Lett., 2008, 18(11), 3364-3368.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.024] [PMID: 18457950]
[83]
Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855.
[http://dx.doi.org/10.1016/j.bmc.2013.04.013] [PMID: 23628470]
[84]
Qi, B.; Mi, B.; Zhai, X.; Xu, Z.; Zhang, X.; Tian, Z.; Gong, P. Discovery and optimization of novel 4-phenoxy-6,7-disubstituted quinolines possessing semicarbazones as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(17), 5246-5260.
[http://dx.doi.org/10.1016/j.bmc.2013.06.026] [PMID: 23838381]
[85]
Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J. Med. Chem., 2006, 49(24), 7242-7246.
[http://dx.doi.org/10.1021/jm060712l] [PMID: 17125278]
[86]
Mulakayala, N.; Rambabu, D.; Raja, M.R. M, C.; Kumar, C.S.; Kalle, A.M.; Rama Krishna, G.; Malla Reddy, C.; Basaveswara Rao, M.V.; Pal, M. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: Their evaluation as potential anti-cancer agents. Bioorg. Med. Chem., 2012, 20(2), 759-768.
[http://dx.doi.org/10.1016/j.bmc.2011.12.001] [PMID: 22202437]
[87]
Kühnle, M.; Egger, M.; Müller, C.; Mahringer, A.; Bernhardt, G.; Fricker, G.; König, B.; Buschauer, A. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. J. Med. Chem., 2009, 52(4), 1190-1197.
[http://dx.doi.org/10.1021/jm8013822] [PMID: 19170519]
[88]
Bauer, S.; Ochoa-Puentes, C.; Sun, Q.; Bause, M.; Bernhardt, G.; König, B.; Buschauer, A. Quinoline carboxamide-type ABCG2 modulators: indole and quinoline moieties as anilide replacements. ChemMedChem, 2013, 8(11), 1773-1778.
[http://dx.doi.org/10.1002/cmdc.201300319] [PMID: 24039190]
[89]
Utsugi, T.; Aoyagi, K.; Asao, T.; Okazaki, S.; Aoyagi, Y.; Sano, M.; Wierzba, K.; Yamada, Y. Antitumor activity of a novel quinoline derivative, TAS-103, with inhibitory effects on topoisomerases I and II. Jpn. J. Cancer Res., 1997, 88(10), 992-1002.
[http://dx.doi.org/10.1111/j.1349-7006.1997.tb00320.x] [PMID: 9414662]
[90]
(a) Chen, I.L.; Chen, Y.L.; Tzeng, C.C.; Chen, I.S. Synthesis and cytotoxic evaluation of some 4-Anilinofuro[2,3-b]quinoline derivatives. Helv. Chim. Acta, 2002, 85(7), 2214-2221.
[http://dx.doi.org/10.1002/1522-2675(200207)85:7<2214::AID-HLCA2214>3.0.CO;2-W];
(b) Chen, I.L.; Chen, Y.L.; Tzeng, C.C. Chemical constituents from Dehaasia triandra. III. Bisbenzylisoquinoline alkaloids from the leaves and their conformational analysis. Chung Kuo Yao Hsueh Tsa Chih, 2003, 55, 35-47.;
(c) Huang, Y.T.; Huang, D.M.; Guh, J.H.; Chen, I.L.; Tzeng, C.C.; Teng, C.M. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J. Biol. Chem., 2005, 280(4), 2771-2779.
[http://dx.doi.org/10.1074/jbc.M408850200] [PMID: 15536083]
[91]
Chen, Y.; Chen, I.; Wang, T.; Han, C.; Tzeng, C. Synthesis and anticancer evaluation of certain 4-anilinofuro[2,3-]quinoline and 4-anilinofuro[3,2-]quinoline derivatives. Eur. J. Med. Chem., 2005, 40(9), 928-934.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.003] [PMID: 15913847]
[92]
Tseng, C.H.; Chen, Y.L.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem., 2008, 16(6), 3153-3162.
[http://dx.doi.org/10.1016/j.bmc.2007.12.028] [PMID: 18180162]
[93]
Tseng, C.H.; Tzeng, C.C.; Yang, C.L.; Lu, P.J.; Chen, H.L.; Li, H.Y.; Chuang, Y.C.; Yang, C.N.; Chen, Y.L. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Part 2. J. Med. Chem., 2010, 53(16), 6164-6179.
[http://dx.doi.org/10.1021/jm1005447] [PMID: 20662543]
[94]
Chen, Y.W.; Chen, Y.L.; Tseng, C.H.; Liang, C.C.; Yang, C.N.; Yao, Y.C.; Lu, P.J.; Tzeng, C.C. Discovery of 4-anilinofuro[2,3-b]quinoline derivatives as selective and orally active compounds against non-small-cell lung cancers. J. Med. Chem., 2011, 54(13), 4446-4461.
[http://dx.doi.org/10.1021/jm200046z] [PMID: 21599000]
[95]
Tseng, C.H.; Chen, Y.L.; Hsu, C.Y.; Chen, T.C.; Cheng, C.M.; Tso, H.C.; Lu, Y.J.; Tzeng, C.C. Synthesis and antiproliferative evaluation of 3-phenylquinolinylchalcone derivatives against non-small cell lung cancers and breast cancers. Eur. J. Med. Chem., 2013, 59, 274-282.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.027] [PMID: 23237975]
[96]
Marganakop, S.B.; Kamble, R.R.; Hoskeri, J.; Prasad, D.J.; Meti, G.Y. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res., 2014, 23(6), 2727-2735.
[http://dx.doi.org/10.1007/s00044-013-0855-2]
[97]
Li, S.; Hu, L.; Li, J.; Zhu, J.; Zeng, F.; Huang, Q.; Qiu, L.; Du, R.; Cao, R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 162, 666-678.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.048] [PMID: 30496987]
[98]
Jafari, F.; Baghayi, H.; Lavaee, P.; Hadizadeh, F.; Soltani, F.; Moallemzadeh, H.; Mirzaei, S.; Aboutorabzadeh, S.M.; Ghodsi, R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem., 2019, 164, 292-303.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.060] [PMID: 30599418]
[99]
Ökten, S.; Aydın, A.; Koçyiğit, Ü.M.; Çakmak, O.; Erkan, S.; Andac, C.A.; Taslimi, P.; Gülçin, İ. Quinoline‐based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch. Pharm. (Weinheim), 2020, 353(9), 2000086.
[http://dx.doi.org/10.1002/ardp.202000086] [PMID: 32537757]
[100]
Nafie, M.S.; Kishk, S.M.; Mahgoub, S.; Amer, A.M. Quinoline‐based thiazolidinone derivatives as potent cytotoxic and apoptosis‐inducing agents through EGFR inhibition. Chem. Biol. Drug Des., 2022, 99(4), 547-560.
[http://dx.doi.org/10.1111/cbdd.13997] [PMID: 34873844]
[101]
Zaraei, S.O.; Al-Ach, N.N.; Anbar, H.S.; El-Gamal, R.; Tarazi, H.; Tokatly, R.T.; Kalla, R.R.; Munther, M.A.; Wahba, M.M.; Alshihabi, A.M.; Shehata, M.K.; Sbenati, R.M.; Shahin, A.I.; El-Awady, R.; Al-Tel, T.H.; El-Gamal, M.I. Design and synthesis of new quinoline derivatives as selective C-RAF kinase inhibitors with potent anticancer activity. Eur. J. Med. Chem., 2022, 238, 114434.
[http://dx.doi.org/10.1016/j.ejmech.2022.114434] [PMID: 35551038]
[102]
Omidkhah, N.; Hadizadeh, F.; Abnous, K.; Ghodsi, R. Synthesis, structure activity relationship and biological evaluation of a novel se-ries of quinoline–based benzamide derivatives as anticancer agents and histone deacetylase (HDAC) inhibitors. J. Mol. Struct., 2022, 1267, 133599.
[http://dx.doi.org/10.1016/j.molstruc.2022.133599]
[103]
Roy, J.; Kyani, A.; Hanafi, M.; Xu, Y.; Takyi-Williams, J.; Sun, D.; Osman, E.E.A.; Neamati, N. Design and synthesis of orally active quinolyl pyrazinamides as sigma 2 receptor ligands for the treatment of pancreatic cancer. J. Med. Chem., 2023, 66(3), 1990-2019.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01769] [PMID: 36692906]
[104]
Hu, S.; Liu, Y.; Ma, J.; Ding, W.; Chen, H.; Jiang, H.; Chen, H.; Wei, S.; Liu, Y.; Jin, Q.; Yuan, H.; Yan, L. Discovery and structural optimization of novel quinolone derivatives as potent irreversible pan-fibroblast growth factor receptor inhibitors for treating solid tumors. J. Med. Chem., 2023, 66(13), 8858-8875.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00455] [PMID: 37335602]
[105]
(a) Yoshikawa, T.; Naito, Y.; Tanigawa, T.; Kondo, M. Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance. Arzneimittelforschung, 1993, 43(3), 363-366.
[PMID: 8387788];
(b) Suzuki, M.; Miura, S.; Mori, M.; Kai, A.; Suzuki, H.; Fukumura, D.; Suematsu, M.; Tsuchiya, M. Rebamipide, a novel antiulcer agent, attenuates Helicobacter pylori induced gastric mucosal cell injury associated with neutrophil derived oxidants. Gut, 1994, 35(10), 1375-1378.
[http://dx.doi.org/10.1136/gut.35.10.1375] [PMID: 7959190];
(c) Hahm, K.B.; Park, I.S.; Kim, Y.S.; Kim, J.H.; Cho, S.W.; Lee, S.I.; Youn, J.K. Role of rebamipide on induction of heat-shock proteins and protection against reactive oxygen metabolite-mediated cell damage in cultured gastric mucosal cells. Free Radic. Biol. Med., 1997, 22(4), 711-716.
[http://dx.doi.org/10.1016/S0891-5849(96)00406-6] [PMID: 9013134];
(d) Hong, W.S.; Jung, H.Y.; Yang, S.K.; Myung, S.J.; Kim, J.H.; Min, Y.I.; Chung, M.H.; Lee, H.S.; Kim, H.W. The antioxidant effect of rebamipide on oxygen free radical production by H. pylori -activated human neutrophils: in comparison with N-acetylcysteine, ascorbic acid and glutathione. Pharmacol. Res., 2001, 44(4), 293-297.
[http://dx.doi.org/10.1006/phrs.2001.0839] [PMID: 11592863]
[106]
Brown, T.H.; Ife, R.J.; Keeling, D.J.; Laing, S.M.; Leach, C.A.; Parsons, M.E.; Price, C.A.; Reavill, D.R.; Wiggall, K.J. Reversible inhibitors of the gastric (H+/K+)-ATPase. 1. 1-Aryl-4-methylpyrrolo[3,2-c]quinolines as conformationally restrained analogs of 4-(arylamino)quinolines. J. Med. Chem., 1990, 33(2), 527-533.
[http://dx.doi.org/10.1021/jm00164a010] [PMID: 2153816]
[107]
Hino, K.; Kawashima, K.; Oka, M.; Nagai, Y.; Uno, H.; Matsumoto, J. A novel class of antiulcer agents. 4-Phenyl-2-(1-piperazinyl)quinolines. Chem. Pharm. Bull. (Tokyo), 1989, 37(1), 110-115.
[http://dx.doi.org/10.1248/cpb.37.110] [PMID: 2720842]
[108]
Cheon, H.G.; Lee, S.S.; Lim, H.; Lee, D.H. Pharmacological properties of a newly synthesized H+/K+ ATPase inhibitor, 1-(2-methyl-4-methoxyphenyl)-4-[(3-hydroxypropyl)amino]-6-methyl-2,3-dihydropyrrolo[3,2-c]quinoline. Eur. J. Pharmacol., 2001, 411(1-2), 187-192.
[http://dx.doi.org/10.1016/S0014-2999(00)00920-1] [PMID: 11137875]
[109]
Cheon, H.G.; Kim, H.J.; Mo, H.K.; Lee, B.H.; Choi, J.K. Pharmacological properties of the gastric H(+)/K(+) ATPase inhibitor, AU-461. Pharmacology, 2000, 60(3), 161-168.
[http://dx.doi.org/10.1159/000028361] [PMID: 10754453]
[110]
Ife, R.J.; Brown, T.H.; Keeling, D.J.; Leach, C.A.; Meeson, M.L.; Parsons, M.E.; Reavill, D.R.; Theobald, C.J.; Wiggall, K.J. Reversible inhibitors of the gastric (H+/K+)-ATPase. 3. 3-Substituted-4-(phenylamino)quinolines. J. Med. Chem., 1992, 35(18), 3413-3422.
[http://dx.doi.org/10.1021/jm00096a018] [PMID: 1326634]
[111]
Leach, C.A.; Brown, T.H.; Ife, R.J.; Keeling, D.J.; Laing, S.M.; Parsons, M.E.; Price, C.A.; Wiggall, K.J. Reversible inhibitors of the gastric (H+/K+)-ATPase. 2. 1-Arylpyrrolo[3,2-c]quinolines: effect of the 4-substituent. J. Med. Chem., 1992, 35(10), 1845-1852.
[http://dx.doi.org/10.1021/jm00088a021] [PMID: 1316968]
[112]
Kim, H.; Kim, D.G.; Lee, B.Y.; Lee, J.W.; Kim, K.H. Inhibitory effects of reversible proton pump inhibitors YH 1238 and YH1885 on acid secretion in isolated gastric cells. Korean J. Physiol. Pharmacol., 1997, 1, 337-343.
[113]
Uchida, M.; Otsubo, K.; Matsubara, J.; Ohtani, T.; Morita, S.; Yamasaki, K. Synthesis of 4-(phenylamino)quinoline-3-carboxamides as a novel class of gastric H+/K+-ATPase inhibitors. Chem. Pharm. Bull. (Tokyo), 1995, 43(4), 693-698.
[http://dx.doi.org/10.1248/cpb.43.693] [PMID: 7600619]
[114]
Cheon, H.G.; Kim, H.J.; Mo, H.K.; Shin, E.; Lee, Y. Anti-ulcer activity of newly synthesized acylquinoline derivatives. Arch. Pharm. Res., 1999, 22(2), 137-142.
[http://dx.doi.org/10.1007/BF02976537] [PMID: 10230503]
[115]
Yum, E.K.; Yang, O.K.; Kang, S.K.; Cheon, H.G.; Kim, S.S.; Choi, J.K. Synthesis of 4-Phenylamino-3-vinylquinoline Derivatives as Gastric H +/K + -ATPase Inhibitors. Bull. Korean Chem. Soc., 2004, 25(7), 1091-1094.
[http://dx.doi.org/10.5012/bkcs.2004.25.7.1091]
[116]
Turner, S.C.; Esbenshade, T.A.; Bennani, Y.L.; Hancock, A.A. A new class of histamine H3-Receptor antagonists: synthesis and structure–Activity relationships of 7,8,9,10-Tetrahydro-6H-cyclohepta[b]quinolines. Bioorg. Med. Chem. Lett., 2003, 13(13), 2131-2135.
[http://dx.doi.org/10.1016/S0960-894X(03)00356-1] [PMID: 12798320]
[117]
Gunaydin, C.; Bilge, S.S. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J. Med., 2018, 50(2), 116-121.
[http://dx.doi.org/10.5152/eurasianjmed.2018.0010] [PMID: 30002579]
[118]
Chia, E.W.; Pearce, A.N.; Berridge, M.V.; Larsen, L.; Perry, N.B.; Sansom, C.E.; Godfrey, C.A.; Hanton, L.R.; Lu, G.L.L.; Walton, M.; Denny, W.A.; Webb, V.L.; Copp, B.R.; Harper, J.L. Synthesis and anti-inflammatory structure–activity relationships of thiazine–quinoline–quinones: Inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg. Med. Chem., 2008, 16(21), 9432-9442.
[http://dx.doi.org/10.1016/j.bmc.2008.09.052] [PMID: 18835721]
[119]
Sun, X.Y.; Wei, C.X.; Chai, K.Y.; Piao, H.R.; Quan, Z.S. Synthesis and Anti‐inflammatory Activity Evaluation of Novel 7‐Alkoxy‐1‐amino‐4,5‐dihydro[1,2,4]triazole[4,3‐ a]quinolines. Arch. Pharm. (Weinheim), 2008, 341(5), 288-293.
[http://dx.doi.org/10.1002/ardp.200700182] [PMID: 18389515]
[120]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives. Part 2. Bioorg. Med. Chem., 2003, 11(18), 3921-3927.
[http://dx.doi.org/10.1016/S0968-0896(03)00439-5] [PMID: 12927852]
[121]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 4-anilinofuro[2,3- b]quinoline and 4-phenoxyfuro[2,3- b]quinoline derivatives. Part 3. Bioorg. Med. Chem., 2004, 12(2), 387-392.
[http://dx.doi.org/10.1016/j.bmc.2003.10.051] [PMID: 14723957]
[122]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[123]
Mazzoni, O.; Esposito, G.; Diurno, M.V.; Brancaccio, D.; Carotenuto, A.; Grieco, P.; Novellino, E.; Filippelli, W. Synthesis and pharmacological evaluation of some 4-oxo-quinoline-2-carboxylic acid derivatives as anti-inflammatory and analgesic agents. Arch. Pharm. (Weinheim), 2010, 343(10), 561-569.
[http://dx.doi.org/10.1002/ardp.201000016] [PMID: 20938950]
[124]
Zarghi, A.; Ghodsi, R.; Azizi, E.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2009, 17(14), 5312-5317.
[http://dx.doi.org/10.1016/j.bmc.2009.05.084] [PMID: 19560931]
[125]
Baruah, B.; Dasu, K.; Vaitilingam, B.; Vanguri, A.; Rao Casturi, S.; Rao Yeleswarapu, K. 1,2-Diaryl-1-ethanone and pyrazolo[4,3-c] quinoline-4-one as novel selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 445-448.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.052] [PMID: 14698178]
[126]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.029] [PMID: 22846796]
[127]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and Biological Screening of Pyrano[3,2- c]quinoline Analogues as Anti-inflammatory and Anticancer Agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[128]
Douadi, K.; Chafaa, S.; Douadi, T.; Al-Noaimi, M.; Kaabi, I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA/BSA binding. J. Mol. Struct., 2020, 1217, 128305.
[http://dx.doi.org/10.1016/j.molstruc.2020.128305]
[129]
Pallavi, B.; Sharma, P.; Baig, N.; Kumar Madduluri, V.; Sah, A.K.; Saumya, U.; Dubey, U.S.; Shukla, P. Quinoline glycoconjugates as potentially anticancer and anti-inflammatory agents: An investigation involving synthesis, biological screening, and docking. ChemistrySelect, 2020, 5(31), 9878-9882.
[http://dx.doi.org/10.1002/slct.202002345]
[130]
Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; Ibrahim, T.S.; Panda, S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem., 2022, 119, 105557.
[http://dx.doi.org/10.1016/j.bioorg.2021.105557] [PMID: 34952242]
[131]
Huang, L.; Yang, L.; Wan, J.P.; Zhou, L.; Liu, Y.; Hao, G. Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Org. Biomol. Chem., 2022, 20(21), 4385-4390.
[http://dx.doi.org/10.1039/D2OB00661H] [PMID: 35579116]
[132]
Sun, X.Y.; Wu, R.; Wen, X.; Guo, L.; Zhou, C.P.; Li, J.; Quan, Z.S.; Bao, J. Synthesis and evaluation of antibacterial activity of 7-alkyloxy-4,5-dihydro-imidazo[1,2-a]quinoline derivatives. Eur. J. Med. Chem., 2013, 60, 451-455.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.034] [PMID: 23321259]
[133]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[134]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: Synthesis and investigation of anti-bacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.022] [PMID: 20537437]
[135]
Guo, M.; Zheng, C.J.; Song, M.X.; Wu, Y.; Sun, L.P.; Li, Y.J.; Liu, Y.; Piao, H.R. Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents. Bioorg. Med. Chem. Lett., 2013, 23(15), 4358-4361.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.082] [PMID: 23787100]
[136]
Sabatini, S.; Gosetto, F.; Manfroni, G.; Tabarrini, O.; Kaatz, G.W.; Patel, D.; Cecchetti, V. Evolution from a natural flavones nucleus to obtain 2-(4-Propoxyphenyl)quinoline derivatives as potent inhibitors of the S. aureus NorA efflux pump. J. Med. Chem., 2011, 54(16), 5722-5736.
[http://dx.doi.org/10.1021/jm200370y] [PMID: 21751791]
[137]
Mitton-Fry, M.J.; Brickner, S.J.; Hamel, J.C.; Brennan, L.; Casavant, J.M.; Chen, M.; Chen, T.; Ding, X.; Driscoll, J.; Hardink, J.; Hoang, T.; Hua, E.; Huband, M.D.; Maloney, M.; Marfat, A.; McCurdy, S.P.; McLeod, D.; Plotkin, M.; Reilly, U.; Robinson, S.; Schafer, J.; Shepard, R.M.; Smith, J.F.; Stone, G.G.; Subramanyam, C.; Yoon, K.; Yuan, W.; Zaniewski, R.P.; Zook, C. Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg. Med. Chem. Lett., 2013, 23(10), 2955-2961.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.047] [PMID: 23566517]
[138]
Jayagobi, M.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of pyrrolopyrano quinolinones and pyrroloquinolines. Eur. J. Med. Chem., 2011, 46(6), 2075-2082.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.060] [PMID: 21444131]
[139]
Insuasty, D.; Vidal, O.; Bernal, A.; Marquez, E.; Guzman, J.; Insuasty, B.; Quiroga, J.; Svetaz, L.; Zacchino, S.; Puerto, G.; Abonia, R. Antimicrobial activity of quinoline-based hydroxyimidazolium hybrids. Antibiotics (Basel), 2019, 8(4), 239.
[http://dx.doi.org/10.3390/antibiotics8040239] [PMID: 31795101]
[140]
Katariya, K.D.; Shah, S.R.; Reddy, D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg. Chem., 2020, 94, 103406.
[http://dx.doi.org/10.1016/j.bioorg.2019.103406] [PMID: 31718889]
[141]
El-Shershaby, M.H.; El-Gamal, K.M.; Bayoumi, A.H.; El-Adl, K.; Ahmed, H.E.A.; Abulkhair, H.S. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch. Pharm. (Weinheim), 2021, 354(2), 2000277.
[http://dx.doi.org/10.1002/ardp.202000277] [PMID: 33078877]
[142]
Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep., 2022, 12(1), 16988.
[http://dx.doi.org/10.1038/s41598-022-21435-6] [PMID: 36216981]
[143]
Evren, A.E.; Karaduman, A.B.; Sağlik, B.N.; Özkay, Y.; Yurttaş, L. Investigation of novel quinoline-thiazole derivatives as antimicrobial agents: in vitro and in silico approaches. ACS Omega, 2023, 8(1), 1410-1429.
[http://dx.doi.org/10.1021/acsomega.2c06871] [PMID: 36643421]
[144]
Palit, P.; Paira, P.; Hazra, A.; Banerjee, S.; Gupta, A.D.; Dastidar, S.G.; Mondal, N.B. Phase transfer catalyzed synthesis of bis-quinolines: Antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation. Eur. J. Med. Chem., 2009, 44(2), 845-853.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.014] [PMID: 18538452]
[145]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[146]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[147]
Chanquia, S.N.; Larregui, F.; Puente, V.; Labriola, C.; Lombardo, E.; García Liñares, G. Synthesis and biological evaluation of new quin-oline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem., 2019, 83, 526-534.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[148]
Almandil, N.B.; Taha, M.; Rahim, F.; Wadood, A.; Imran, S.; Alqahtani, M.A.; Bamarouf, Y.A.; Ibrahim, M.; Mosaddik, A.; Gollapalli, M. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg. Chem., 2019, 85, 109-116.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.025] [PMID: 30605884]
[149]
Glanzmann, N.; Antinarelli, L.M.R.; da Costa Nunes, I.K.; Pereira, H.M.G.; Coelho, E.A.F.; Coimbra, E.S.; da Silva, A.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed. Pharmacother., 2021, 141, 111857.
[http://dx.doi.org/10.1016/j.biopha.2021.111857] [PMID: 34323702]
[150]
Upadhyay, A.; Chandrakar, P.; Gupta, S.; Parmar, N.; Singh, S.K.; Rashid, M.; Kushwaha, P.; Wahajuddin, M.; Sashidhara, K.V.; Kar, S. Synthesis, Biological Evaluation, Structure–Activity Relationship, and Mechanism of Action Studies of Quinoline–Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J. Med. Chem., 2019, 62(11), 5655-5671.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00628] [PMID: 31124675]
[151]
Katiyar, S.; Ramalingam, K.; Kumar, A.; Ansari, A.; Bisen, A.C.; Mishra, G.; Sanap, S.N.; Bhatta, R.S.; Purkait, B.; Goyal, N.; Sashidhara, K.V. Design, synthesis, and biological evaluation of quinoline-piperazine/pyrrolidine derivatives as possible antileishmanial agents. Eur. J. Med. Chem., 2023, 261, 115863.
[http://dx.doi.org/10.1016/j.ejmech.2023.115863] [PMID: 37837672]
[152]
Das, P.; Deng, X.; Zhang, L.; Roth, M.G.; Fontoura, B.M.A.; Phillips, M.A.; De Brabander, J.K. SAR-based optimization of a 4-quinoline carboxylic acid analogue with potent antiviral activity. ACS Med. Chem. Lett., 2013, 4(6), 517-521.
[http://dx.doi.org/10.1021/ml300464h] [PMID: 23930152]
[153]
Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Boatto, G.; Nieddu, M.; Giunchedi, P.; Marongiu, M.E.; Giliberti, G.; Iuliano, F.; Blois, S.; Ibba, C.; Busonera, B.; La Colla, P. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem., 2011, 19(23), 7070-7084.
[http://dx.doi.org/10.1016/j.bmc.2011.10.009] [PMID: 22047799]
[154]
Zhuang, L.; Wai, J.S.; Embrey, M.W.; Fisher, T.E.; Egbertson, M.S.; Payne, L.S.; Guare, J.P., Jr; Vacca, J.P.; Hazuda, D.J.; Felock, P.J.; Wolfe, A.L.; Stillmock, K.A.; Witmer, M.V.; Moyer, G.; Schleif, W.A.; Gabryelski, L.J.; Leonard, Y.M.; Lynch, J.J., Jr; Michelson, S.R.; Young, S.D. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J. Med. Chem., 2003, 46(4), 453-456.
[http://dx.doi.org/10.1021/jm025553u] [PMID: 12570367]
[155]
Bano, B.; Abbasi, S.; Khan, J.; Hussain, S.; Rasheed, S.; Perveen, S.; Khan, K.; Choudhary, M. Antiglycation activity of quinoline derivatives- a new therapeutic class for the management of type 2 diabetes complications. Med. Chem., 2014, 11(1), 60-68.
[http://dx.doi.org/10.2174/1573406410666140526151254] [PMID: 24875825]
[156]
Al-Ghorbani, M.; Alharbi, O.; Al-Odayni, A.B.; Abduh, N.A.Y. Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes. Pharmaceuticals (Basel), 2023, 16(9), 1222.
[http://dx.doi.org/10.3390/ph16091222] [PMID: 37765030]
[157]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[158]
Taha, M.; Sultan, S.; Imran, S.; Rahim, F.; Zaman, K.; Wadood, A.; Ur Rehman, A.; Uddin, N.; Mohammed Khan, K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem., 2019, 27(18), 4081-4088.
[http://dx.doi.org/10.1016/j.bmc.2019.07.035] [PMID: 31378594]
[159]
Abdel-Baky, Y.M.; Omer, A.M.; El-Fakharany, E.M.; Ammar, Y.A.; Abusaif, M.S.; Ragab, A. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: design and molecular modeling simulation. Sci. Rep., 2023, 13(1), 22792.
[http://dx.doi.org/10.1038/s41598-023-50130-3] [PMID: 38123716]
[160]
Cele, N.; Awolade, P.; Seboletswe, P.; Khubone, L.; Olofinsan, K.; Islam, M.S.; Jordaan, A.; Warner, D.F.; Singh, P. Synthesis, antidiabetic and antitubercular evaluation of Quinoline-pyrazolopyrimidine hybrids and Quinoline-4-Arylamines. ChemistryOpen, 2024, 2024, e202400014.
[http://dx.doi.org/10.1002/open.202400014] [PMID: 38506589]
[161]
Najafi, Z.; Saeedi, M.; Mahdavi, M.; Sabourian, R.; Khanavi, M.; Tehrani, M.B.; Moghadam, F.H.; Edraki, N.; Karimpor-Razkenari, E.; Sharifzadeh, M.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design and synthesis of novel anti-Alzheimer’s agents: Acridine-chromenone and quinoline-chromenone hybrids. Bioorg. Chem., 2016, 67, 84-94.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.001] [PMID: 27289559]
[162]
Camps, P.; Formosa, X.; Galdeano, C.; Muñoz-Torrero, D.; Ramírez, L.; Gómez, E.; Isambert, N.; Lavilla, R.; Badia, A.; Clos, M.V.; Bartolini, M.; Mancini, F.; Andrisano, V.; Arce, M.P.; Rodríguez-Franco, M.I.; Huertas, Ó.; Dafni, T.; Luque, F.J. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-Alzheimer compounds. J. Med. Chem., 2009, 52(17), 5365-5379.
[http://dx.doi.org/10.1021/jm900859q] [PMID: 19663388]
[163]
Cai, S.X.; Zhou, Z.L.; Huang, J.C.; Whittemore, E.R.; Egbuwoku, Z.O.; Lü, Y.; Hawkinson, J.E.; Woodward, R.M.; Weber, E.; Keana, J.F.W. Synthesis and structure-activity relationships of 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes: novel and highly potent antagonists for NMDA receptor glycine site. J. Med. Chem., 1996, 39(17), 3248-3255.
[http://dx.doi.org/10.1021/jm960214k] [PMID: 8765507]
[164]
Kumar, R.; Thakur, A. Sachin; Chandra, D.; Kumar Dhiman, A.; Kumar Verma, P.; Sharma, U. Quinoline-based metal complexes: Synthesis and applications. Coord. Chem. Rev., 2024, 499, 215453.
[http://dx.doi.org/10.1016/j.ccr.2023.215453]
[165]
Zhou, Z.; Du, L.Q.; Mo, D.Y.; Zhu, L.G.; Bian, H. Synthesis and anticancer mechanisms of nickel(II)-2-amino-8-quinolinol complexes with 2,2′-bipyridine ancillary ligands. Inorg. Chem. Commun., 2023, 152, 110712.
[http://dx.doi.org/10.1016/j.inoche.2023.110712]
[166]
Yang, Y.; Du, L.Q.; Huang, Y.; Liang, C.J.; Qin, Q.P.; Liang, H. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells. J. Inorg. Biochem., 2023, 241, 112152.
[http://dx.doi.org/10.1016/j.jinorgbio.2023.112152] [PMID: 36736244]
[167]
Damena, T.; Zeleke, D.; Desalegn, T.; Demissie, T.B.; Eswaramoorthy, R. Synthesis, characterization, and biological activities of novel vanadium(IV) and cobalt(II) complexes. ACS Omega, 2022, 7(5), 4389-4404.
[http://dx.doi.org/10.1021/acsomega.1c06205] [PMID: 35155932]
[168]
Mehta, J.V.; Gajera, S.B.; Raval, D.B.; Thakkar, V.R.; Patel, M.N. Biological assessment of substituted quinoline based heteroleptic organometallic compounds. MedChemComm, 2016, 7(8), 1617-1627.
[http://dx.doi.org/10.1039/C6MD00251J]
[169]
Zhong, H.J.; Wang, W.; Kang, T.S.; Yan, H.; Yang, Y.; Xu, L.; Wang, Y.; Ma, D.L.; Leung, C.H. A rhodium(III) complex as an inhibitor of neural precursor cell expressed, developmentally down-regulated 8-activating enzyme with in vivo activity against inflammatory bowel disease. J. Med. Chem., 2017, 60(1), 497-503.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00250] [PMID: 27976900]
[170]
Nguyen, M.; Vendier, L.; Stigliani, J.L.; Meunier, B.; Robert, A. Structures of the copper and zinc complexes of PBT2, a chelating agent evaluated as potential drug for neurodegenerative diseases. Eur. J. Inorg. Chem., 2017, 2017(3), 600-608.
[http://dx.doi.org/10.1002/ejic.201601120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy