Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Direct use of Metallic Ore Minerals as Catalysts in Organic Syntheses

Author(s): Mátyás Milen*, Tamás Miklós John, Patrik Pollák and György Keglevich

Volume 29, Issue 2, 2025

Published on: 03 September, 2024

Page: [97 - 107] Pages: 11

DOI: 10.2174/0113852728327246240821061535

Open Access Journals Promotions 2
conference banner
Abstract

Minerals occurring on earth have been used as raw materials by mankind for thousands of years. Currently, more than 6000 mineral species are known, and a few of them are common or abundant. It has long been known that minerals can catalyse chemical processes. The catalytic activity of metallic ore minerals has been investigated primarily in coal liquefaction and prebiotic chemistry and, to a lesser extent, in organic syntheses. This review article discusses organic chemical reactions, in which metallic ore minerals have been used as catalysts.

Keywords: Minerals, pyrite, vanadinite, copper-containing minerals, catalysis, organic synthesis.

Graphical Abstract
[1]
Rafferty, J.P. Geological Science; Britannica Educational Pub: New York, 2011.
[2]
Aydinalp, C. An introduction to the study of mineralogy; InTech: Croatia, 2012.
[http://dx.doi.org/10.5772/2064]
[3]
House, J.E.; House, K.A. Descriptive Inorganic Chemistry, 2nd ed; Academic Press: Cambridge, Massachusetts, 2010.
[http://dx.doi.org/10.1016/C2009-0-05861-9]
[4]
Zhou, L. Towards sustainability in mineral resources. Ore Geol. Rev., 2023, 160, 105600.
[http://dx.doi.org/10.1016/j.oregeorev.2023.105600]
[5]
Sonderegger, T.; Berger, M.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinée, J.; Helbig, C.; Huppertz, T.; Jolliet, O.; Motoshita, M.; Northey, S.; Rugani, B.; Schrijvers, D.; Schulze, R.; Sonnemann, G.; Valero, A.; Weidema, B.P.; Young, S.B. Mineral resources in life cycle impact assessment-part I: A critical review of existing methods. Int. J. Life Cycle Assess., 2020, 25(4), 784-797.
[http://dx.doi.org/10.1007/s11367-020-01736-6]
[6]
Zhai, M.; Hu, R.; Wang, Y.; Jiang, S.; Wang, R.; Li, J.; Chen, H.; Yang, Z.; Lü, Q.; Qi, T.; Shi, X.; Li, Y.; Liu, J.; Li, Z.; Zhu, X. Mineral resource science in China: Review and perspective. Geograph. Sustain, 2021, 2(2), 107-114.
[http://dx.doi.org/10.1016/j.geosus.2021.05.002]
[7]
Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed; Butterworth–Heinemann: Oxford, UK, 2015.
[8]
Novák, M.; Korbel, P. The Complete Encyclopedia of Minerals; Chartwell Books: New York, 2002.
[9]
Feldman, S.R. Sodium Chloride. Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: New York, 2005.
[10]
Ai, Z.; Li, S.; Zhao, Y.; Yi, H.; Chen, L.; Chen, P.; Song, S. Effect of magnesium ion on sylvite flotation: An experiment and molecular dynamic simulation study. Chem. Phys. Lett., 2020, 752, 137586.
[http://dx.doi.org/10.1016/j.cplett.2020.137586]
[11]
Kafkafi, U.; Xu, G.; Imas, P.; Magen, H.; Tarchitzky, J.; Johnston, A.E. Potassium and Chloride in Crops and Soils: The Role of Potassium Chloride Fertilizer in Crop Nutrition; International Potash Institute; IPI: Berne, Switzerland, 2002.
[12]
Titkov, S.; Sabirov, R.; Panteleeva, N. Investigations of alkylmorpholines-collectors for a new halite flotation process. Miner. Eng., 2003, 16(11), 1161-1166.
[http://dx.doi.org/10.1016/j.mineng.2003.07.011]
[13]
Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed; Butterworth–Heinemann: Oxford, United Kingdom, 1997.
[http://dx.doi.org/10.1016/C2009-0-30414-6]
[14]
Zhang, Y.; Song, S. Beneficiation of fluorite by flotation in a new chemical scheme. Miner. Eng., 2003, 16(7), 597-600.
[http://dx.doi.org/10.1016/S0892-6875(03)00136-5]
[15]
Klein, C. Manual of Mineralogy, 21st ed; Wiley: Hoboken, New Jersey, 1993.
[16]
Ahmad Fauzi, A.A.; Osman, A.F.; Alrashdi, A.A.; Mustafa, Z.; Abdul Halim, K.A. On the use of dolomite as a mineral filler and co-filler in the field of polymer composites: A review. Polymers (Basel), 2022, 14(14), 2843.
[http://dx.doi.org/10.3390/polym14142843] [PMID: 35890619]
[17]
Zoca, S.M.; Penn, C. Chapter one – An important tool with no instruction manual: A review of gypsum use in agriculture. Adv. Agron., 2017, 144, 1-44.
[http://dx.doi.org/10.1016/bs.agron.2017.03.001]
[18]
Paulo, M.S.; Veiga, M.R.; de Brito, J. Gypsum coatings in ancient buildings. Constr. Build. Mater., 2007, 21(1), 126-131.
[http://dx.doi.org/10.1016/j.conbuildmat.2005.06.035]
[19]
Austin, R.T. Treatment of broken legs before and after the introduction of gypsum. Injury, 1983, 14(5), 389-394.
[http://dx.doi.org/10.1016/0020-1383(83)90089-X] [PMID: 6347885]
[20]
Minjigmaa, A.; Temuujin, J.; Khasbaatar, D.; Oyun-Erdene, G.; Amgalan, J.; MacKenzie, K.J.D. Influence of mechanical distortion on the solubility of fluorapatite. Miner. Eng., 2007, 20(2), 194-196.
[http://dx.doi.org/10.1016/j.mineng.2006.07.011]
[21]
Chen, A.; Wang, X.; Zhang, Q. Interaction and inhibition mechanism of sulfuric acid with fluorapatite (001) surface and dolomite (104) surface: Flotation experiments and molecular dynamics simulations. Minerals (Basel), 2023, 13(12), 1517.
[http://dx.doi.org/10.3390/min13121517]
[22]
Dyachenko, A.N.; Kraydenko, R.I.; Malytin, L.N. Novel ammonium fluoride process for beryllium raw materials to produce hydroxide. Miner. Eng., 2022, 179, 107439.
[http://dx.doi.org/10.1016/j.mineng.2022.107439]
[23]
Schmandt, D.S.; Cook, N.J.; Ehrig, K.; Gilbert, S.; Wade, B.P.; Rollog, M.; Ciobanu, C.L.; Kamenetsky, V.S. Uptake of trace elements by baryte during copper ore processing: A case study from Olympic Dam, South Australia. Miner. Eng., 2019, 135, 83-94.
[http://dx.doi.org/10.1016/j.mineng.2019.02.034]
[24]
Acarkan, N.; Bulut, G.; Kangal, O.; Önal, G. A new process for upgrading boron content and recovery of borax concentrate. Miner. Eng., 2005, 18(7), 739-741.
[http://dx.doi.org/10.1016/j.mineng.2004.12.005]
[25]
Yuan, D.; Cadien, K.; Liu, Q.; Zeng, H. Separation of talc and molybdenite: Challenges and opportunities. Miner. Eng., 2019, 143, 105923.
[http://dx.doi.org/10.1016/j.mineng.2019.105923]
[26]
Fan, C.; Ren, L.; Zhang, Y.; Bao, S. Grinding effect of sodium silicate on muscovite and its mechanism analysis. Miner. Eng., 2023, 199, 108106.
[http://dx.doi.org/10.1016/j.mineng.2023.108106]
[27]
Larsen, E.; Johannessen, N.E.; Kowalczuk, P.B.; Kleiv, R.A. Selective flotation of K-feldspar from Na-feldspar in alkaline environment. Miner. Eng., 2019, 142, 105928.
[http://dx.doi.org/10.1016/j.mineng.2019.105928]
[28]
Pan, X.; Li, S.; Li, Y.; Guo, P.; Zhao, X.; Cai, Y. Resource, characteristic, purification and application of quartz: A review. Miner. Eng., 2022, 183, 107600.
[http://dx.doi.org/10.1016/j.mineng.2022.107600]
[29]
Chen, Q.; Kasomo, R.M.; Li, H.; Jiao, X.; Zheng, H.; Weng, X.; Mutua, N.M.; Song, S.; He, D.; Luo, H. Froth flotation of rutile – An overview. Miner. Eng., 2021, 163, 106797.
[http://dx.doi.org/10.1016/j.mineng.2021.106797]
[30]
Wang, Q.; Wang, S.; Ma, X.; Cao, Z.; Di, J.; Yang, J.; Zhong, H. A green cyclic leaching process for low-grade pyrolusite via a recyclable Fe(II) reductant. Minerals (Basel), 2023, 13(9), 1191.
[http://dx.doi.org/10.3390/min13091191]
[31]
Zhang, M.; Xu, Z.; Zhang, Q.; Dan, Z.; Fu, H.; Yao, W. Properties and potential application of ozone-oxidized starch for enhanced reverse flotation of fine hematite. Miner. Eng., 2023, 198, 108084.
[http://dx.doi.org/10.1016/j.mineng.2023.108084]
[32]
Opuchovic, O.; Kareiva, A. Historical hematite pigment: Synthesis by an aqueous sol–gel method, characterization and application for the colouration of ceramic glazes. Ceram. Int., 2015, 41(3), 4504-4513.
[http://dx.doi.org/10.1016/j.ceramint.2014.11.145]
[33]
Tian, M.; Gao, Z.; Ji, B.; Fan, R.; Liu, R.; Chen, P.; Sun, W.; Hu, Y. Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant. Minerals (Basel), 2018, 8(8), 316.
[http://dx.doi.org/10.3390/min8080316]
[34]
Tiu, G.; Ghorbani, Y.; Jansson, N.; Wanhainen, C.; Bolin, N.J. Ore mineral characteristics as rate-limiting factors in sphalerite flotation: Comparison of the mineral chemistry (iron and manganese content), grain size, and liberation. Miner. Eng., 2022, 185, 107705.
[http://dx.doi.org/10.1016/j.mineng.2022.107705]
[35]
Dembele, S.; Akcil, A.; Panda, S. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite. Miner. Eng., 2022, 175, 107304.
[http://dx.doi.org/10.1016/j.mineng.2021.107304]
[36]
Liang, G.; Chimonyo, W.; Lv, J.; Peng, Y. Differential depression of calcium lignosulfonate on chalcopyrite and molybdenite flotation with collector kerosene. Miner. Eng., 2023, 201, 108192.
[http://dx.doi.org/10.1016/j.mineng.2023.108192]
[37]
Wu, L.M.; Zhou, C.H.; Keeling, J.; Tong, D.S.; Yu, W.H. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth Sci. Rev., 2012, 115(4), 373-386.
[http://dx.doi.org/10.1016/j.earscirev.2012.10.001]
[38]
Li, Y. Minerals as prebiotic catalysts for chemical evolution towards the origin of life; Mineralogy; IntechOpen: Rijeka, Croatia, 2022.
[http://dx.doi.org/10.5772/intechopen.102389]
[39]
Li, Y.; Kitadai, N.; Nakamura, R. Chemical diversity of metal sulfide minerals and its implications for the origin of life. Life (Basel), 2018, 8(4), 46.
[http://dx.doi.org/10.3390/life8040046] [PMID: 30308967]
[40]
Haas, M.; Lamour, S.; Christ, S.B.; Trapp, O. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting. Commun. Chem., 2020, 3(1), 140.
[http://dx.doi.org/10.1038/s42004-020-00387-w] [PMID: 36703456]
[41]
Saladino, R.; Neri, V.; Crestini, C.; Costanzo, G.; Graciotti, M.; Di Mauro, E. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. J. Am. Chem. Soc., 2008, 130(46), 15512-15518.
[http://dx.doi.org/10.1021/ja804782e] [PMID: 18939836]
[42]
Saladino, R.; Di Mauro, E.; García-Ruiz, J.M. A universal geochemical scenario for formamide condensation and prebiotic chemistry. Chemistry, 2019, 25(13), 3181-3189.
[http://dx.doi.org/10.1002/chem.201803889] [PMID: 30230056]
[43]
Costanzo, G.; Saladino, R.; Crestini, C.; Ciciriello, F.; Di Mauro, E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem., 2007, 282(23), 16729-16735.
[http://dx.doi.org/10.1074/jbc.M611346200] [PMID: 17412692]
[44]
Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 58(7), 1235-1255.
[http://dx.doi.org/10.1016/S0040-4020(01)01216-9]
[45]
Theng, B.K.G. Clay Mineral Catalysis of Organic Reactions; CRC Press: Boca Raton, 2018.
[http://dx.doi.org/10.1201/9780429465789]
[46]
Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol., 2014, 4(8), 2378-2396.
[http://dx.doi.org/10.1039/C4CY00112E]
[47]
Sen, S.E.; Smith, S.M.; Sullivan, K.A. Organic transformations using zeolites and zeotype materials. Tetrahedron, 1999, 55(44), 12657-12698.
[http://dx.doi.org/10.1016/S0040-4020(99)00747-4]
[48]
International Mineralogical Association. Available from: https://mineralogy-ima.org/
[49]
Hazen, R.M.; Ausubel, J.H. On the nature and significance of rarity in mineralogy. Am. Mineral., 2016, 101(6), 1245-1251.
[http://dx.doi.org/10.2138/am-2016-5601CCBY]
[50]
Saha, B.; De, S.; Dutta, S. Recent advancements of replacing existing aniline production process with environmentally friendly one-pot process: An overview. Crit. Rev. Environ. Sci. Technol., 2013, 43(1), 84-120.
[http://dx.doi.org/10.1080/10643389.2011.604252]
[51]
Lawrence, S.A. Amines: Synthesis, properties and applications; Cambridge University Press: Cambridge, England, 2004.
[52]
Rappaport, Z. The Chemistry of Anilines, Part 1; Wiley Interscience: Hoboken, New Jersey, 2007.
[http://dx.doi.org/10.1002/9780470871737]
[53]
Béchamp, A. De l’action des protosels de fer sur la nitronaphtaline et la nitrobenzine. nouvelle méthode de formation des bases organiques artificielles de Zinin. Ann. Chim. Phys., 1854, 42(3), 186-196.
[54]
Kadam, H.K.; Tilve, S.G. Advancement in methodologies for reduction of nitroarenes. RSC Advances, 2015, 5(101), 83391-83407.
[http://dx.doi.org/10.1039/C5RA10076C]
[55]
Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of nitro compounds using 3D-non-noble metal catalysts. Chem. Rev., 2019, 119(4), 2611-2680.
[http://dx.doi.org/10.1021/acs.chemrev.8b00547] [PMID: 30516963]
[56]
Romero, A.H. Reduction of nitroarenes via catalytic transfer hydrogenation using formic acid as hydrogen source: A comprehensive review. ChemistrySelect, 2020, 5(42), 13054-13075.
[http://dx.doi.org/10.1002/slct.202002838]
[57]
Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Org. Process Res. Dev., 2018, 22(4), 430-445.
[http://dx.doi.org/10.1021/acs.oprd.6b00205]
[58]
Ramdar, M.; Kazemi, F.; Kaboudin, B.; Taran, Z.; Partovi, A. Visible light active CdS nanorods: One-pot synthesis of aldonitrones. New J. Chem., 2016, 40(11), 9257-9262.
[http://dx.doi.org/10.1039/C6NJ01459C]
[59]
Brown, O.W.; Raines, E.D. Nickel, cadmium, and lead sulfides as catalysts in the vapor phase reduction of nitrobenzene. J. Phys. Chem., 1939, 43(3), 383-386.
[http://dx.doi.org/10.1021/j150390a011]
[60]
Griffitts, F.A.; Brown, O.W. The catalytic activity of cobalt sulfide for the gas-phase reduction of nitro benzene to aniline. J. Phys. Chem., 1937, 41(3), 477-484.
[http://dx.doi.org/10.1021/j150381a014]
[61]
Huang, L.; Luo, P.; Xiong, M.; Chen, R.; Wang, Y.; Xing, W.; Huang, J. Selective reduction of nitroarenes with molybdenum disulfide. Chin. J. Chem., 2013, 31(8), 987-991.
[http://dx.doi.org/10.1002/cjoc.201300310]
[62]
Morse, J.R.; Callejas, J.F.; Darling, A.J.; Schaak, R.E. Bulk iron pyrite as a catalyst for the selective hydrogenation of nitroarenes. Chem. Commun. (Camb.), 2017, 53(35), 4807-4810.
[http://dx.doi.org/10.1039/C7CC00120G] [PMID: 28406262]
[63]
Rickard, D.; Luther, G.W., III Chemistry of iron sulfides. Chem. Rev., 2007, 107(2), 514-562.
[http://dx.doi.org/10.1021/cr0503658] [PMID: 17261073]
[64]
Jefferson, M.; Yenial-Arslan, U.; Evans, C.; Curtis-Morar, C.; O’Donnell, R.; Parbhakar-Fox, A.; Forbes, E. Effect of pyrite textures and composition on flotation performance: A review. Miner. Eng., 2023, 201, 108234.
[http://dx.doi.org/10.1016/j.mineng.2023.108234]
[65]
Mak, K.K.W. Synthesis and resolution of the atropisomeric 1,1′-bi-2-naphthol: An experiment in organic synthesis and 2-D NMR spectroscopy. J. Chem. Educ., 2004, 81(11), 1636.
[http://dx.doi.org/10.1021/ed081p1636]
[66]
Kagan, H.B.; Riant, O. Catalytic asymmetric Diels-Alder reactions. Chem. Rev., 1992, 92(5), 1007-1019.
[http://dx.doi.org/10.1021/cr00013a013]
[67]
da Silva, E.M.; Vidal, H.D.A.; Januário, M.A.P.; Corrêa, A.G. Advances in the asymmetric synthesis of BINOL derivatives. Molecules, 2022, 28(1), 12.
[http://dx.doi.org/10.3390/molecules28010012] [PMID: 36615207]
[68]
Shibasaki, M.; Matsunaga, S. Metal/linked-BINOL complexes: Applications in direct catalytic asymmetric Mannich-type reactions. J. Organomet. Chem., 2006, 691(10), 2089-2100.
[http://dx.doi.org/10.1016/j.jorganchem.2005.10.025]
[69]
Dolsophon, K.; Ruangsupapichat, N.; Soponpong, J.; Sungsuwan, S.; Prabpai, S.; Kongsaeree, P.; Thongpanchang, T. Tetrahydro-1,4-epoxynaphthalene-1-carboxylic acid: A chiral resolving agent for the resolution and absolute configuration assignment of 7,7′-disubstituted 1,1′-bi-2-naphthols. Tetrahedron Asymmetry, 2016, 27(22-23), 1113-1120.
[http://dx.doi.org/10.1016/j.tetasy.2016.09.003]
[70]
Wu, Y.; Yang, L.; Wu, B.; Li, J.; Liu, B.; Ke, G.; Dong, F.; Zhou, Y.; He, H. Accurate understanding the catalytic role of MnO2 in the oxidative-coupling of 2-naphthols into 1,1′-bi-2-naphthols. Catal. Lett., 2021, 151(3), 901-908.
[http://dx.doi.org/10.1007/s10562-020-03353-2]
[71]
Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H. Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron Asymmetry, 2015, 26(12-13), 613-616.
[http://dx.doi.org/10.1016/j.tetasy.2015.05.002]
[72]
Hon, S.W.; Li, C.H.; Kuo, J.H.; Barhate, N.B.; Liu, Y.H.; Wang, Y.; Chen, C.T. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium (IV) complexes. Org. Lett., 2001, 3(6), 869-872.
[http://dx.doi.org/10.1021/ol015505o] [PMID: 11263903]
[73]
Brussee, J.; Groenendijk, J.L.G.; te Koppele, J.M.; Jansen, A.C.A. On the mechanism of the formation of S(−)-(1,1′-binaphthalene)-2,2′-diol via copper(II)amine complexes. Tetrahedron, 1985, 41(16), 3313-3319.
[http://dx.doi.org/10.1016/S0040-4020(01)96682-7]
[74]
Tkachenko, N.V.; Bryliakov, K.P. Transition metal catalyzed aerobic asymmetric coupling of 2-naphthols. Mini Rev. Org. Chem., 2019, 16(4), 392-398.
[http://dx.doi.org/10.2174/1570193X15666180418153713]
[75]
Puccetti, F.; Schumacher, C.; Wotruba, H.; Hernández, J.G.; Bolm, C. The use of copper and vanadium mineral ores in catalyzed mechanochemical carbon–carbon bond formations. ACS Sustain. Chem.& Eng., 2020, 8(19), 7262-7266.
[http://dx.doi.org/10.1021/acssuschemeng.0c02447]
[76]
Nasimifar, A.; Mehrabani, J.V. A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources. Int. J. Min. Geo-Eng, 2022, 56(4), 361-382.
[http://dx.doi.org/10.22059/IJMGE.2022.319012.594893]
[77]
Saranya, S.; Anilkumar, G. Copper Catalysis in Organic Synthesis; Wiley‐VCH: Hoboken, New Jersey, 2020.
[http://dx.doi.org/10.1002/9783527826445]
[78]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540]
[79]
Badanyan, S.O.; Voskanyan, M.G.; Chobanyan, Z.A. Copper salts in catalytic reactions of organic compounds. Russ. Chem. Rev., 1981, 50(11), 1074-1086.
[http://dx.doi.org/10.1070/RC1981v050n11ABEH002737]
[80]
Lazreg, F.; Nahra, F.; Cazin, C.S.J. Copper–NHC complexes in catalysis. Coord. Chem. Rev., 2015, 293-294, 48-79.
[http://dx.doi.org/10.1016/j.ccr.2014.12.019]
[81]
Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zbořil, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev., 2016, 116(6), 3722-3811.
[http://dx.doi.org/10.1021/acs.chemrev.5b00482] [PMID: 26935812]
[82]
Olszewski, T.K.; Adler, P.; Grison, C. Bio-based catalysts from biomass issued after decontamination of effluents rich in copper–an innovative approach towards greener copper-based catalysis. Catalysts, 2019, 9(3), 214.
[http://dx.doi.org/10.3390/catal9030214]
[83]
Shiri, P.; Aboonajmi, J. A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions. Beilstein J. Org. Chem., 2020, 16, 551-586.
[http://dx.doi.org/10.3762/bjoc.16.52] [PMID: 32280385]
[84]
Fodor, A.; Kiss, Á.; Debreczeni, N.; Hell, Z.; Gresits, I. A simple method for the preparation of propargylamines using molecular sieve modified with copper(II). Org. Biomol. Chem., 2010, 8(20), 4575-4581.
[http://dx.doi.org/10.1039/c0ob00224k] [PMID: 20740243]
[85]
Torres-Méndez, C.E.; López-Mayorga, B. Copper supported on acid-activated vermiculite as an efficient and recyclable catalyst for the Biginelli reaction: A green approach. Clay Miner., 2020, 55(4), 271-280.
[http://dx.doi.org/10.1180/clm.2020.37]
[86]
Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev., 2012, 41(10), 3790-3807.
[http://dx.doi.org/10.1039/c2cs15356d] [PMID: 22422343]
[87]
Saha, T.K.; Das, R. Progress in synthesis of propargylamine and its derivatives by nanoparticle catalysis via A3 coupling: A decade update. ChemistrySelect, 2018, 3(1), 147-169.
[http://dx.doi.org/10.1002/slct.201702454]
[88]
Jesin, I.; Nandi, G.C. Recent advances in the A3 coupling reactions and their applications. Eur. J. Org. Chem., 2019, 2019(16), 2704-2720.
[http://dx.doi.org/10.1002/ejoc.201900001]
[89]
Rokade, B.V.; Barker, J.; Guiry, P.J. Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev., 2019, 48(18), 4766-4790.
[http://dx.doi.org/10.1039/C9CS00253G] [PMID: 31465045]
[90]
Farhi, J.; Lykakis, I.N.; Kostakis, G.E. Metal-catalysed A3 coupling methodologies: Classification and visualisation. Catalysts, 2022, 12(6), 660.
[http://dx.doi.org/10.3390/catal12060660]
[91]
Mo, J.N.; Su, J.; Zhao, J. The asymmetric A3(aldehyde–alkyne–amine) coupling: Highly enantioselective access to propargylamines. Molecules, 2019, 24(7), 1216.
[http://dx.doi.org/10.3390/molecules24071216] [PMID: 30925732]
[92]
Nasrollahzadeh, M.; Sajjadi, M.; Ghorbannezhad, F.; Sajadi, S.M. A review on recent advances in the application of nanocatalysts in A3 coupling reactions. Chem. Rec., 2018, 18(10), 1409-1473.
[http://dx.doi.org/10.1002/tcr.201700100] [PMID: 29537731]
[93]
Milen, M.; Györke, G.; Dancsó, A.; Volk, B. Study on the A3-coupling reaction catalyzed by readily available copper-containing minerals. Synthesis of propargylamines. Tetrahedron Lett., 2020, 61(10), 151544.
[http://dx.doi.org/10.1016/j.tetlet.2019.151544]
[94]
Clark, A.J. Atom transfer radical cyclisation reactions mediated by copper complexes. Chem. Soc. Rev., 2002, 31(1), 1-11.
[http://dx.doi.org/10.1039/b107811a] [PMID: 12108978]
[95]
Clark, A.J. Copper catalyzed atom transfer radical cyclization reactions. Eur. J. Org. Chem., 2016, 2016(13), 2231-2243.
[http://dx.doi.org/10.1002/ejoc.201501571]
[96]
Muñoz-Molina, J.M.; Belderraín, T.R.; Pérez, P.J. Atom transfer radical reactions as a tool for olefin functionalization – on the way to practical applications. Eur. J. Inorg. Chem., 2011, 2011(21), 3155-3164.
[http://dx.doi.org/10.1002/ejic.201100379]
[97]
Liu, Q.; Chen, C.; Tong, X. Pd(0)-catalyzed atom transfer radical cyclization of N-allyl-α-chloroamides: Highly stereoselective synthesis of substituted γ-lactam. Tetrahedron Lett., 2015, 56(30), 4483-4485.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.094]
[98]
Lee, G.M.; Parvez, M.; Weinreb, S.M. Intramolecular metal catalyzed kharasch cyclizations of olefinic α-halo esters and acids. Tetrahedron, 1988, 44(15), 4671-4678.
[http://dx.doi.org/10.1016/S0040-4020(01)86169-X]
[99]
De Paoli, P.; Isse, A.A.; Bortolamei, N.; Gennaro, A. New insights into the mechanism of activation of atom transfer radical polymerization by Cu(I) complexes. Chem. Commun. (Camb.), 2011, 47(12), 3580-3582.
[http://dx.doi.org/10.1039/c1cc10195a] [PMID: 21327281]
[100]
Bhambra, A.S.; Edgar, M.; Elsegood, M.R.J.; Li, Y.; Weaver, G.W.; Arroo, R.R.J.; Yardley, V.; Burrell-Saward, H.; Kryštof, V. Design, synthesis and antitrypanosomal activities of 2,6-disubstituted-4,5,7-trifluoro-benzo-thiophenes. Eur. J. Med. Chem., 2016, 108, 347-353.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.043] [PMID: 26698538]
[101]
Kaplancıklı, Z.A.; Levent, S.; Osmaniye, D.; Sağlık, B.N.; Çevik, U.A.; Çavuşoğlu, B.K.; Özkay, Y.; Ilgın, S. Synthesis and anticandidal activity evaluation of new benzimidazole-thiazole derivatives. Molecules, 2017, 22(12), 2051.
[http://dx.doi.org/10.3390/molecules22122051] [PMID: 29168743]
[102]
Pathare, B.; Bansode, T. Review- biological active benzimidazole derivatives. Results Chem., 2021, 3, 100200.
[http://dx.doi.org/10.1016/j.rechem.2021.100200]
[103]
Ghasemi, Z.; Azizi, S.; Salehi, R.; Kafil, H.S. Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties. Monatsh. Chem., 2018, 149(1), 149-157.
[http://dx.doi.org/10.1007/s00706-017-2073-y]
[104]
Matsumura, M.; Kitamura, Y.; Yamauchi, A.; Kanazawa, Y.; Murata, Y.; Hyodo, T.; Yamaguchi, K.; Yasuike, S. Synthesis of benzo[d]imidazo[2,1-b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)-benzimidazoles with selenium. Beilstein J. Org. Chem., 2019, 15, 2029-2035.
[http://dx.doi.org/10.3762/bjoc.15.199] [PMID: 31501670]
[105]
Yang, J.; Zhang, R.; Wang, W.; Zhang, Z.; Shi, M. Axially chiral N-heterocyclic carbene gold(I) complex catalyzed asymmetric Friedel–Crafts/cyclization reaction of nitrogen-tethered 1,6-enynes with indole derivatives. Tetrahedron Asymmetry, 2011, 22(23), 2029-2038.
[http://dx.doi.org/10.1016/j.tetasy.2011.12.004]
[106]
Xu, Q.; Shi, M.; Gu, P. Synthesis of novel N-heterocyclic carbene-oxazoline palladium complexes and their applications in Suzuki–Miyaura cross-coupling reaction. Synlett, 2013, 24(10), 1255-1259.
[http://dx.doi.org/10.1055/s-0033-1338848]
[107]
Chan, D.M.T.; Monaco, K.L.; Wang, R.P.; Winters, M.P. New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett., 1998, 39(19), 2933-2936.
[http://dx.doi.org/10.1016/S0040-4039(98)00503-6]
[108]
Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J.; Winters, M.P.; Chan, D.M.T.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett., 1998, 39(19), 2941-2944.
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8]
[109]
Sanjeeva Rao, K.; Wu, T.S. Chan–Lam coupling reactions: Synthesis of heterocycles. Tetrahedron, 2012, 68(38), 7735-7754.
[http://dx.doi.org/10.1016/j.tet.2012.06.015]
[110]
Chen, J.Q.; Li, J.H.; Dong, Z.B. A review on the latest progress of Chan–Lam coupling reaction. Adv. Synth. Catal., 2020, 362(16), 3311-3331.
[http://dx.doi.org/10.1002/adsc.202000495]
[111]
Jia, X.; Tong, X. Recent progress on Chan–Lam coupling reactions catalyzed by copper(II) complexes. Youji Huaxue, 2022, 42(9), 2640-2658.
[http://dx.doi.org/10.6023/cjoc202203034]
[112]
Sarmah, D.; Saikia, R.; Bora, U. An attractive avenue to Chan-Lam cross-coupling: Scope and developments under Ni-catalysis. Tetrahedron, 2022, 104, 132567.
[http://dx.doi.org/10.1016/j.tet.2021.132567]
[113]
Jia, X.; Peng, P.N. O-Bidentate ligand-tunable copper(II) complexes as a catalyst for Chan–Lam coupling reactions of arylboronic acids with 1H-imidazole derivatives. Org. Biomol. Chem., 2018, 16(46), 8984-8988.
[http://dx.doi.org/10.1039/C8OB02254B] [PMID: 30418460]
[114]
Liu, B.; Liu, B.; Zhou, Y.; Chen, W. Copper(II) hydroxide complexes of N-heterocyclic carbenes and catalytic oxidative amination of arylboronic acids. Organometallics, 2010, 29(6), 1457-1464.
[http://dx.doi.org/10.1021/om100009u]
[115]
Guan, C.; Feng, Y.; Zou, G.; Tang, J. Base-assisted, copper-catalyzed N-arylation of (benz)imidazoles and amines with diarylborinic acids. Tetrahedron, 2017, 73(49), 6906-6913.
[http://dx.doi.org/10.1016/j.tet.2017.10.043]
[116]
Begouin, A.; Queiroz, M.J.R.P. Scope and limitations of the base‐free copper(I) oxide catalyzed N‐heteroarylation of 1H‐(benz)imidazoles with B‐heteroarylboronic acids or 2‐heteroaryl‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolanes. Helv. Chim. Acta, 2013, 96(5), 853-863.
[http://dx.doi.org/10.1002/hlca.201200310]
[117]
Janíková, K.; Jedinák, L.; Volná, T.; Cankař, P. Chan-Lam cross-coupling reaction based on the Cu2S/TMEDA system. Tetrahedron, 2018, 74(5), 606-617.
[http://dx.doi.org/10.1016/j.tet.2017.12.042]
[118]
Collman, J.P.; Zhong, M. An efficient diamine copper complex-catalyzed coupling of arylboronic acids with imidazoles. Org. Lett., 2000, 2(9), 1233-1236.
[http://dx.doi.org/10.1021/ol000033j] [PMID: 10810715]
[119]
West, M.J.; Fyfe, J.W.B.; Vantourout, J.C.; Watson, A.J.B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev., 2019, 119(24), 12491-12523.
[http://dx.doi.org/10.1021/acs.chemrev.9b00491] [PMID: 31756093]
[120]
Györke, G.; Dancsó, A.; Volk, B.; Milen, M. Chan−Lam arylation of benzimidazole and its derivatives in the presence of copper‐containing minerals. ChemistrySelect, 2021, 6(4), 802-807.
[http://dx.doi.org/10.1002/slct.202004596]
[121]
Glaser, C. Beiträge zur Kenntniss des Acetenylbenzols. Ber. Dtsch. Chem. Ges., 1869, 2(1), 422-424.
[http://dx.doi.org/10.1002/cber.186900201183]
[122]
Eglinton, G.; Galbraith, A.R. 182. Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1:3-diyne and related compounds. J. Chem. Soc., 1959, 889-896.
[http://dx.doi.org/10.1039/jr9590000889]
[123]
Hay, A.S. Oxidative coupling of acetylenes. II. J. Org. Chem., 1962, 27(9), 3320-3321.
[http://dx.doi.org/10.1021/jo01056a511]
[124]
Bohlmann, F.; Schönowsky, H.; Inhoffen, E.; Grau, G. Polyacetylenverbindungen, LII. Über den Mechanismus der oxydativen Dimerisierung von Acetylenverbindungen. Chem. Ber., 1964, 97(3), 794-800.
[http://dx.doi.org/10.1002/cber.19640970322]
[125]
Vilhelmsen, M.H.; Jensen, J.; Tortzen, C.G.; Nielsen, M.B. The Glaser–Hay reaction: Optimization and scope based on 13C NMR kinetics experiments. Eur. J. Org. Chem., 2013, 2013(4), 701-711.
[http://dx.doi.org/10.1002/ejoc.201201159]
[126]
Zhang, S.; Zhao, L. Anaerobic photoinduced Cu(0/I)-mediated Glaser coupling in a radical pathway. Nat. Commun., 2023, 14(1), 6741.
[http://dx.doi.org/10.1038/s41467-023-42602-x] [PMID: 37875487]
[127]
Sindhu, K.S.; Anilkumar, G. Recent advances and applications of Glaser coupling employing greener protocols. RSC Advances, 2014, 4(53), 27867-27887.
[http://dx.doi.org/10.1039/C4RA02416H]
[128]
Akhtar, R.; Zahoor, A.F. Transition metal catalyzed Glaser and Glaser-Hay coupling reactions: Scope, classical/green methodologies and synthetic applications. Synth. Commun., 2020, 50(22), 3337-3368.
[http://dx.doi.org/10.1080/00397911.2020.1802757]
[129]
Luo, Y.; Dong, L. Catalyst-controlled C–H transformation of pyrazolidinones with 1,3-diynes for highly selective synthesis of functionalized bisindoles and indoles. J. Org. Chem., 2022, 87(9), 5577-5591.
[http://dx.doi.org/10.1021/acs.joc.1c02976] [PMID: 35389223]
[130]
Cadierno, V. Catalytic hydrofunctionalization reactions of 1,3-diynes. Catalysts, 2022, 12(1), 89.
[http://dx.doi.org/10.3390/catal12010089]
[131]
Weber, S.M.; Hilt, G. Chemoselective cobalt(I)-catalyzed cyclotrimerization of (un)symmetrical 1,3-butadiynes for the synthesis of 1,2,4-regioisomers. Org. Lett., 2019, 21(11), 4106-4110.
[http://dx.doi.org/10.1021/acs.orglett.9b01281] [PMID: 31117706]
[132]
Eckstein, B.J.; Melkonyan, F.S.; Zhou, N.; Manley, E.F.; Smith, J.; Timalsina, A.; Chang, R.P.H.; Chen, L.X.; Facchetti, A.; Marks, T.J. Buta-1,3-diyne-based π-conjugated polymers for organic transistors and solar cells. Macromolecules, 2017, 50(4), 1430-1441.
[http://dx.doi.org/10.1021/acs.macromol.6b02702]
[133]
Györke, G.; Dancsó, A.; Volk, B.; Hunyadi, D.; Szalóki, I.; Milen, M. Copper‐containing mineral mediated Glaser coupling of terminal alkynes. ChemistrySelect, 2022, 7(21), e202200480.
[http://dx.doi.org/10.1002/slct.202200480]
[134]
Brown, D.G.; Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone? J. Med. Chem., 2016, 59(10), 4443-4458.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01409] [PMID: 26571338]
[135]
Goldberg, I. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. Ber. Dtsch. Chem. Ges., 1906, 39(2), 1691-1692.
[http://dx.doi.org/10.1002/cber.19060390298]
[136]
Thomas, A.; Sujatha, A.; Anilkumar, G. Goldberg reaction: Development, mechanistic insights and applications. Mini Rev. Org. Chem., 2014, 12(1), 3-23.
[http://dx.doi.org/10.2174/1570193X11666141029002910]
[137]
Sperotto, E.; van Klink, G.P.M.; van Koten, G.; de Vries, J.G. The mechanism of the modified Ullmann reaction. Dalton Trans., 2010, 39(43), 10338-10351.
[http://dx.doi.org/10.1039/c0dt00674b] [PMID: 21049595]
[138]
Sherborne, G.J.; Adomeit, S.; Menzel, R.; Rabeah, J.; Brückner, A.; Fielding, M.R.; Willans, C.E.; Nguyen, B.N. Origins of high catalyst loading in copper(I)-catalysed Ullmann–Goldberg C–N coupling reactions. Chem. Sci. (Camb.), 2017, 8(10), 7203-7210.
[http://dx.doi.org/10.1039/C7SC02859H] [PMID: 29147546]
[139]
Györke, G.; Dancsó, A.; Volk, B.; Bezúr, L.; Hunyadi, D.; Szalóki, I.; Milen, M. Direct use of copper-containing minerals in Goldberg arylation of amides. Catal. Lett., 2023, 153(2), 503-521.
[http://dx.doi.org/10.1007/s10562-022-03989-2]
[140]
Wong, X.K.; Yeong, K.Y. A patent review on the current developments of benzoxazoles in drug discovery. ChemMedChem, 2021, 16(21), 3237-3262.
[http://dx.doi.org/10.1002/cmdc.202100370] [PMID: 34289258]
[141]
Pal, S.; Manjunath, B.; Ghorai, S.; Sasmal, S. Benzoxazole alkaloids: Occurrence, chemistry, and biology. Alkaloids Chem. Biol., 2018, 79, 71-137.
[http://dx.doi.org/10.1016/bs.alkal.2017.12.002] [PMID: 29455837]
[142]
Yadav, K.P.; Rahman, M.A.; Nishad, S.; Maurya, S.K.; Anas, M.; Mujahid, M. Synthesis and biological activities of benzothiazole derivatives: A review. Intell. Pharm., 2023, 1(3), 122-132.
[http://dx.doi.org/10.1016/j.ipha.2023.06.001]
[143]
Sumit; Kumar, A.; Mishra, A.K. Advancement in pharmacological activities of benzothiazole and its derivatives: An up to date review. Mini Rev. Med. Chem., 2021, 21(3), 314-335.
[http://dx.doi.org/10.2174/18755607MTA52MzUqw] [PMID: 32819243]
[144]
Varma, R.S.; Kumar, D. Manganese triacetate oxidation of phenolic schiffs bases: Synthesis of 2‐arylbenzoxazoles. J. Heterocycl. Chem., 1998, 35(6), 1539-1540.
[http://dx.doi.org/10.1002/jhet.5570350656]
[145]
Chang, J.; Zhao, K.; Pan, S. Synthesis of 2-arylbenzoxazoles via DDQ promoted oxidative cyclization of phenolic Schiff bases-a solution-phase strategy for library synthesis. Tetrahedron Lett., 2002, 43(6), 951-954.
[http://dx.doi.org/10.1016/S0040-4039(01)02302-4]
[146]
Terashima, M.; Ishii, M.; Kanaoka, Y. A facile synthesis of 2-substituted benzoxazoles. Synthesis, 1982, 1982(6), 484-485.
[http://dx.doi.org/10.1055/s-1982-29847]
[147]
Ingle, V.; Gorepatil, P.; Mane, Y. Samarium(III) triflate as an efficient and reusable catalyst for facile synthesis of benzoxazoles and benzothiazoles in aqueous medium. Synlett, 2013, 24(17), 2241-2244.
[http://dx.doi.org/10.1055/s-0033-1339758]
[148]
Zhu, X.; Zhang, F.; Kuang, D.; Deng, G.; Yang, Y.; Yu, J.; Liang, Y. K2S as sulfur source and DMSO as carbon source for the synthesis of 2-unsubstituted benzothiazoles. Org. Lett., 2020, 22(10), 3789-3793.
[http://dx.doi.org/10.1021/acs.orglett.0c00994] [PMID: 32362124]
[149]
Evindar, G.; Batey, R.A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides. J. Org. Chem., 2006, 71(5), 1802-1808.
[http://dx.doi.org/10.1021/jo051927q] [PMID: 16496964]
[150]
Györke, G.; Dancsó, A.; Volk, B.; Hunyadi, D.; Szalóki, I.; Bulátkó, A.; Milen, M. Preparation of benzoxazoles and benzothiazoles utilizing naturally occurring copper-containing mineral catalyst precursors. Tetrahedron Lett., 2023, 116, 154319.
[http://dx.doi.org/10.1016/j.tetlet.2022.154319]

© 2024 Bentham Science Publishers | Privacy Policy