Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Proline-based Organocatalyst for the Synthesis of Arylidene Benzofuranone Intermediates Enabling the Construction of Aurone-derived Azadienes

Author(s): Azhaar T. Alsaggaf, Mostafa Sayed*, Ahmed I.A. Soliman and Mostafa Ahmed*

Volume 29, Issue 2, 2025

Published on: 22 August, 2024

Page: [127 - 134] Pages: 8

DOI: 10.2174/0113852728316945240807114705

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Organocatalysis has been recognized as a part of chemical research for a long time, and it gained significant attention in catalysis in recent decades. Amine catalyst is a substantial type of organocatalysis, and it is successively employed for the activation of carbonyl compounds. This manuscript delves into the exploration of a proline-based organocatalyst for the synthesis of arylidene benzofuranone intermediates, a critical step that facilitates the subsequent construction of aurone-derived azadienes. In this work, we successfully reported the synthesis of arylidene benzofuranone intermediates through Aldol condensation of benzofuranone with different aldehydes enabled by proline-derived organic catalysts. To achieve this strategy, six examples of amine organocatalysts (A1-A6) were evaluated to showcase the optimal catalyst for this transformation. Moreover, the arylidene benzofuranone intermediates were further employed for the synthesis of interesting aurone-derived azadiene substrates through its reaction with TsNH2. Notably, the using of organocatalyst A6 resulted in the delivery of the product with the best yield (94% isolated yield). Under the optimized conditions, different aromatic and heterocyclic containing aldehydes were effectively tolerated to generate the corresponding arylidene benzofuranone intermediates, which further converted to the azadiene products in high to excellent yield. The claimed structures were confirmed by the spectral analysis.

Keywords: Organocatalyst, amine, proline, benzofuranone, azadienes, heterogeneous catalysts.

Graphical Abstract
[1]
Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci., 2021, 7(1), 55-71.
[http://dx.doi.org/10.1021/acscentsci.0c01496] [PMID: 33532569]
[2]
Isahak, W.N.R.W.; Al-Amiery, A. Catalysts driving efficiency and innovation in thermal reactions: A comprehensive review. Green Technologies and Sustainability, 2024, 2, 100078.
[http://dx.doi.org/10.1016/j.grets.2024.100078]
[3]
Del Vecchio, A.; Sinibaldi, A.; Nori, V.; Giorgianni, G.; Di Carmine, G.; Pesciaioli, F. Synergistic strategies in Aminocatalysis. Chemistry, 2022, 28(49), e202200818.
[http://dx.doi.org/10.1002/chem.202200818] [PMID: 35666172]
[4]
Iazzetti, A.; Mazzoccanti, G.; Bencivenni, G.; Righi, P.; Calcaterra, A.; Villani, C.; Ciogli, A. Primary amine catalyzed activation of carbonyl compounds: A study on reaction pathways and reactive intermediates by mass spectrometry. Eur. J. Org. Chem., 2022, 2022(3), e202101272.
[http://dx.doi.org/10.1002/ejoc.202101272]
[5]
Brazier, J.B.; Tomkinson, N.C.O. Secondary and primary amine catalysts for iminium catalysis. Top. Curr. Chem., 2010, 291, 281-347.
[http://dx.doi.org/10.1007/978-3-642-02815-1_28] [PMID: 21494953]
[6]
Afewerki, S.; Córdova, A. Enamine/transition metal combined catalysis: catalytic transformations involving organometallic electrophilic intermediates. Top. Curr. Chem., 2019, 377(6), 38.
[http://dx.doi.org/10.1007/s41061-019-0267-y] [PMID: 31732819]
[7]
Zeng, R.; Shan, C.; Liu, M.; Jiang, K.; Ye, Y.; Liu, T.Y.; Chen, Y.C. [4 + 1 + 1] Annulations of α-bromo carbonyls and 1-azadienes toward fused benzoazaheterocycles. Org. Lett., 2019, 21(7), 2312-2316.
[http://dx.doi.org/10.1021/acs.orglett.9b00598] [PMID: 30900459]
[8]
Xie, H.P.; Sun, L.; Wu, B.; Zhou, Y.G. Copper-catalyzed alkynylation/cyclization/isomerization cascade for synthesis of 1,2-dihydrobenzofuro[3,2- b]pyridines and benzofuro[3,2- b]pyridines. J. Org. Chem., 2019, 84(23), 15498-15507.
[http://dx.doi.org/10.1021/acs.joc.9b02512] [PMID: 31698899]
[9]
Marques, A.S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard, V.; Vincent, G.; Moreau, X. A fused hexacyclic ring system: diastereoselective polycyclization of 2,4‐dienals through an interrupted iso‐nazarov reaction. Angew. Chem. Int. Ed., 2019, 58(29), 9969-9973.
[http://dx.doi.org/10.1002/anie.201903860] [PMID: 31090996]
[10]
Liu, Y.Z.; Wang, Z.; Huang, Z.; Zheng, X.; Yang, W.L.; Deng, W.P. Palladium‐catalyzed asymmetric [4+3] cyclization of trimethylenemethane: regio‐, diastereo‐, and enantioselective construction of benzofuro[3,2‐ b]azepine skeletons. Angew. Chem. Int. Ed., 2020, 59(3), 1238-1242.
[http://dx.doi.org/10.1002/anie.201909158] [PMID: 31755203]
[11]
Zhu, C.F.; Chen, L.Q.; Hao, W.J.; Cui, C.C.; Tu, S.J.; Jiang, B. Diastereoselective synthesis of 1,2-dihydrobenzofuro[3,2-b]pyridines via a carbon-carbon double-bond cleavage/rearrangement cascade. Org. Lett., 2021, 23(7), 2654-2658.
[http://dx.doi.org/10.1021/acs.orglett.1c00564] [PMID: 33728923]
[12]
Hu, Y.; Shi, W.; Yan, Z.; Liao, J.; Liu, M.; Xu, J.; Wang, W.; Wu, Y.; Zhang, C.; Guo, H. Base-catalyzed sequential 1,4-addition/intramolecular cyclization/aromatization reaction: synthesis of benzofuro[3,2-b]pyridines. Org. Lett., 2021, 23(17), 6780-6783.
[http://dx.doi.org/10.1021/acs.orglett.1c02357] [PMID: 34432980]
[13]
Koay, W.L.; Mei, G.J.; Lu, Y. Facile access to benzofuran-fused tetrahydropyridines via catalytic asymmetric [4 + 2] cycloaddition of aurone-derived 1-azadienes with 3-vinylindoles. Org. Chem. Front., 2021, 8(5), 968-974.
[http://dx.doi.org/10.1039/D0QO01236J]
[14]
Fan, T.; Zhang, Z.J.; Zhang, Y.C.; Song, J. Construction of all-carbon quaternary stereocenters via sequential photoactivation/isothiourea catalysis. Org. Lett., 2019, 21(19), 7897-7901.
[http://dx.doi.org/10.1021/acs.orglett.9b02892] [PMID: 31525932]
[15]
Sayed, M.; Han, Z-Y.; Shi, Z.; Fan, T.; Shen, H-C. Stereoselective synthesis of 3,4-dihydrobenzofuro[3,2-b]pyridin-2(1H)-ones enabled by pd/chiral isothiourea relay catalysis. Synthesis, 2024, 56(9), 1381-1392.
[http://dx.doi.org/10.1055/s-0043-1763679]
[16]
Rong, Z.Q.; Wang, M.; Chow, C.H.E.; Zhao, Y. A catalyst‐enabled diastereodivergent aza‐diels-alder reaction: complementarity of N‐heterocyclic carbenes and chiral amines. Chemistry, 2016, 22(28), 9483-9487.
[http://dx.doi.org/10.1002/chem.201601626] [PMID: 27219298]
[17]
Yang, F.; Huang, T.; Lin, Y-M.; Gong, L. Advancements in organocatalysis for radical-mediated asymmetric synthesis: a recent perspective; Chem Catalysis, 2023, p. 100812.
[http://dx.doi.org/10.1016/j.checat.2023.100812]
[18]
Zhao, C-G.; Bhanushali, M. Developing novel organocatalyzed aldol reactions for the enantioselective synthesis of biologically active molecules. Synthesis, 2011, 2011(12), 1815-1830.
[http://dx.doi.org/10.1055/s-0030-1260029] [PMID: 21918584]
[19]
Lu, A.; Smart, T.P.; Epps, T.H., III; Longbottom, D.A.; O’Reilly, R.K. L-proline functionalized polymers prepared by RAFT polymerization and their assemblies as supported organocatalysts. Macromolecules, 2011, 44(18), 7233-7241.
[http://dx.doi.org/10.1021/ma201256m] [PMID: 22053116]
[20]
Pai, A. Novel benzylidene benzofuranone analogues as potential anticancer agents: design, synthesis and in vitro evaluation based on CDK2 inhibition assays. 3 Biotech, 2022, 12, 256.
[http://dx.doi.org/10.1007/s13205-022-03312-1]
[21]
Du, T.; Li, Z.; Zheng, C.; Fang, G.; Yu, L.; Liu, J.; Zhao, G. Highly enantioselective 1,3-dipolar cycloaddition of imino esters with benzofuranone derivatives catalyzed by thiourea−quaternary ammonium salt. Tetrahedron, 2018, 74(52), 7485-7494.
[http://dx.doi.org/10.1016/j.tet.2018.11.025]
[22]
Shrestha, A.; Shrestha, R.; Lee, S.; Park, P.H.; Lee, E.S. 6‐Hydroxy‐benzofuran‐3‐(2H)‐ones as potential anti‐inflammatory agents: Synthesis and inhibitory activity of LPS‐stimulated ROS production in RAW 264.7 macrophage. Bull. Korean Chem. Soc., 2021, 42(3), 372-375.
[http://dx.doi.org/10.1002/bkcs.12215]
[23]
Ghobakhloo, F.; Azarifar, D.; Mohammadi, M.; Keypour, H.; Zeynali, H. Copper(II) schiff-base complex modified UiO-66-NH2(Zr) metal-organic framework catalysts for knoevenagel condensation-michael addition-cyclization reactions. Inorg. Chem., 2022, 61(12), 4825-4841.
[http://dx.doi.org/10.1021/acs.inorgchem.1c03284] [PMID: 35285616]
[24]
Mohammadi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Ghorbani-Choghamarani, A. Boehmite nanoparticles as versatile support for organic-inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J. Ind. Eng. Chem., 2021, 97, 1-78.
[http://dx.doi.org/10.1016/j.jiec.2021.02.001]
[25]
Kazemi, M.; Mohammadi, M. Magnetically recoverable catalysts: Catalysis in synthesis of polyhydroquinolines. Appl. Organomet. Chem., 2020, 34(3), e5400.
[http://dx.doi.org/10.1002/aoc.5400]
[26]
Ghobakhloo, F.; Mohammadi, M.; Ghaemi, M.; Azarifar, D. Post-synthetic generation of amino-acid-functionalized UiO-66-NH2 metal-organic framework nanostructures as an amphoteric catalyst for organic reactions. ACS Appl. Nano Mater., 2024, 7(1), 1265-1277.
[http://dx.doi.org/10.1021/acsanm.3c05230]
[27]
Mohammadi, M.; Ghorbani-Choghamarani, A.; Ramish, S.M. [ZrFe2O4@SiO2-N-(TMSP)-ASP-Pd(0)] Complex: Synthesis, characterizations, and its application as a nanomagnetic catalyst in cross-coupling and click reactions. J. Mol. Struct., 2023, 1292, 136115.
[http://dx.doi.org/10.1016/j.molstruc.2023.136115]
[28]
Nikseresht, A.; Mehravar, R.; Mohammadi, M. RSM optimization of Friedel-Crafts C-acylation of para-fluorophenol over the catalysis of phosphomolybdic acid encapsulated in MIL-53 (Fe) metal organic frameworks. Nanoscale Adv., 2024, 6(12), 3158-3168.
[http://dx.doi.org/10.1039/D3NA01126G] [PMID: 38868818]
[29]
Arslan, N.; Ercan, S.; Pi̇ri̇nççi̇oğlu, N. Proline-based organocatalyst-mediated asymmetric aldol reaction of acetone with substituted aromatic aldehydes: an experimental and theoretical study. Turk. J. Chem., 2020, 44(2), 335-351.
[http://dx.doi.org/10.3906/kim-1908-3] [PMID: 33488161]
[30]
Thorat, P.B.; Goswami, S.V.; Khade, B.C.; Bhusare, S.R. Synthesis and application of proline based organocatalyst for highly enantioselective aldol reaction by hydrogen bonding. Tetrahedron Lett., 2012, 53(45), 6083-6086.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.123]
[31]
Carter, R.; Yang, H. Proline sulfonamide based organocatalysis: Better late than never. Synlett, 2010, 2010(19), 2827-2838.
[http://dx.doi.org/10.1055/s-0030-1259020] [PMID: 21461132]
[32]
Li, Q.; Li, Y.; Wang, J.; Lin, Y.; Wei, Z.; Duan, H.; Yang, Q.; Bai, F.; Li, Y. An efficient proline-based homogeneous organocatalyst with recyclability. New J. Chem., 2018, 42(2), 827-831.
[http://dx.doi.org/10.1039/C7NJ03912C]
[33]
John, D.; George, K.; Radhakrishnan, E.K. A concise update on the synthetic transformation of aurones via asymmetric cycloaddition, annulation, and Michael/Mannich reactions. RSC Advances, 2024, 14(9), 6339-6359.
[http://dx.doi.org/10.1039/D3RA08575A] [PMID: 38380237]
[34]
Feng, Q.; Wu, A.; Zhang, X.; Song, L.; Sun, J. An unusual formal migrative cycloaddition of aurone-derived azadienes: Synthesis of benzofuran-fused nitrogen heterocycles. Chem. Sci., 2021, 12(22), 7953-7957.
[http://dx.doi.org/10.1039/D1SC00941A] [PMID: 34168849]
[35]
Xiao, W.; Li, F.; Liu, X.; Cao, W.; Feng, X. Catalytic asymmetric synthesis of axially and centrally chiral 1,2-dihydrobenzofuro[3,2-b]pyridines through a [2 + 2] cycloaddition/retroelectrocyclization/re-cycloaddition cascade. Org. Lett., 2023, 25(44), 8005-8009.
[http://dx.doi.org/10.1021/acs.orglett.3c03183] [PMID: 37906677]
[36]
Wang, S.; Xu, L.; Lu, Y.T.; Liu, Y.F.; Han, B.; Liu, T.; Tang, J.; Li, J.; Wu, J.; Li, J.Y.; Yu, L.F.; Yang, F. Discovery of benzofuran-3(2H)-one derivatives as novel DRAK2 inhibitors that protect islet β-cells from apoptosis. Eur. J. Med. Chem., 2017, 130, 195-208.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.048] [PMID: 28249207]
[37]
Venkateswarlu, S.; Murty, G.N.; Satyanarayana, M. “On water” synthesis of aurones: first synthesis of 4,5,3′,4′,5′-pentamethoxy-6-hydroxyaurone from Smilax riparia. ARKIVOC, 2017, 2017(4), 303-314.
[http://dx.doi.org/10.24820/ark.5550190.p009.918]
[38]
Shanker, N.; Dilek, O.; Mukherjee, K.; McGee, D.W.; Bane, S.L. Aurones: small molecule visible range fluorescent probes suitable for biomacromolecules. J. Fluoresc., 2011, 21(6), 2173-2184.
[http://dx.doi.org/10.1007/s10895-011-0919-y] [PMID: 21748237]
[39]
Yu, M.; Skouta, R.; Zhou, L.; Jiang, H.; Yao, X.; Li, C.J. Water-triggered, counter-anion-controlled, and silver-phosphines complex-catalyzed stereoselective cascade alkynylation/cyclization of terminal alkynes with salicylaldehydes. J. Org. Chem., 2009, 74(9), 3378-3383.
[http://dx.doi.org/10.1021/jo900079u] [PMID: 19344129]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy