Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Prognostic Value and Therapeutic Significance of CCL Chemokines in Gastric Cancer

Author(s): Yonggang Tian, Yunqian Xie, Guirong Yi, Fanqi Wu, Xiaoyu Dang, Feihu Bai*, Jun Wang* and Dekui Zhang*

Volume 31, Issue 42, 2024

Published on: 09 August, 2024

Page: [7043 - 7058] Pages: 16

DOI: 10.2174/0109298673315146240731100101

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Gastric cancer is one of the most common malignant tumours of the gastrointestinal tract, which has a significant negative impact on human health.

Aims: CCL chemokines play important roles in a variety of tumor microenvironments; nevertheless, gastric cancer has surprisingly limited associations with CCL chemokines.

Methods: In our study, we comprehensively utilized bioinformatics analysis tools and databases such as cBioPortal, UALCAN, GEPIA, GeneMANIA, STRING, and TRRUST to clarify the clinical significance and biology function of CCL chemokines in gastric cancer.

Results: The mRNA expression levels of CCL1/3/4/5/7/8/14/15/18/20/21/22/26 were up-regulated, while the mRNA expression levels of CCL2/11/13/16/17/19/23/24/25/28 were down-regulated. The chemokine significantly associated with the pathological stage of gastric cancer is CCL2/11/19/21. In gastric cancer, the expression level of CCL chemokines was not associated with disease-free survival, but low expression of CCL14 was significantly associated with longer overall survival. Therein, associated with the regulation of CCL chemokines are only 10 transcription factors (RELA, NFKB1, STAT6, IRF3, REL, SPI1, STAT1, STAT3, JUN and SP1). The major biological process and functional enrichment of CCL chemokines are to induce cell-directed migration.

Conclusion: These results may indicate that CCL chemokines may be immunotherapeutic targets and promising prognostic biomarkers for gastric cancer.

Keywords: Bioinformatics analysis, gastric adenocarcinoma, prognostic biomarkers, tumor microenvironment, CCL chemokines, cBioPort database.

[1]
Yeoh, K.G.; Tan, P. Mapping the genomic diaspora of gastric cancer. Nat. Rev. Cancer, 2022, 22(2), 71-84.
[http://dx.doi.org/10.1038/s41568-021-00412-7] [PMID: 34702982]
[2]
Cao, T.; Zhang, W.; Wang, Q.; Wang, C.; Ma, W.; Zhang, C.; Ge, M.; Tian, M.; Yu, J.; Jiao, A.; Wang, L.; Liu, M.; Wang, P.; Guo, Z.; Zhou, Y.; Chen, S.; Yin, W.; Yi, J.; Guo, H.; Han, H.; Zhang, B.; Wu, K.; Fan, D.; Wang, X.; Nie, Y.; Lu, Y.; Zhao, X. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells. Cell, 2024, 187(9), 2288-2304.e27.
[http://dx.doi.org/10.1016/j.cell.2024.03.011] [PMID: 38565142]
[3]
Wang, J.; Zhang, J.; Liu, H.; Meng, L.; Gao, X.; Zhao, Y.; Wang, C.; Gao, X.; Fan, A.; Cao, T.; Fan, D.; Zhao, X.; Lu, Y. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer. Cancer Commun., 2024, 44(4), 469-490.
[http://dx.doi.org/10.1002/cac2.12534] [PMID: 38512764]
[4]
Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; Song, H.; Lou, S.; Wang, H.; Yang, T.; Tian, Y.; Han, P.; Hu, Z. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun., 2024, 15(1), 1657.
[http://dx.doi.org/10.1038/s41467-024-46043-y] [PMID: 38395893]
[5]
Wong, M.C.S.; Huang, J.; Chan, P.S.F.; Choi, P.; Lao, X.Q.; Chan, S.M.; Teoh, A.; Liang, P. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Netw. Open, 2021, 4(7), e2118457.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.18457] [PMID: 34309666]
[6]
Zeng, Y.; Jin, R.U. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin. Cancer Biol., 2022, 86(Pt 3), 566-582.
[http://dx.doi.org/10.1016/j.semcancer.2021.12.004] [PMID: 34933124]
[7]
Fatehullah, A.; Terakado, Y.; Sagiraju, S.; Tan, T.L.; Sheng, T.; Tan, S.H.; Murakami, K.; Swathi, Y.; Ang, N.; Rajarethinam, R.; Ming, T.; Tan, P.; Lee, B.; Barker, N. A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat. Cell Biol., 2021, 23(12), 1299-1313.
[http://dx.doi.org/10.1038/s41556-021-00793-9] [PMID: 34857912]
[8]
Negura, I.; Pavel-Tanasa, M.; Danciu, M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat. Rev., 2023, 120, 102629.
[http://dx.doi.org/10.1016/j.ctrv.2023.102629] [PMID: 37769435]
[9]
Kuang, Z.Y.; Sun, Q.H.; Cao, L.C.; Ma, X.Y.; Wang, J.X.; Liu, K.X.; Li, J. Efficacy and safety of perioperative therapy for locally resectable gastric cancer: A network meta-analysis of randomized clinical trials. World J. Gastrointest. Oncol., 2024, 16(3), 1046-1058.
[http://dx.doi.org/10.4251/wjgo.v16.i3.1046] [PMID: 38577462]
[10]
Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203.
[http://dx.doi.org/10.1007/s10555-020-09925-3] [PMID: 32894370]
[11]
Christodoulidis, G.; Koumarelas, K.E.; Kouliou, M.N. Revolutionizing gastric cancer treatment: The potential of immunotherapy. World J. Gastroenterol., 2024, 30(4), 286-289.
[http://dx.doi.org/10.3748/wjg.v30.i4.286] [PMID: 38313231]
[12]
Song, Y.; Wang, J.; Sun, J.; Chen, X.; Shi, J.; Wu, Z.; Yu, D.; Zhang, F.; Wang, Z. Screening of potential biomarkers for gastric cancer with diagnostic value using label-free global proteome analysis. Genomics Proteomics Bioinformatics, 2020, 18(6), 679-695.
[http://dx.doi.org/10.1016/j.gpb.2020.06.012] [PMID: 33607292]
[13]
Ferro, A.; Peleteiro, B.; Malvezzi, M.; Bosetti, C.; Bertuccio, P.; Levi, F.; Negri, E.; La Vecchia, C.; Lunet, N. Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur. J. Cancer, 2014, 50(7), 1330-1344.
[http://dx.doi.org/10.1016/j.ejca.2014.01.029] [PMID: 24650579]
[14]
Brenner, H.; Rothenbacher, D.; Arndt, V. Epidemiology of stomach cancer. Methods Mol. Biol., 2009, 472, 467-477.
[http://dx.doi.org/10.1007/978-1-60327-492-0_23] [PMID: 19107449]
[15]
Senchukova, M.A. Helicobacter pylori and gastric cancer progression. Curr. Microbiol., 2022, 79(12), 383.
[http://dx.doi.org/10.1007/s00284-022-03089-9] [PMID: 36329283]
[16]
Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[17]
Pan, L.; Shi, Y.; Zhang, J.; Luo, G. Association between single nucleotide polymorphisms of mirnas and gastric cancer: a scoping review. Genet. Test. Mol. Biomarkers, 2022, 26(10), 459-467.
[http://dx.doi.org/10.1089/gtmb.2021.0258] [PMID: 36251855]
[18]
Cheng, J.; Cai, M.; Shuai, X.; Gao, J.; Wang, G.; Tao, K. First-line systemic therapy for advanced gastric cancer: a systematic review and network meta-analysis. Ther. Adv. Med. Oncol., 2019, 11, p. 1758835919877726.
[http://dx.doi.org/10.1177/1758835919877726] [PMID: 31632469]
[19]
Jain, U.; Saxena, K.; Chauhan, N. Helicobacter pylori induced reactive oxygen Species: A new and developing platform for detection. Helicobacter, 2021, 26(3), e12796.
[http://dx.doi.org/10.1111/hel.12796] [PMID: 33666321]
[20]
Wei, L.; Sun, J.; Zhang, N.; Zheng, Y.; Wang, X.; Lv, L.; Liu, J.; Xu, Y.; Shen, Y.; Yang, M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol. Cancer, 2020, 19(1), 62.
[http://dx.doi.org/10.1186/s12943-020-01185-7] [PMID: 32192494]
[21]
Zhao, A.J.; Qian, Y.Y.; Sun, H.; Hou, X.; Pan, J.; Liu, X.; Zhou, W.; Chen, Y.Z.; Jiang, X.; Li, Z.S.; Liao, Z. Screening for gastric cancer with magnetically controlled capsule gastroscopy in asymptomatic individuals. Gastrointest. Endosc., 2018, 88(3), 466-474.e1.
[http://dx.doi.org/10.1016/j.gie.2018.05.003] [PMID: 29753039]
[22]
Tan, H.; Zhang, S.; Zhang, J.; Zhu, L.; Chen, Y.; Yang, H.; Chen, Y.; An, Y.; Liu, B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Theranostics, 2020, 10(19), 8880-8902.
[http://dx.doi.org/10.7150/thno.47548] [PMID: 32754285]
[23]
Jin, G.; Zhang, J.; Cao, T.; Chen, B.; Tian, Y.; Shi, Y. Exosome-mediated lncRNA SND1-IT1 from gastric cancer cells enhances malignant transformation of gastric mucosa cells via up-regulating SNAIL1. J. Transl. Med., 2022, 20(1), 284.
[http://dx.doi.org/10.1186/s12967-022-03306-w] [PMID: 35739527]
[24]
You, L.; Dou, Y.; Zhang, Y.; Xiao, H.; Lv, H.; Wei, G.H.; Xu, D. SDC2 stabilization by USP14 promotes gastric cancer progression through co-option of PDK1. Int. J. Biol. Sci., 2023, 19(11), 3483-3498.
[http://dx.doi.org/10.7150/ijbs.84331] [PMID: 37496999]
[25]
Lavy, R.; Kapiev, A.; Poluksht, N.; Halevy, A.; Keinan-Boker, L. Incidence trends and mortality rates of gastric cancer in Israel. Gastric Cancer, 2013, 16(2), 121-125.
[http://dx.doi.org/10.1007/s10120-012-0155-4] [PMID: 22527183]
[26]
Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci., 2020, 21(11), 4012.
[http://dx.doi.org/10.3390/ijms21114012] [PMID: 32512697]
[27]
Liang, Z.; Xu, Y.; Zhang, Y.; Zhang, X.; Song, J.; Jin, J.; Qian, H. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front. Pharmacol., 2023, 13, 1078090.
[http://dx.doi.org/10.3389/fphar.2022.1078090] [PMID: 36712679]
[28]
Shen, X.; Zhao, K.; Xu, L.; Cheng, G.; Zhu, J.; Gan, L.; Wu, Y.; Zhuang, Z. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway. Front. Genet., 2021, 11, 592042.
[http://dx.doi.org/10.3389/fgene.2020.592042] [PMID: 33505426]
[29]
Zhang, Y.; Zhou, X.; Cheng, X.; Hong, X.; Jiang, X.; Jing, G.; Chen, K.; Li, Y. PRKAA1, stabilized by FTO in an m6A-YTHDF2-dependent manner, promotes cell proliferation and glycolysis of gastric cancer by regulating the redox balance. Neoplasma, 2022, 69(6), 1338-1348.
[http://dx.doi.org/10.4149/neo_2022_220714N714] [PMID: 36305690]
[30]
Chen, J.; Röcken, C.; Malfertheiner, P.; Ebert, M.P.A. Recent advances in molecular diagnosis and therapy of gastric cancer. Dig. Dis., 2004, 22(4), 380-385.
[http://dx.doi.org/10.1159/000083602] [PMID: 15812163]
[31]
Yao, F.Z.; Kong, D.G. Identification of kinesin family member 3B (KIF3B) as a molecular target for gastric cancer. Kaohsiung J. Med. Sci., 2020, 36(7), 515-522.
[http://dx.doi.org/10.1002/kjm2.12206] [PMID: 32237034]
[32]
Tan, Z. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med. Sci. Monit., 2019, 25, 3537-3541.
[http://dx.doi.org/10.12659/MSM.916475] [PMID: 31080234]
[33]
Cai, X.; Deng, J.; Ming, Q.; Cai, H.; Chen, Z. Chemokine- like factor 1: A promising therapeutic target in human diseases. Exp. Biol. Med., 2020, 245(16), 1518-1528.
[http://dx.doi.org/10.1177/1535370220945225] [PMID: 32715782]
[34]
Laurence, A.D.J. Location, movement and survival: the role of chemokines in haematopoiesis and malignancy. Br. J. Haematol., 2006, 132(3), 255-267.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05841.x] [PMID: 16409290]
[35]
Rostene, W.; Buckingham, J.C. Chemokines as modulators of neuroendocrine functions. J. Mol. Endocrinol., 2007, 38(3), 351-353.
[http://dx.doi.org/10.1677/JME-07-0006] [PMID: 17339397]
[36]
Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol., 2017, 17(9), 559-572.
[http://dx.doi.org/10.1038/nri.2017.49] [PMID: 28555670]
[37]
Mempel, T.R.; Lill, J.K.; Altenburger, L.M. How chemokines organize the tumour microenvironment. Nat. Rev. Cancer, 2024, 24(1), 28-50.
[http://dx.doi.org/10.1038/s41568-023-00635-w] [PMID: 38066335]
[38]
Bule, P.; Aguiar, S.I.; Aires-Da-Silva, F.; Dias, J.N.R. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy. Int. J. Mol. Sci., 2021, 22(18), 9804.
[http://dx.doi.org/10.3390/ijms22189804] [PMID: 34575965]
[39]
DiNatale, A.; Castelli, M.S.; Nash, B.; Meucci, O.; Fatatis, A. Regulation of tumor and metastasis initiation by chemokine receptors. J. Cancer, 2022, 13(11), 3160-3176.
[http://dx.doi.org/10.7150/jca.72331] [PMID: 36118530]
[40]
Allinen, M.; Beroukhim, R.; Cai, L.; Brennan, C.; Lahti- Domenici, J.; Huang, H.; Porter, D.; Hu, M.; Chin, L.; Richardson, A.; Schnitt, S.; Sellers, W.R.; Polyak, K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6(1), 17-32.
[http://dx.doi.org/10.1016/j.ccr.2004.06.010] [PMID: 15261139]
[41]
Jiao, X.; Shu, G.; Liu, H.; Zhang, Q.; Ma, Z.; Ren, C.; Guo, H.; Shi, J.; Liu, J.; Zhang, C.; Wang, Y.; Gao, Y. The diagnostic value of chemokine/chemokine receptor pairs in hepatocellular carcinoma and colorectal liver metastasis. J. Histochem. Cytochem., 2019, 67(5), 299-308.
[http://dx.doi.org/10.1369/0022155418824274] [PMID: 30633620]
[42]
Reschke, R.; Gajewski, T.F. CXCL9 and CXCL10 bring the heat to tumors. Sci. Immunol., 2022, 7(73), eabq6509.
[http://dx.doi.org/10.1126/sciimmunol.abq6509] [PMID: 35867802]
[43]
Strieter, R.M.; Polverini, P.J.; Arenberg, D.A.; Kunkel, S.L. The role of CXC chemokines as regulators of angiogenesis. Shock, 1995, 4(3), 155-160.
[http://dx.doi.org/10.1097/00024382-199509000-00001] [PMID: 8574748]
[44]
Ji, S.; Chen, H.; Yang, K.; Zhang, G.; Mao, B.; Hu, Y.; Zhang, H.; Xu, J. Peripheral cytokine levels as predictive biomarkers of benefit from immune checkpoint inhibitors in cancer therapy. Biomed. Pharmacother., 2020, 129, 110457.
[http://dx.doi.org/10.1016/j.biopha.2020.110457] [PMID: 32887027]
[45]
Zhang, M.; Yang, W.; Wang, P.; Deng, Y.; Dong, Y.T.; Liu, F.F.; Huang, R.; Zhang, P.; Duan, Y.Q.; Liu, X.D.; Lin, D.; Chu, Q.; Zhong, B. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat. Commun., 2020, 11(1), 6119.
[http://dx.doi.org/10.1038/s41467-020-19973-6] [PMID: 33257678]
[46]
Wu, Z.; Sun, L.; Xu, Y.; Huang, H.; Wu, Z.; Qiu, B.; Yan, J.; Yin, X. The value of chemokine and chemokine receptors in diagnosis, prognosis, and immunotherapy of hepatocellular carcinoma. Cancer Manag. Res., 2024, 16, 403-420.
[http://dx.doi.org/10.2147/CMAR.S450959] [PMID: 38736589]
[47]
Vautrot, V.; Bentayeb, H.; Causse, S.; Garrido, C.; Gobbo, J. Tumor-derived exosomes: Hidden players in PD-1/PD-L1 resistance. Cancers, 2021, 13(18), 4537.
[http://dx.doi.org/10.3390/cancers13184537] [PMID: 34572764]
[48]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[49]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V. S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[50]
Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27.
[http://dx.doi.org/10.1016/j.neo.2022.01.001] [PMID: 35078134]
[51]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[52]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[53]
Warde-Farley, D.; Donaldson, SL.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, CT. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010, 38, W214-W220.
[http://dx.doi.org/10.1093/nar/gkq537]
[54]
Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res., 2018, 46(W1), W60-W64.
[http://dx.doi.org/10.1093/nar/gky311] [PMID: 29912392]
[55]
Montojo, J.; Zuberi, K.; Rodriguez, H.; Kazi, F.; Wright, G.; Donaldson, S.L.; Morris, Q.; Bader, G.D. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics, 2010, 26(22), 2927-2928.
[http://dx.doi.org/10.1093/bioinformatics/btq562] [PMID: 20926419]
[56]
Zuberi, K.; Franz, M.; Rodriguez, H.; Montojo, J.; Lopes, CT.; Bader, GD.; Morris, Q. GeneMANIA prediction server 2013 update. Nucleic Acids Res, 2013, 41, W115-W122.
[http://dx.doi.org/10.1093/nar/gkt533]
[57]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[58]
Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; Lee, S.; Kang, B.; Jeong, D.; Kim, Y.; Jeon, H.N.; Jung, H.; Nam, S.; Chung, M.; Kim, J.H.; Lee, I. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res., 2018, 46(D1), D380-D386.
[http://dx.doi.org/10.1093/nar/gkx1013] [PMID: 29087512]
[59]
Han, H.; Shim, H.; Shin, D.; Shim, J.E.; Ko, Y.; Shin, J.; Kim, H.; Cho, A.; Kim, E.; Lee, T.; Kim, H.; Kim, K.; Yang, S.; Bae, D.; Yun, A.; Kim, S.; Kim, C.Y.; Cho, H.J.; Kang, B.; Shin, S.; Lee, I. TRRUST: a reference database of human transcriptional regulatory interactions. Sci. Rep., 2015, 5(1), 11432.
[http://dx.doi.org/10.1038/srep11432] [PMID: 26066708]
[60]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[61]
Chen, D.; Fu, M.; Chi, L.; Lin, L.; Cheng, J.; Xue, W.; Long, C.; Jiang, W.; Dong, X.; Sui, J.; Lin, D.; Lu, J.; Zhuo, S.; Liu, S.; Li, G.; Chen, G.; Yan, J. Prognostic and predictive value of a pathomics signature in gastric cancer. Nat. Commun., 2022, 13(1), 6903.
[http://dx.doi.org/10.1038/s41467-022-34703-w] [PMID: 36371443]
[62]
Chen, K.; Bao, Z.; Tang, P.; Gong, W.; Yoshimura, T.; Wang, J.M. Chemokines in homeostasis and diseases. Cell. Mol. Immunol., 2018, 15(4), 324-334.
[http://dx.doi.org/10.1038/cmi.2017.134] [PMID: 29375126]
[63]
Marcuzzi, E.; Angioni, R.; Molon, B.; Calì, B. Chemokines and chemokine receptors: orchestrating tumor metastasization. Int. J. Mol. Sci., 2018, 20(1), 96.
[http://dx.doi.org/10.3390/ijms20010096] [PMID: 30591657]
[64]
Baj-Krzyworzeka, M.; Węglarczyk, K.; Baran, J.; Szczepanik, A.; Szura, M.; Siedlar, M. Elevated level of some chemokines in plasma of gastric cancer patients. Cent. Eur. J. Immunol., 2016, 4(4), 358-362.
[http://dx.doi.org/10.5114/ceji.2016.65133] [PMID: 28450798]
[65]
Zhang, J.; Yan, Y.; Cui, X.; Zhang, J.; Yang, Y.; Li, H.; Wu, H.; Li, J.; Wang, L.; Li, M.; Liu, X.; Wang, J.; Duan, X. CCL2 expression correlates with Snail expression and affects the prognosis of patients with gastric cancer. Pathol. Res. Pract., 2017, 213(3), 217-221.
[http://dx.doi.org/10.1016/j.prp.2016.12.013] [PMID: 28215642]
[66]
Hwang, T.L.; Lee, L.Y.; Wang, C.C.; Liang, Y.; Huang, S.F.; Wu, C.M. CCL7 and CCL21 overexpression in gastric cancer is associated with lymph node metastasis and poor prognosis. World J. Gastroenterol., 2012, 18(11), 1249-1256.
[http://dx.doi.org/10.3748/wjg.v18.i11.1249] [PMID: 22468089]
[67]
Jin, G.; Lv, J.; Yang, M.; Wang, M.; Zhu, M.; Wang, T.; Yan, C.; Yu, C.; Ding, Y.; Li, G.; Ren, C.; Ni, J.; Zhang, R.; Guo, Y.; Bian, Z.; Zheng, Y.; Zhang, N.; Jiang, Y.; Chen, J.; Wang, Y.; Xu, D.; Zheng, H.; Yang, L.; Chen, Y.; Walters, R.; Millwood, I.Y.; Dai, J.; Ma, H.; Chen, K.; Chen, Z.; Hu, Z.; Wei, Q.; Shen, H.; Li, L. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol., 2020, 21(10), 1378-1386.
[http://dx.doi.org/10.1016/S1470-2045(20)30460-5] [PMID: 33002439]
[68]
Rustgi, S.D.; Ching, C.K.; Kastrinos, F. Inherited predisposition to gastric cancer. Gastrointest. Endosc. Clin. N. Am., 2021, 31(3), 467-487.
[http://dx.doi.org/10.1016/j.giec.2021.03.010] [PMID: 34053634]
[69]
Han, J.; Fu, R.; Chen, C.; Cheng, X.; Guo, T.; Huangfu, L.; Li, X.; Du, H.; Xing, X.; Ji, J. CXCL16 promotes gastric cancer tumorigenesis via ADAM10-dependent CXCL16/CXCR6 axis and activates Akt and MAPK signaling pathways: erratum. Int. J. Biol. Sci., 2023, 19(10), 3285-3287.
[http://dx.doi.org/10.7150/ijbs.84342] [PMID: 37416762]
[70]
Low, J.T.; Christie, M.; Ernst, M.; Dumoutier, L.; Preaudet, A.; Ni, Y.; Griffin, M.D.W.; Mielke, L.A.; Strasser, A.; Putoczki, T.L.; O’Reilly, L.A. Loss of NFKB1 results in expression of tumor necrosis factor and activation of signal transducer and activator of transcription 1 to promote gastric tumorigenesis in mice. Gastroenterology, 2020, 159(4), 1444-1458.e15.
[http://dx.doi.org/10.1053/j.gastro.2020.06.039] [PMID: 32569771]
[71]
Li, D.; Wu, C.; Cai, Y.; Liu, B. Association of NFKB1 and NFKBIA gene polymorphisms with susceptibility of gastric cancer. Tumour Biol., 2017, 39(7)
[http://dx.doi.org/10.1177/1010428317717107] [PMID: 28670959]
[72]
Chen, Y.; Lu, R.; Zheng, H.; Xiao, R.; Feng, J.; Wang, H.; Gao, X.; Guo, L. The NFKB1 polymorphism (rs4648068) is associated with the cell proliferation and motility in gastric cancer. BMC Gastroenterol., 2015, 15(1), 21.
[http://dx.doi.org/10.1186/s12876-015-0243-0] [PMID: 25888547]
[73]
Deng, J.Y.; Sun, D.; Liu, X.Y.; Pan, Y.; Liang, H. STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J. Gastroenterol., 2010, 16(42), 5380-5387.
[http://dx.doi.org/10.3748/wjg.v16.i42.5380] [PMID: 21072904]
[74]
Lu, G.; Shi, W.; Zheng, H. Inhibition of STAT6/anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother. Radiopharm., 2018, 33(1), 3-7.
[http://dx.doi.org/10.1089/cbr.2017.2287] [PMID: 29466035]
[75]
Jiao, S.; Guan, J.; Chen, M.; Wang, W.; Li, C.; Wang, Y.; Cheng, Y.; Zhou, Z. Targeting IRF3 as a YAP agonist therapy against gastric cancer. J. Exp. Med., 2018, 215(2), 699-718.
[http://dx.doi.org/10.1084/jem.20171116] [PMID: 29339449]
[76]
Matsuo, K.; Yoshie, O.; Nakayama, T. Multifaceted roles of chemokines and chemokine receptors in tumor immunity. Cancers (Basel), 2021, 13(23), 6132.
[http://dx.doi.org/10.3390/cancers13236132] [PMID: 34885241]
[77]
Ozga, A.J.; Chow, M.T.; Luster, A.D. Chemokines and the immune response to cancer. Immunity, 2021, 54(5), 859-874.
[http://dx.doi.org/10.1016/j.immuni.2021.01.012] [PMID: 33838745]
[78]
Protti, M.P.; Monte, L.D.; Lullo, G.D. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens, 2014, 83(4), 237-246.
[http://dx.doi.org/10.1111/tan.12329] [PMID: 24641502]
[79]
Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1), 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.03.014] [PMID: 20371344]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy