Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Investigation of the Effects of Different Phases of TiO2 Nanoparticles on PVA Membranes

Author(s): Akanksha Mehto*, Jyotsna Chauhan and Varsha R. Mehto

Volume 14, Issue 3, 2024

Published on: 18 July, 2024

Page: [216 - 231] Pages: 16

DOI: 10.2174/0118779468312436240627074337

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Introduction: PVA/TiO2 nanocomposite membranes are prepared by solution casting technique where different phases of TiO2 nanoparticles like brookite, brookiterutile and rutile are dispersed in PVA matrix. Sol-gel method was employed to prepare TiO2 nanoparticles, while different phases of TiO2 have been obtained by controlling the calcination temperature.

Methods: PVA/TiO2 nanocomposite membranes were characterized by XRD, FTIR, AFM, TEM, UV-visible and PL techniques. XRD results confirmed the presence of different phases of TiO2, exhibiting 3.3 nm, 8.4 nm, and 35.7 nm mean crystalline size. The XRD studies also confirmed that TiO2 nanoparticles became properly dispersed to the PVA matrix, leading to increased PVA crystallinity after doping of different phases of TiO2 nanoparticles. UV-visible analysis revealed an increase in absorption intensity and peak position shifts slightly towards longer wavelengths, which indicates that nanofillers tuned the band gap of PVA. The doping of the TiO2 (brookite) phase in the PVA matrix results in a decreased in PL intensity.

Results: This suggests that the PVA/TiO2 (brookite) membrane exhibits a greater degree of photocatalytic activity in comparison to the other two composites. According to the FTIR investigation, the hydroxyl (OH) groups present in PVA interact with the dopants Ti+ ions via intra- and intermolecular hydrogen bonds to produce charge transfer complexes (CTC). The AFM study shows surface roughness details for PVA and PVA/TiO2 composite membranes. The average grain size of TiO2 nanoparticles calculated from TEM images is in good agreement with the grain size calculated by XRD.

Conclusion: By adjusting the phase of TiO2 nanoparticles into PVA matrix, composites can be developed that are optimized for a variety of applications such as water purification, UV protection, self-cleaning surfaces, lithium-ion batteries, and optoelectronic devices.

Keywords: Membrane, polymer nanocomposites, CTC, TEM, AFM, UV-visible.

[1]
Kausar, A. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. J. Plast. Film Sheeting, 2020, 36(1), 94-112.
[http://dx.doi.org/10.1177/8756087919849459]
[2]
Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. Chem., 1997, 108(1), 1-35.
[http://dx.doi.org/10.1016/S1010-6030(97)00118-4]
[3]
Paz, Y. Application of TiO2 photocatalysis for air treatment: Patents’ overview. Appl. Catal. B, 2010, 99(3-4), 448-460.
[http://dx.doi.org/10.1016/j.apcatb.2010.05.011]
[4]
Abougreen, A.N.; Shalan, A.E.; Serea, E.S.A.; Mohammed, M.A. Polymer nanocomposites for energy storage applications. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications; Springer International Publishing: Switzerland, 2022, pp. 697-724.
[http://dx.doi.org/10.1007/978-3-030-94319-6_22]
[5]
Kochi, R.; Crasta, V.; Kumar, N.B.R.; Shetty, G.; Rekha, P.D. Structural, optical, mechanical, and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res., 2019, 99, 1.
[6]
Ben Halima, N. Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Adv., 2016, 6(46), 39823-39832.
[http://dx.doi.org/10.1039/C6RA05742J]
[7]
Dennis, J.O.; Shukur, M.F.; Aldaghri, O.A.; Ibnaouf, K.H.; Adam, A.A.; Usman, F.; Hassan, Y.M.; Alsadig, A.; Danbature, W.L.; Abdulkadir, B.A. A review of current trends on polyvinyl alcohol (PVA)-based solid polymer electrolytes. Molecules, 2023, 28(4), 1781.
[http://dx.doi.org/10.3390/molecules28041781] [PMID: 36838770]
[8]
Jiang, X.; Wang, C.; Han, Q. Molecular dynamic simulation on the state of water in poly(vinyl alcohol) hydrogel. Comput. Theor. Chem., 2017, 1102, 15-21.
[http://dx.doi.org/10.1016/j.comptc.2016.12.041]
[9]
Aslam, M.; Kalyar, M.A.; Raza, Z.A. Effect of separate zinc, copper, and graphene oxides nanofillers on electrical properties of PVA-based composite strips. J. Electron. Mater., 2019, 48(2), 1116-1121.
[http://dx.doi.org/10.1007/s11664-018-6793-5]
[10]
Ahn, S.I.; Kim, K.; Jung, J.R.; Kang, K.Y.; Lee, S.M.; Han, J.Y.; Choi, K.C. Reduction of graphene oxide film with poly (vinyl alcohol). Chem. Phys. Lett., 2015, 625, 36-40.
[http://dx.doi.org/10.1016/j.cplett.2015.02.035]
[11]
Ramalingam, K.J.; Dhineshbabu, N.R.; Srither, S.R.; Saravanakumar, B.; Yuvakkumar, R.; Rajendran, V. Electrical measurement of PVA/graphene nanofibers for transparent electrode applications. Synth. Met., 2014, 191, 113-119.
[http://dx.doi.org/10.1016/j.synthmet.2014.03.004]
[12]
Aziz, S.B. Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater., 2016, 45(1), 736-745.
[http://dx.doi.org/10.1007/s11664-015-4191-9]
[13]
Hamdalla, T.A.; Hanafy, T.A.; Bekheet, A.E. Influence of erbium ions on the optical and structural properties of polyvinyl alcohol. J. Spectrosc., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/204867]
[14]
Tubbs, R.K. Sequence distribution of partially hydrolyzed poly(vinyl acetate). J. Polym. Sci., Part A-1., 1966, 4, 623-629.
[15]
Mehto, V.R.; Mehto, A.; Gupta, D.K.; Pandey, R.K. Synthesis and characterization of PANI/ZnO nanocomposites. J. Chin. Chem. Soc., 2016, 63(11), 935-946.
[http://dx.doi.org/10.1002/jccs.201600069]
[16]
Schnitzler, D.C.; Zarbin, A.J.G. Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline. J. Braz. Chem. Soc., 2004, 15(3), 378-384.
[http://dx.doi.org/10.1590/S0103-50532004000300007]
[17]
Judeinstein, P.; Sanchez, C. Hybrid organic–inorganic materials: A land of multidisciplinarity. J. Mater. Chem., 1996, 6(4), 511-525.
[http://dx.doi.org/10.1039/JM9960600511]
[18]
Devaki, S.J.; Ramakrishnan, R. Nanostructured semiconducting polymer inorganic hybrid composites for opto-electronic applications.Advances in Nanostructured Composites; CRC Press: United Kingdom, 2019, pp. 352-375.
[http://dx.doi.org/10.1201/9780429021718-17]
[19]
Greene, L.E.; Law, M.; Yuhas, B.D.; Yang, P. ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C, 2007, 111(50), 18451-18456.
[http://dx.doi.org/10.1021/jp077593l]
[20]
Zhou, J.; Cheng, H.; Cheng, J.; Wang, L.; Xu, H. The emergence of high-performance conjugated polymer/inorganic semiconductor hybrid photoelectrodes for solar-driven photoelectrochemical water splitting. Small Methods, 2024, 8(2), 2300418.
[http://dx.doi.org/10.1002/smtd.202300418] [PMID: 37421184]
[21]
Ahankari, S.; Lasrado, D.; Subramaniam, R. Advances in materials and fabrication of separators in supercapacitors. Mater. Adv., 2022, 3(3), 1472-1496.
[http://dx.doi.org/10.1039/D1MA00599E]
[22]
Alvarez-Sanchez, C.O.; Lasalde-Ramírez, J.A.; Ortiz-Quiles, E.O.; Massó-Ferret, R.; Nicolau, E. Polymer-MTiO3 (M = Ca, Sr, Ba) composites as facile and scalable supercapacitor separators. Energy Sci. Eng., 2019, 7(3), 730-740.
[http://dx.doi.org/10.1002/ese3.299]
[23]
Hossain, M.H.; Chowdhury, M.A.; Hossain, N.; Islam, M.A.; Mobarak, M.H. Advances of lithium-ion batteries anode materials: A review. Chem. Eng. J. Adv., 2023, 16, 100569.
[http://dx.doi.org/10.1016/j.ceja.2023.100569]
[24]
Jeon, H.; Yeon, D.; Lee, T.; Park, J.; Ryou, M.H.; Lee, Y.M. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J. Power Sources, 2016, 315, 161-168.
[http://dx.doi.org/10.1016/j.jpowsour.2016.03.037]
[25]
Wang, Y.; Wang, S.; Fang, J.; Ding, L.X.; Wang, H. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J. Membr. Sci., 2017, 537, 248-254.
[http://dx.doi.org/10.1016/j.memsci.2017.05.023]
[26]
Ye, S.; Zhang, D.; Liu, H.; Zhou, J. ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity. J. Appl. Polym. Sci., 2011, 121(3), 1757-1764.
[http://dx.doi.org/10.1002/app.33822]
[27]
Yanilmaz, M. Evaluation of electrospun PVA/SiO2 nanofiber separator membranes for lithium-ion batteries. J. Text. Inst., 2019, 111, 1-6.
[28]
Xiao, W.; Zhao, L.; Gong, Y.; Liu, J.; Yan, C. Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J. Membr. Sci., 2015, 487, 221-228.
[http://dx.doi.org/10.1016/j.memsci.2015.04.004]
[29]
Bon, C.Y.; Mohammed, L.; Kim, S.; Manasi, M.; Isheunesu, P.; Lee, K.S.; Ko, J.M. Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications. J. Ind. Eng. Chem., 2018, 68, 173-179.
[http://dx.doi.org/10.1016/j.jiec.2018.07.043]
[30]
Nho, Y.C.; Sohn, J.Y.; Shin, J.; Park, J.S.; Lim, Y.M.; Kang, P.H. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery. Radiat. Phys. Chem., 2017, 132, 65-70.
[http://dx.doi.org/10.1016/j.radphyschem.2016.12.002]
[31]
Wu, D.; Deng, L.; Sun, Y.; Teh, K.S.; Shi, C.; Tan, Q.; Zhao, J.; Sun, D.; Lin, L. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Advances, 2017, 7(39), 24410-24416.
[http://dx.doi.org/10.1039/C7RA02681A]
[32]
Cao, J.; Wang, L.; Shang, Y.; Fang, M.; Deng, L.; Gao, J.; Li, J.; Chen, H.; He, X. Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta, 2013, 111, 674-679.
[http://dx.doi.org/10.1016/j.electacta.2013.08.048]
[33]
Zhang, S.; Cao, J.; Shang, Y.; Wang, L.; He, X.; Li, J.; Zhao, P.; Wang, Y. Nanocomposite polymer membrane derived from nano TiO2 -PMMA and glass fiber nonwoven: High thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(34), 17697-17703.
[http://dx.doi.org/10.1039/C5TA02781K]
[34]
Praveena, S.D.; Ravindrachary, V.; Bhajantri, R.F. Ismayil, Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym. Compos., 2016, 37(4), 987-997.
[http://dx.doi.org/10.1002/pc.23258]
[35]
So, W.W.; Park, S.B.; Kim, K.J.; Shin, C.H.; Moon, S.J. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. J. Mater. Sci., 2001, 36(17), 4299-4305.
[http://dx.doi.org/10.1023/A:1017955408308]
[36]
Bakardjieva, S.; Stengl, V.; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Niznansky, D.; Cizek, K.; Jirkovsky, J.; Petrova, N. Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J. Mater. Chem., 2006, 16(18), 1709-1716.
[http://dx.doi.org/10.1039/b514632a]
[37]
Khairy, Y.; Elsaeedy, H.I.; Mohammed, M.I.; Zahran, H.Y.; Yahia, I.S. Anomalous behaviour of the electrical properties for PVA/TiO2 nanocomposite polymeric films. Polym. Bull., 2020, 77(12), 6255-6269.
[http://dx.doi.org/10.1007/s00289-019-03028-y]
[38]
Gupta, A.; Kushwah, K.; Mahobia, S.; Soni, P.; Murty, V.V. Synthesis and characterization of TiO2 nanoparticles for solar cell applications. Int. J. Innov. Technol. Expl. Eng., 2019, 8(9), 2462-2465.
[http://dx.doi.org/10.35940/ijitee.I8739.078919]
[39]
Madurai Ramakrishnan, V.; Pitchaiya, S.; Muthukumarasamy, N.; Kvamme, K.; Rajesh, G.; Agilan, S.; Pugazhendhi, A.; Velauthapillai, D. Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC). Int. J. Hydrogen Energy, 2020, 45(51), 27036-27046.
[http://dx.doi.org/10.1016/j.ijhydene.2020.07.018]
[40]
Asmat-Campos, D.; Lindsay Rojas, M.; Carreño-Ortega, A. Toward sustainable nanomaterials: An innovative ecological approach for biogenic synthesis of TiO2 nanoparticles with potential photocatalytic activity. Clean. Eng. Technol., 2023, 17, 100702.
[http://dx.doi.org/10.1016/j.clet.2023.100702]
[41]
Morad, I.; Liu, X.; Qiu, J. Crystallization-induced valence state change of Mn 2+ → Mn 4+ in LiNaGe4O9 glass-ceramics. J. Am. Ceram. Soc., 2020, 103(5), 3051-3059.
[http://dx.doi.org/10.1111/jace.17006]
[42]
Pejova, B.; Grozdanov, I. Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form. Mater. Chem. Phys., 2005, 90(1), 35-46.
[http://dx.doi.org/10.1016/j.matchemphys.2004.08.020]
[43]
Abdelaziz, M.; Ghannam, M.M. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Physica B, 2010, 405(3), 958-964.
[http://dx.doi.org/10.1016/j.physb.2009.10.030]
[44]
Abdelaziz, M. Cerium (III) doping effects on optical and thermal properties of PVA films. Physica B, 2011, 406(6-7), 1300-1307.
[http://dx.doi.org/10.1016/j.physb.2011.01.021]
[45]
Shehap, A.M. Thermal and spectroscopic studies of polyvinyl alcohol/sodium carboxy methyl cellulose blends. Egypt. J. Sol., 2008, 31(1), 75-91.
[http://dx.doi.org/10.21608/ejs.2008.148824]
[46]
Abdullah, O.G.; Aziz, S.B.; Rasheed, M.A. Structural and optical characterization of PVA:KMnO 4 based solid polymer electrolyte. Results Phys., 2016, 6, 1103-1108.
[http://dx.doi.org/10.1016/j.rinp.2016.11.050]
[47]
Nimrodh Ananth, A.; Umapathy, S.; Sophia, J.; Mathavan, T.; Mangalaraj, D. On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl. Nanosci., 2011, 1(2), 87-96.
[http://dx.doi.org/10.1007/s13204-011-0010-7]
[48]
Shehap, A.M.; Akil, D.S. Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater., 2016, 9, 17-36.
[49]
El-Gohary, M. Experimental tests used for treatment of red weathering crusts in disintegrated granite Egypt. J. Cult. Herit., 2009, 10(4), 471-479.
[http://dx.doi.org/10.1016/j.culher.2009.01.002]
[50]
Cai, Z.; Remadevi, R.; Al Faruque, M.A.; Setty, M.; Fan, L.; Haque, A.N.M.A.; Naebe, M. Fabrication of a cost-effective lemongrass (Cymbopogon citratus) membrane with antibacterial activity for dye removal. RSC Adv., 2019, 9(58), 34076-34085.
[http://dx.doi.org/10.1039/C9RA04729H] [PMID: 35528869]
[51]
Corzo-González, Z.; Loria-Bastarrachea, M.I.; Hernández-Nuñez, E.; Aguilar-Vega, M.; González-Díaz, M.O. Preparation and characterization of crosslinked PVA/PAMPS blends catalytic membranes for biodiesel production. Polym. Bull., 2017, 74(7), 2741-2754.
[http://dx.doi.org/10.1007/s00289-016-1864-3]
[52]
Kim, G.M. Fabrication of bio-nanocomposite nanofibers mimicking the mineralized hard tissues via electrospinning process.Nanofibers; IntechOpen: London, UK, 2010.
[http://dx.doi.org/10.5772/8148]
[53]
Lee, J.; Hong, J.; Park, D.W.; Shim, S.E. Microencapsulation and characterization of poly(vinyl alcohol)-coated titanium dioxide particles for electrophoretic display. Opt. Mater., 2010, 32(4), 530-534.
[http://dx.doi.org/10.1016/j.optmat.2009.11.008]
[54]
Kim, G.M.; Simon, P.; Kim, J-S.; Simon, P.; Kim, J.S. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity. Bioinspir. Biomim., 2008, 3(4), 046003.
[http://dx.doi.org/10.1088/1748-3182/3/4/046003] [PMID: 18812653]
[55]
Omkaram, I.; Sreekanth Chakradhar, R.P.; Lakshmana Rao, J. EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films. Physica B, 2007, 388(1-2), 318-325.
[http://dx.doi.org/10.1016/j.physb.2006.06.134]
[56]
Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K. Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art. Herit. Sci., 2020, 8(1), 106.
[http://dx.doi.org/10.1186/s40494-020-00447-3]
[57]
Ahmed, N.; Ahmed, E.M. Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications. J. Mater. Sci. Mater. Electron., 2020, 31, 6139-6153.
[58]
Waly, A.L.; Abdelghany, A.M.; Tarabiah, A.E. Study the structure of selenium modified polyethylene oxide/polyvinyl alcohol (PEO/PVA) polymer blend. J. Mater. Res. Technol., 2021, 14, 2962-2969.
[http://dx.doi.org/10.1016/j.jmrt.2021.08.078]
[59]
Oliveira, R.N.; Rouzé, R.; Quilty, B.; Alves, G.G.; Soares, G.D.A.; Thiré, R.M.S.M.; McGuinness, G.B. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus, 2014, 4(1), 20130049.
[http://dx.doi.org/10.1098/rsfs.2013.0049] [PMID: 24501677]
[60]
Ahad, N.; Saion, E.; Gharibshahi, E. Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J. Nanomater., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/857569]
[61]
Ma, J.; Li, Y.; Yin, X.; Xu, Y.; Yue, J.; Bao, J.; Zhou, T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Advances, 2016, 6(55), 49448-49458.
[http://dx.doi.org/10.1039/C6RA08760D]
[62]
Siemann, U. Solvent cast technology: A versatile tool for thin film production.Scattering Methods and the Properties of Polymer Materials; Progress in Colloid and Polymer Science; Stribeck, N; Smarsly, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2005, pp. 1-14.
[http://dx.doi.org/10.1007/b107336]
[63]
Tawansi, A.; Oraby, A.H.; Zidan, H.M.; Dorgham, M.E. Effect of one-dimensional phenomena on electrical, magnetic and ESR properties of MnCl2-filled PVA films. Physica B, 1998, 254(1-2), 126-133.
[http://dx.doi.org/10.1016/S0921-4526(98)00414-1]
[64]
Bhargav, P.B.; Mohan, V.M.; Sharma, A.K.; Rao, V.V.R.N. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. Ionics, 2007, 13(6), 441-446.
[http://dx.doi.org/10.1007/s11581-007-0130-y]
[65]
Wu, Y.; Xie, Z.; Ng, D.; Shen, S.; Zhou, Z. Poly(ether sulfone) supported hybrid poly(vinyl alcohol)–maleic acid–silicone dioxide membranes for the pervaporation separation of ethanol–water mixtures. J. Appl. Polym. Sci., 2017, 134(20), app.44839.
[http://dx.doi.org/10.1002/app.44839]
[66]
Pandey, R.P.; Shahi, V.K. Functionalized silica–chitosan hybrid membrane for dehydration of ethanol/water azeotrope: Effect of cross-linking on structure and performance. J. Membr. Sci., 2013, 444, 116-126.
[http://dx.doi.org/10.1016/j.memsci.2013.04.065]
[67]
Fernandes, D.M.; Hechenleitner, A.A.W.; Lima, S.M.; Andrade, L.H.C.; Caires, A.R.L.; Pineda, E.A.G. Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater. Chem. Phys., 2011, 128(3), 371-376.
[http://dx.doi.org/10.1016/j.matchemphys.2011.03.002]
[68]
Lei, X.F.; Xue, X.X.; Yang, H. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl. Surf. Sci., 2014, 321, 396-403.
[http://dx.doi.org/10.1016/j.apsusc.2014.10.045]
[69]
Jia, S.; Li, X.; Zhang, B.; Yang, J.; Zhang, S.; Li, S.; Zhang, Z. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS. Appl. Surf. Sci., 2019, 463, 829-837.
[http://dx.doi.org/10.1016/j.apsusc.2018.09.003]
[70]
Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B, 2010, 96(3-4), 557-564.
[http://dx.doi.org/10.1016/j.apcatb.2010.03.020]
[71]
Ren, L.; Li, Y.; Mao, M.; Lan, L.; Lao, X.; Zhao, X. Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. Appl. Surf. Sci., 2019, 490, 283-292.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.351]
[72]
Kadam, A.; Dhabbe, R.; Shin, D.S.; Garadkar, K.; Park, J. Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int., 2017, 43(6), 5164-5172.
[http://dx.doi.org/10.1016/j.ceramint.2017.01.039]
[73]
Kaur, J.; Gupta, K.; Kumar, V.; Bansal, S.; Singhal, S. Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater. Ceram. Int., 2016, 42(2), 2378-2385.
[http://dx.doi.org/10.1016/j.ceramint.2015.10.035]
[74]
Dey, K.K.; Kumar, P.; Yadav, R.R.; Dhar, A.; Srivastava, A.K. CuO nanoellipsoids for superior physicochemical response of biodegradable PVA. RSC Adv., 2014, 4(20), 10123.
[http://dx.doi.org/10.1039/c3ra46898d]
[75]
Mandal, S.; Jain, N.; Pandey, M.K.; Sreejakumari, S.S.; Shukla, P.; Chanda, A.; Som, S.; Das, S.; Singh, J. Ultra-bright emission from Sr doped TiO2 nanoparticles through r-GO conjugation. R. Soc. Open Sci., 2019, 6(3), 190100.
[http://dx.doi.org/10.1098/rsos.190100] [PMID: 31032059]
[76]
Qin, Q.; Wang, J.; Xia, Y.; Yang, D.; Zhou, Q.; Zhu, X.; Feng, W. Synthesis and characterization of Sn/Ni single doped and co–doped anatase/rutile mixed–crystal nanomaterials and their photocatalytic performance under UV–visible light. Catalysts, 2021, 11(11), 1341.
[http://dx.doi.org/10.3390/catal11111341]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy