Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Healthy Effects of Milk and Dairy Product Consumption in the Mediterranean Area and Japan

Author(s): Felicita Jirillo*

Volume 24, Issue 15, 2024

Published on: 11 July, 2024

Page: [1813 - 1822] Pages: 10

DOI: 10.2174/0118715303289711240703080701

Price: $65

conference banner
Abstract

Milk is a food enriched in essential components for human health. Especially, in the Mediterranean area, besides cow’s milk, milk from goats, sheep, and donkeys, is largely used. The consumption of animal milk is an important component of the Mediterranean (MED) diet, even if in moderate amounts. Milk is a complete food since it contains proteins, carbohydrates, and fats, as well as micronutrients (minerals and vitamins). Milk-fermented products are largely consumed in the MED diet, such as cheese and yogurt, which are rich in essential metabolites, bioactive compounds, vitamins, minerals, and exopolysaccharides. A large body of evidence suggests that consumption of milk and dairy products does not increase the risk of all-cause mortality, type 2 diabetes, and cardiovascular disease, even if some earlier studies have reported harmful effects associated with their higher consumption. Also, in Japan, despite the lower consumption of milk than in Western countries, intake of bovine milk is associated with healthy effects. The present review describes the effects of the various constituents of animal milk on human health, with special reference to the Mediterranean area and Japan. Experimental data and clinical trials support the ability of milk and dairy products to lower the risk of chronic diseases.

Keywords: Cardiovascular disease, dairy products, milk, mediterranean diet, type 2 diabetes, chronic diseases.

[1]
Naureen, Z.; Bonetti, G.; Medori, M.C.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Foods of the Mediterranean diet: lacto-fermented food, the food pyramid and food combinations. Prev Med Hyg, 2022, 63(Suppl. 3), E28-E35.
[2]
Jirillo, F.; Martemucci, G.; D’Alessandro, A.; Panaro, M.; Cianciulli, A.; Superbo, M.; Jirillo, E.; Magrone, T. Ability of goat milk to modulate healthy human peripheral blood lymphomonocyte and polymorphonuclear cell function: in vitro effects and clinical implications. Curr. Pharm. Des., 2010, 16(7), 870-876.
[http://dx.doi.org/10.2174/138161210790883534] [PMID: 20388100]
[3]
Trinchese, G.; Cavaliere, G.; Canani, R.B.; Matamoros, S.; Bergamo, P.; De Filippo, C.; Aceto, S.; Gaita, M.; Cerino, P.; Negri, R.; Greco, L.; Cani, P.D.; Mollica, M.P. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J. Nutr. Biochem., 2015, 26(11), 1136-1146.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.003] [PMID: 26118693]
[4]
Martin, C.; Ling, P.R.; Blackburn, G. Review of infant feeding: Key features of breast milk and infant formula. Nutrients, 2016, 8(5), 279.
[http://dx.doi.org/10.3390/nu8050279] [PMID: 27187450]
[5]
Kipfer, S.; Goldman, R.D. Formula choices in infants with cow’s milk allergy. Can. Fam. Physician, 2021, 67(3), 180-182.
[http://dx.doi.org/10.46747/cfp.6703180] [PMID: 33727377]
[6]
Ozsoy, S.; Sultanoglu, N.; Sanlidag, T. The role of Mediterranean diet and gut microbiota in type-2 diabetes mellitus associated with obesity (diabesity). J. Prev. Med. Hyg., 2022, 63(2)(Suppl. 3), E87-E92.
[PMID: 36479504]
[7]
Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr., 2019, 59(3), 506-527.
[http://dx.doi.org/10.1080/10408398.2017.1383355] [PMID: 28945458]
[8]
Jan, G.; Tarnaud, F.; Rosa do Carmo, F.L.; Illikoud, N.; Canon, F.; Jardin, J.; Briard-Bion, V.; Guyomarc’h, F.; Gagnaire, V. The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk. Food Microbiol., 2022, 106, 104042.
[http://dx.doi.org/10.1016/j.fm.2022.104042] [PMID: 35690436]
[9]
Givens, D.I. Dairy foods and cardiometabolic diseases: An update and a reassessment of the impact of SFA. Proc. Nutr. Soc., 2023, 82(3), 329-345.
[http://dx.doi.org/10.1017/S0029665123000083] [PMID: 36740241]
[10]
Fernandez, M.A.; Panahi, S.; Daniel, N.; Tremblay, A.; Marette, A. Yogurt and cardiometabolic diseases: A critical review of potential mechanisms. Adv. Nutr., 2017, 8(6), 812-829.
[http://dx.doi.org/10.3945/an.116.013946] [PMID: 29141967]
[11]
Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; Lopez-Jaramillo, P.; Mony, P.; Varma, R.P.; Kumar, R.; Chifamba, J.; Alhabib, K.F.; Mohammadifard, N.; Oguz, A.; Lanas, F.; Rozanska, D.; Bostrom, K.B.; Yusoff, K.; Tsolkile, L.P. Dans, A.; Yusufali, A.; Orlandini, A.; Poirier, P.; Khatib, R.; Hu, B.; Wei, L.; Yin, L.; Deeraili, A.; Yeates, K.; Yusuf, R.; Ismail, N.; Mozaffarian, D.; Teo, K.; Anand, S.S.; Yusuf, S. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet, 2018, 392(10161), 2288-2297.
[http://dx.doi.org/10.1016/S0140-6736(18)31812-9] [PMID: 30217460]
[12]
Sellem, L.; Flourakis, M.; Jackson, K.G.; Joris, P.J.; Lumley, J.; Lohner, S.; Mensink, R.P.; Soedamah-Muthu, S.S.; Lovegrove, J.A. Impact of replacement of individual dietary SFAs on circulating lipids and other biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials in humans. Adv. Nutr., 2022, 13(4), 1200-1225.
[http://dx.doi.org/10.1093/advances/nmab143] [PMID: 34849532]
[13]
Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf., 2020, 19(1), 184-217.
[http://dx.doi.org/10.1111/1541-4337.12520] [PMID: 33319517]
[14]
Yoko, J.; Nanri, A.; Eguchi, M.; Kochi, T.; Kabe, I.; Mizoue, T. Total, low-fat, and full-fat dairy consumption and risk of metabolic syndrome among workers. Clin. Nutr. ESPEN, 2021, 46, 350-355.
[http://dx.doi.org/10.1016/j.clnesp.2021.09.733] [PMID: 34857219]
[15]
Nakanishi, A.; Homma, E.; Osaki, T.; Sho, R.; Souri, M.; Sato, H.; Watanabe, M.; Ishizawa, K.; Ueno, Y.; Kayama, T.; Konta, T. Association between milk and yogurt intake and mortality: A community-based cohort study (Yamagata study). BMC Nutr., 2021, 7(1), 33.
[http://dx.doi.org/10.1186/s40795-021-00435-1] [PMID: 34256873]
[16]
Lu, Y.; Sugawara, Y.; Matsuyama, S.; Fukao, A.; Tsuji, I. Association of dairy intake with all-cause, cancer, and cardiovascular disease mortality in Japanese adults: A 25-year population-based cohort. Eur. J. Nutr., 2022, 61(3), 1285-1297.
[http://dx.doi.org/10.1007/s00394-021-02734-6] [PMID: 34750640]
[17]
Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; Piscopo, S.; Capone, R.; Aranceta-Bartrina, J.; La Vecchia, C.; Trichopoulou, A. Updating the mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health, 2020, 17(23), 8758.
[http://dx.doi.org/10.3390/ijerph17238758] [PMID: 33255721]
[18]
den Hartigh, L. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients, 2019, 11(2), 370.
[http://dx.doi.org/10.3390/nu11020370] [PMID: 30754681]
[19]
Kong, C.Y.; Li, Z.M.; Han, B.; Zhang, Z.Y.; Chen, H.L.; Zhang, S.L.; Xu, J.Q.; Mao, Y.Q.; Zhao, Y.P.; Wang, L.S.; Kong, C.Y. Diet consisting of balanced yogurt, fruit, and vegetables modifies the gut microbiota and protects mice against nonalcoholic fatty liver disease. Mol. Nutr. Food Res., 2019, 63(19), 1900249.
[http://dx.doi.org/10.1002/mnfr.201900249] [PMID: 31271251]
[20]
Guo, X.; Long, R.; Kreuzer, M.; Ding, L.; Shang, Z.; Zhang, Y.; Yang, Y.; Cui, G. Importance of functional ingredients in yak milk-derived food on health of Tibetan nomads living under high-altitude stress: A review. Crit. Rev. Food Sci. Nutr., 2014, 54(3), 292-302.
[http://dx.doi.org/10.1080/10408398.2011.584134] [PMID: 24188303]
[21]
Luo, M.; Xiao, J.; Sun, S.; Cui, F.; Liu, G.; Li, W.; Li, Y.; Cao, Y. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation. Food Funct., 2020, 11(6), 5284-5292.
[http://dx.doi.org/10.1039/D0FO00844C]
[22]
Kim, D.H.; Jeong, D.; Kim, H.; Seo, K.H. Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit. Rev. Food Sci. Nutr., 2019, 59(11), 1782-1793.
[http://dx.doi.org/10.1080/10408398.2018.1428168] [PMID: 29336590]
[23]
Oliveira, D.L.; Costabile, A.; Wilbey, R.A.; Grandison, A.S.; Duarte, L.C.; Roseiro, L.B. In vitro evaluation of the fermentation properties and potential prebiotic activity of caprine cheese whey oligosaccharides in batch culture systems. Biofactors, 2012, 38(6), 440-449.
[http://dx.doi.org/10.1002/biof.1043] [PMID: 22996438]
[24]
Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; Smid, E.J.; Hutkins, R. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol., 2017, 44, 94-102.
[25]
Chia, J.S.J.; McRae, J.L.; Kukuljan, S.; Woodford, K.; Elliott, R.B.; Swinburn, B.; Dwyer, K.M. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutr. Diabetes, 2017, 7(5), e274.
[http://dx.doi.org/10.1038/nutd.2017.16] [PMID: 28504710]
[26]
Pereira, M.A.; Jacobs, D.R., Jr; Van Horn, L.; Slattery, M.L.; Kartashov, A.I.; Ludwig, D.S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA Study. JAMA, 2002, 287(16), 2081-2089.
[http://dx.doi.org/10.1001/jama.287.16.2081] [PMID: 11966382]
[27]
Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res., 2016, 60(1), 32527.
[http://dx.doi.org/10.3402/fnr.v60.32527] [PMID: 27882862]
[28]
Poppitt, S.D. Cow’s milk and dairy consumption: Is there now consensus for cardiometabolic health? Front. Nutr., 2020, 7, 574725.
[http://dx.doi.org/10.3389/fnut.2020.574725] [PMID: 33364249]
[29]
Mollica, M.P.; Trinchese, G.; Cimmino, F.; Penna, E.; Cavaliere, G.; Tudisco, R.; Musco, N.; Manca, C.; Catapano, A.; Monda, M.; Bergamo, P.; Banni, S.; Infascelli, F.; Lombardi, P. Milk fatty acid profiles in different animal species: focus on the potential effect of selected PUFAs on metabolism and brain functions. Nutrients, 2021, 13(4), 1111.
[30]
Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition, 2014, 30(6), 619-627.
[http://dx.doi.org/10.1016/j.nut.2013.10.011] [PMID: 24800664]
[31]
Trinchese, G.; Cavaliere, G.; Penna, E.; De Filippo, C.; Cimmino, F.; Catapano, A.; Musco, N.; Tudisco, R.; Lombardi, P.; Infascelli, F.; Messina, G.; Muredda, L.; Banni, S.; Monda, M.; Crispino, M.; Mollica, M.P. Milk from cow fed with high forage/concentrate ratio diet: Beneficial effect on rat skeletal muscle inflammatory state and oxidative stress through modulation of mitochondrial functions and AMPK activity. Front. Physiol., 2019, 9, 1969.
[http://dx.doi.org/10.3389/fphys.2018.01969] [PMID: 30705640]
[32]
Benoit, B.; Plaisancié, P.; Géloën, A.; Estienne, M.; Debard, C.; Meugnier, E.; Loizon, E.; Daira, P.; Bodennec, J.; Cousin, O.; Vidal, H.; Laugerette, F.; Michalski, M.C. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. Br. J. Nutr., 2014, 112(4), 520-535.
[http://dx.doi.org/10.1017/S0007114514001172] [PMID: 24932525]
[33]
Itan, Y.; Jones, B.L.; Ingram, C.J.E.; Swallow, D.M.; Thomas, M.G. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol., 2010, 10(1), 36.
[http://dx.doi.org/10.1186/1471-2148-10-36] [PMID: 20144208]
[34]
Penhaligan, J.; Poppitt, S.D.; Miles-Chan, J.L. The role of bovine and non-bovine milk in cardiometabolic health: Should we raise the “Baa”? Nutrients, 2022, 14(2), 290.
[http://dx.doi.org/10.3390/nu14020290] [PMID: 35057470]
[35]
Anderson, G.H.; Moore, S.E. Dietary proteins in the regulation of food intake and body weight in humans. J. Nutr., 2004, 134(4), 974S-979S.
[http://dx.doi.org/10.1093/jn/134.4.974S] [PMID: 15051857]
[36]
Dhasmana, S.; Das, S.; Shrivastava, S.; Khan, S.; Haque, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Potential nutraceuticals from the casein fraction of goat’s milk. J. Food Biochem., 2022, 46(6), e13982.
[http://dx.doi.org/10.1111/jfbc.13982] [PMID: 34716606]
[37]
Recio, I.; Visser, S. Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. J. Chromatogr. A, 1999, 831(2), 191-201.
[http://dx.doi.org/10.1016/S0021-9673(98)00950-9] [PMID: 10070763]
[38]
Park, Y.W.; Nam, M.S. Korean two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane. J. Food. Sci. Animal Resources, 2015, 35, 831-840.
[http://dx.doi.org/10.5851/kosfa.2015.35.6.831]
[39]
Rangel, A.H.N.; Zaros, L.G.; Lima, T.C.; Borba, L.H.F.; Novaes, L.P.; Mota, L.F.M.; Silva, M.S. Polymorphism in the beta casein gene and analysis of milk characteristicsin Gir and Guzerá dairy cattle. Genet. Mol. Res., 2017, 16(2), 1-9.
[http://dx.doi.org/10.4238/gmr16029592] [PMID: 28549202]
[40]
Pistrosch, F.; Natali, A.; Hanefeld, M. Is hyperglycemia a cardiovascular risk factor? Diabetes Care, 2011, 34(Suppl. 2), S128-S131.
[41]
Zhang, Y.; Lima, C.F.; Rodrigues, L.R. Anticancer effects of lactoferrin: Underlying mechanisms and future trends in cancer therapy. Nutr. Rev., 2014, 72(12), 763-773.
[http://dx.doi.org/10.1111/nure.12155] [PMID: 25406879]
[42]
D’Alessandro, A.G.; Martemucci, G.; Jirillo, E.; Leo, V.D. Major whey proteins in donkey’s milk: Effect of season and lactation stage. Implications for potential dietary interventions in human diseases. Immunopharmacol. Immunotoxicol., 2011, 33(2), 259-265.
[http://dx.doi.org/10.3109/08923973.2010.499365] [PMID: 20624015]
[43]
Sánchez, L.; Calvo, M.; Brock, J.H. Biological role of lactoferrin. Arch. Dis. Child., 1992, 67(5), 657-661.
[http://dx.doi.org/10.1136/adc.67.5.657] [PMID: 1599309]
[44]
Jilo, K. Medicinal values of camel milk. Int. Sci. Vet. Res., 2016, 2, 18-25.
[45]
Li, H.; Tong, Y.; Bai, L.; Ye, L.; Zhong, L.; Duan, X.; Zhu, Y. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int. J. Biol. Macromol., 2018, 107(Pt A), 204-211.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.155] [PMID: 28863897]
[46]
Flis, Z.; Molik, E. Importance of bioactive substances in sheep’s milk in human health. Int. J. Mol. Sci., 2021, 22(9), 4364.
[http://dx.doi.org/10.3390/ijms22094364]
[47]
Janusz, M.; Woszczyna, M.; Lisowski, M.; Kubis, A.; Macała, J.; Gotszalk, T.; Lisowski, J. Ovine colostrum nanopeptide affects amyloid beta aggregation. FEBS Lett., 2009, 583(1), 190-196.
[http://dx.doi.org/10.1016/j.febslet.2008.11.053] [PMID: 19084010]
[48]
Lordan, R.; Vidal, N.P.; Huong Pham, T.; Tsoupras, A.; Thomas, R.H.; Zabetakis, I. Yoghurt fermentation alters the composition and antiplatelet properties of milk polar lipids. Food Chem., 2020, 332, 127384.
[http://dx.doi.org/10.1016/j.foodchem.2020.127384] [PMID: 32615384]
[49]
Benjamin, S.; Spener, F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab., 2009, 6(1), 36.
[http://dx.doi.org/10.1186/1743-7075-6-36] [PMID: 19761624]
[50]
Bruen, R.; Fitzsimons, S.; Belton, O. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacol., 2017, 83(1), 46-53.
[http://dx.doi.org/10.1111/bcp.12948] [PMID: 27037767]
[51]
Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res., 2007, 68(1-2), 88-113.
[http://dx.doi.org/10.1016/j.smallrumres.2006.09.013]
[52]
Derdak, R.; Sakoui, S.; Pop, O.L.; Muresan, C.I.; Vodnar, D.C.; Addoum, B.; Vulturar, R.; Chis, A.; Suharoschi, R.; Soukri, A.; El Khalfi, B. Insights on health and food applications of Equus asinus (Donkey) milk bioactive proteins and peptides—an overview. Foods, 2020, 9(9), 1302.
[http://dx.doi.org/10.3390/foods9091302] [PMID: 32942687]
[53]
Rubio, C. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions. Pathogens, 2014, 3(1), 73-92.
[http://dx.doi.org/10.3390/pathogens3010073] [PMID: 25437608]
[54]
Adkins, Y.; Kelley, D.S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem., 2010, 21(9), 781-792.
[http://dx.doi.org/10.1016/j.jnutbio.2009.12.004] [PMID: 20382009]
[55]
Van de Water, J.; Keen, C.L.; Gershwin, M.E. The influence of chronic yogurt consumption on immunity. J. Nutr., 1999, 129(7)(Suppl.), 1492S-1495S.
[http://dx.doi.org/10.1093/jn/129.7.1492S] [PMID: 10395628]
[56]
Murrieta-Aguttes, M.; Michelen, V.; Leynadier, F.; Duarte-Risselin, C.; Halpern, G.M.; Dry, J. J Asthma. Systemic allergic reactions to corticosteroids. Int. J. Immunother., 1991, 28(5), 329-339.
[57]
Meyer, A.L.; Micksche, M.; Herbacek, I.; Elmadfa, I. Daily intake of probiotic as well as conventional yogurt has a stimulating effect on cellular immunity in young healthy women. Ann. Nutr. Metab., 2006, 50(3), 282-289.
[http://dx.doi.org/10.1159/000091687] [PMID: 16508257]
[58]
Marcos, A.; Wärnberg, J.; Nova, E.; Gómez, S.; Alvarez, A.; Alvarez, R.; Mateos, J.A.; Cobo, J.M. The effect of milk fermented by yogurt cultures plus Lactobacillus casei DN-114001 on the immune response of subjects under academic examination stress. Eur. J. Nutr., 2004, 43(6), 381-389.
[http://dx.doi.org/10.1007/s00394-004-0517-8] [PMID: 15309418]
[59]
Fülöp, T.; Larbi, A.; Hirokawa, K.; Mocchegiani, E.; Lesourds, B.; Castle, S.; Wikby, A.; Franceschi, C.; Pawelec, G. Immunosupportive therapies in aging. Clin. Interv. Aging, 2007, 2(1), 33-54.
[60]
Amati, L.; Marzulli, G.; Martulli, M.; Pugliese, V.; Caruso, C.; Candore, G.; Vasto, S.; Jirillo, E. Administration of a synbiotic to free-living elderly and evaluation of serum cytokines. A pilot study. Curr. Pharm. Des., 2010, 16(7), 854-858.
[http://dx.doi.org/10.2174/138161210790883633] [PMID: 20388097]
[61]
de Wit, J.N. Marschall rhône-poulenc award lecture. Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci., 1998, 81(3), 597-608.
[http://dx.doi.org/10.3168/jds.S0022-0302(98)75613-9] [PMID: 9565865]
[62]
Wang, N.; Ren, D.; Zhang, L.; Han, N.; Zhao, Y.; Yang, X. Effects of sheep whey protein combined with Fu brick tea polysaccharides and stachyose on immune function and intestinal metabolites of cyclophosphamide‐treated mice. J. Sci. Food Agric., 2023, 103(7), 3402-3413.
[http://dx.doi.org/10.1002/jsfa.12477] [PMID: 36722467]
[63]
Kao, H.F.; Wang, Y.C.; Tseng, H.Y.; Wu, L.S.H.; Tsai, H.J.; Hsieh, M.H.; Chen, P.C.; Kuo, W.S.; Liu, L.F.; Liu, Z.G.; Wang, J.Y. Goat milk consumption enhances innate and adaptive immunities and alleviates allergen-induced airway inflammation in offspring mice. Front. Immunol., 2020, 11, 184.
[http://dx.doi.org/10.3389/fimmu.2020.00184] [PMID: 32132998]
[64]
Daddaoua, A.; Puerta, V.; Requena, P.; Martínez-Férez, A.; Guadix, E.; de Medina, F.S.; Zarzuelo, A.; Suárez, M.D.; Boza, J.J.; Martínez-Augustin, O. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J. Nutr., 2006, 136(3), 672-676.
[http://dx.doi.org/10.1093/jn/136.3.672]
[65]
Lara-Villoslada, F.; Debras, E.; Nieto, A.; Concha, A.; Gálvez, J.; López-Huertas, E.; Boza, J.; Obled, C.; Xaus, J. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin. Nutr., 2006, 25(3), 477-488.
[http://dx.doi.org/10.1016/j.clnu.2005.11.004] [PMID: 16375993]
[66]
Jirillo, F.; Magrone, T. Anti-inflammatory and anti-allergic properties of donkey’s and goat’s milk. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(1), 27-37.
[http://dx.doi.org/10.2174/1871530314666140121143747] [PMID: 24450455]
[67]
Chiofalo, B.; Dugo, P.; Bonaccorsi, I.L.; Mondello, L. Comparison of major lipid components in human and donkey milk: New perspectives for a hypoallergenic diet in humans. Immunopharmacol. Immunotoxicol., 2011, 33(4), 633-644.
[http://dx.doi.org/10.3109/08923973.2011.555409] [PMID: 21428711]
[68]
Amati, L.; Marzulli, G.; Martulli, M.; Tafaro, A.; Jirillo, F.; Pugliese, V.; Martemucci, G.; D’Alessandro, A.; Jirillo, E. Donkey and goat milk intake and modulation of the human aged immune response. Curr. Pharm. Des., 2010, 16(7), 864-869.
[http://dx.doi.org/10.2174/138161210790883651] [PMID: 20388099]
[69]
Yvon, S.; Olier, M.; Leveque, M.; Jard, G.; Tormo, H.; Haimoud-Lekhal, D.A.; Peter, M.; Eutamène, H. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice. Eur. J. Nutr., 2018, 57, 155-166.
[70]
Singh, P.; Hernandez-Rauda, R.; Peña-Rodas, O. Preventative and therapeutic potential of animal milk components against COVID‐19: A comprehensive review. Food Sci. Nutr., 2023, 11(6), 2547-2579.
[http://dx.doi.org/10.1002/fsn3.3314] [PMID: 37324885]
[71]
Mao, X. Anti-proliferative and anti-tumor effect of active components in Donkey’s milk on A549 human lung cancer cells. Int. Dairy J., 2009, 19, 703-708.
[72]
M. Luo, J.; Xiao, S.; Sun, F.; Cui, G.; Liu, W.; Li, Y.; Li; Cao, Y. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation. Food Funct., 2020, 11, 5284.
[73]
Barone, G. Calcium fortification of a model infant milk formula system using soluble and insoluble calcium salts. Int. Dairy J., 2021, 117, 104951.
[74]
Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients, 2019, 11(8), 1739.
[http://dx.doi.org/10.3390/nu11081739] [PMID: 31357608]
[75]
Liu, X.B.; Murray, K.D. Neuronal excitability and calcium/calmodulin‐dependent protein kinase type II: Location, location, location. Epilepsia, 2012, 53(s1)(Suppl. 1), 45-52.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03474.x] [PMID: 22612808]
[76]
Waegeneers, N.; Thiry, C.; De Temmerman, L. Ruttens, A Predicted dietary intake of selenium by the general adult population in Belgium. Food Addit Contam: Part A, 2013, 30(2), 278-285.
[77]
Pieczynka, J. The role of selenium in human conception and pregnancy Trace Elements. Med. Biol., 2015, 29, 31-38.
[78]
Laurberg, P.; Cerqueira, C.; Ovesen, L.; Rasmussen, L.B.; Perrild, H.; Andersen, S.; Pedersen, I.B.; Carlé, A. Iodine intake as a determinant of thyroid disorders in populations. Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(1), 13-27.
[http://dx.doi.org/10.1016/j.beem.2009.08.013] [PMID: 20172467]
[79]
Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord., 2022, 23(2), 265-277.
[http://dx.doi.org/10.1007/s11154-021-09679-5] [PMID: 34322844]
[80]
Niki, E.; Noguchi, N. Dynamics of antioxidant action of vitamin E. Acc. Chem. Res., 2004, 37(1), 45-51.
[http://dx.doi.org/10.1021/ar030069m] [PMID: 14730993]
[81]
Allen, L.H. Vitamin B-12. Adv. Nutr., 2012, 3(1), 54-55.
[http://dx.doi.org/10.3945/an.111.001370] [PMID: 22332101]
[82]
Soedamah-Muthu, S.S.; de Goede, J. Dairy consumption and cardiometabolic diseases: Systematic review and updated meta-analyses of prospective cohort studies. Curr. Nutr. Rep., 2018, 7(4), 171-182.
[http://dx.doi.org/10.1007/s13668-018-0253-y] [PMID: 30406514]
[83]
Companys, J.; Pla-Pagà, L.; Calderón-Pérez, L.; Llauradó, E.; Solà, R.; Pedret, A.; Valls, R.M. Fermented dairy products, probiotic supplementation, and cardiometabolic diseases: A systematic review and meta-analysis. Adv. Nutr., 2020, 11(4), 834-863.
[http://dx.doi.org/10.1093/advances/nmaa030] [PMID: 32277831]
[84]
Schmidt, K.A.; Cromer, G.; Burhans, M.S.; Kuzma, J.N.; Hagman, D.K.; Fernando, I.; Murray, M.; Utzschneider, K.M.; Holte, S.; Kraft, J.; Kratz, M. Impact of low-fat and full-fat dairy foods on fasting lipid profile and blood pressure: exploratory endpoints of a randomized controlled trial. Am. J. Clin. Nutr., 2021, 114(3), 882-892.
[http://dx.doi.org/10.1093/ajcn/nqab131] [PMID: 34258627]
[85]
King, D.G.; Walker, M.; Campbell, M.D.; Breen, L.; Stevenson, E.J.; West, D.J. A small dose of whey protein co-ingested with mixed-macronutrient breakfast and lunch meals improves postprandial glycemia and suppresses appetite in men with type 2 diabetes: A randomized controlled trial. Am. J. Clin. Nutr., 2018, 107(4), 550-557.
[http://dx.doi.org/10.1093/ajcn/nqy019] [PMID: 29635505]
[86]
van Loon, L.J.C.; Saris, W.H.M.; Verhagen, H.; Wagenmakers, A.J.M. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr., 2000, 72(1), 96-105.
[http://dx.doi.org/10.1093/ajcn/72.1.96] [PMID: 10871567]
[87]
Bjørnshave, A.; Hermansen, K. Effects of dairy protein and fat on the metabolic syndrome and type 2 diabetes. Rev. Diabet. Stud., 2014, 11(2), 153-166.
[http://dx.doi.org/10.1900/RDS.2014.11.153] [PMID: 25396403]
[88]
DuBroff, R.; Malhotra, A.; de Lorgeril, M. Hit or miss: The new cholesterol targets. BMJ Evid. Based Med., 2021, 26(6), 271-278.
[http://dx.doi.org/10.1136/bmjebm-2020-111413] [PMID: 32747335]
[89]
Pal, S.; Ellis, V. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity, 2010, 18(7), 1354-1359.
[http://dx.doi.org/10.1038/oby.2009.397] [PMID: 19893505]
[90]
Sánchez-Moya, T.; López-Nicolás, R.; Planes, D.; González-Bermúdez, C.A.; Ros-Berruezo, G.; Frontela-Saseta, C. In vitro modulation of gut microbiota by whey protein to preserve intestinal health. Food Funct., 2017, 8(9), 3053-3063.
[http://dx.doi.org/10.1039/C7FO00197E] [PMID: 28636003]
[91]
Hesseltine, C.W.; Wang, H.L. The importance of traditional fermented foods. Bioscience, 1980, 30(6), 402-404.
[http://dx.doi.org/10.2307/1308003]
[92]
Larsson, S.; Crippa, A.; Orsini, N.; Wolk, A.; Michaëlsson, K. Milk consumption and mortality from all causes, cardiovascular disease, and cancer: A systematic review and meta-analysis. Nutrients, 2015, 7(9), 7749-7763.
[http://dx.doi.org/10.3390/nu7095363] [PMID: 26378576]
[93]
Ge, S.; Zha, L.; Sobue, T.; Kitamura, T.; Iso, H.; Ishihara, J.; Kito, K.; Iwasaki, M.; Inoue, M.; Yamaji, T.; Tsugane, S.; Sawada, N. Associations between dairy intake and mortality due to all-cause and cardiovascular disease: The Japan Public Health Center-based prospective study. Eur. J. Nutr., 2023, 62(5), 2087-2104.
[http://dx.doi.org/10.1007/s00394-023-03116-w] [PMID: 36943492]
[94]
Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr., 2010, 91(3), 502-509.
[http://dx.doi.org/10.3945/ajcn.2008.26285] [PMID: 20089734]
[95]
Yamagishi, K.; Iso, H.; Kokubo, Y.; Saito, I.; Yatsuya, H.; Ishihara, J.; Inoue, M.; Tsugane, S.; Sobue, T.; Hanaoka, T.; Ogata, J.; Baba, S.; Mannami, T.; Okayama, A. K, Y.; Miyakawa, K.; Saito, F.; Koizumi, A.; Sano, Y.; Hashimoto, I.; Ikuta, T.; Tanaba, Y.; Miyajima, Y.; Suzuki, N.; Nagasawa, S.; Furusugi, Y.; Nagai, N.; Sanada, H.; Hatayama, Y.; Kobayashi, F.; Uchino, H.; Shirai, Y.; Kondo, T.; Sasaki, R.; Watanabe, Y.; Miyagawa, Y.; Kobayashi, Y.; Machida, M.; Kishimoto, Y.; Takara, E.; Fukuyama, T.; Kinjo, M.; Irei, M.; Sakiyama, H.; Imoto, K.; Yazawa, H.; Seo, T.; Seiko, A.; Ito, F.; Shoji, F.; Saito, R.; Murata, A.; Minato, K.; Motegi, K.; Fujieda, T.; Abe, T.; Katagiri, M.; Suzuki, M.; Matsui, K.; Doi, M.; Terao, A.; Ishikawa, Y.; Tagami, T.; Doi, H.; Urata, M.; Okamoto, N.; Ide, F.; Sueta, H.; Sakiyama, H.; Onga, N.; Takaesu, H.; Uehara, M.; Horii, F.; Asano, I.; Yamaguchi, H.; Aoki, K.; Maruyama, S.; Ichii, M.; Takano, M.; Matsushima, S.; Natsukawa, S.; Akabane, M.; Konishi, M.; Okada, K.; Honda, Y.; Sakurai, K.Y.S.; Tsuchiya, N.; Sugimura, H.; Tsubono, Y.; Kabuto, M.; Tominaga, S.; Iida, M.; Ajiki, W.; Ioka, A.; Sato, S.; Yasuda, N.; Nakamura, K.; Kono, S.; Suzuki, K.; Takashima, Y.; Yoshida, M.; Maruyama, E.; Yamaguchi, M.; Matsumura, Y.; Sasaki, S.; Watanabe, S.; Kadowaki, T.; Noda, M.; Mizoue, T.; Kawaguchi, Y.; Shimizu, H. Dietary intake of saturated fatty acids and incident stroke and coronary heart disease in Japanese communities: The JPHC Study. Eur. Heart J., 2013, 34(16), 1225-1232.
[http://dx.doi.org/10.1093/eurheartj/eht043] [PMID: 23404536]
[96]
Tanitame, M.; Sugawara, Y.; Lu, Y.; Matsuyama, S.; Kanemura, S.; Fukao, A.; Tsuji, I. Dairy consumption and incident risk of thyroid cancer in Japan: A pooled analysis of the miyagi cohort study and the ohsaki cohort study. Eur. J. Nutr., 2023, 62(1), 251-259.
[http://dx.doi.org/10.1007/s00394-022-02979-9] [PMID: 35951088]
[97]
The National Health and Nutrition Survey in Japan; National Institute of Health and Nutrition: Tokyo, Japan, 2019.
[98]
MaNguyen, MQ. Arakawa mternal consumption of dairy products during pregnancy is associated with decreased risk of emotional problems in 5-year-olds: The kyushu okinawa maternal and child health study. Nutrients, 2022, 14(22), 4713.
[http://dx.doi.org/10.3390/nu14224713] [PMID: 36432404]
[99]
Timby, N.; Domellöf, E.; Hernell, O.; Lönnerdal, B.; Domellöf, M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. Am. J. Clin. Nutr., 2014, 99(4), 860-868.
[http://dx.doi.org/10.3945/ajcn.113.064295] [PMID: 24500150]
[100]
Chen, Y.; Zheng, Z.; Zhu, X.; Shi, Y.; Tian, D.; Zhao, F.; Liu, N.; Hüppi, P.S.; Troy, F.A., II; Wang, B. Lactoferrin promotes early neurodevelopment and cognition in postnatal piglets by upregulating the BDNF signaling pathway and polysialylation. Mol. Neurobiol., 2015, 52(1), 256-269.
[http://dx.doi.org/10.1007/s12035-014-8856-9] [PMID: 25146846]
[101]
Joung, J.Y.; Song, J.G.; Kim, H.W.; Oh, N.S. Protective effects of milk casein on the brain function and behavior in a mouse model of chronic stress. J. Agric. Food Chem., 2021, 69(6), 1936-1941.
[http://dx.doi.org/10.1021/acs.jafc.0c07292] [PMID: 33496183]
[102]
Liu, Y.; Hettinga, K.; Liu, D.; Zhang, L.; Zhou, P. Current progress of emerging technologies in human and animals’ milk processing: Retention of immune‐active components and microbial safety. Compr. Rev. Food Sci. Food Saf., 2022, 21(5), 4327-4353.
[http://dx.doi.org/10.1111/1541-4337.13019] [PMID: 36036722]
[103]
D’Alessandro, A.G.; Casamassima, D.; Jirillo, F.; Martemucci, G. Effects of verbascoside administration on the blood parameters and oxidative status in jennies and their suckling foals: Potential improvement of milk for human use. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(2), 102-112.
[http://dx.doi.org/10.2174/1871530314666140407152347]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy