Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Neovascularization as a Leading Mechanism of Intraplaque Hemorrhage and Carotid Plaque Destabilization: A Narrative Review

Author(s): Arkadiusz Migdalski and Arkadiusz Jawien*

Volume 22, Issue 6, 2024

Published on: 30 May, 2024

Page: [377 - 385] Pages: 9

DOI: 10.2174/0115701611304241240523045704

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Intraplaque neovascularization (IPN) is considered a leading mechanism causing carotid plaque destabilization. We provide an objective and comprehensive summary of the biology, imaging techniques, and treatment options related to carotid IPN. Plaque neovascularization has been reported to originate mainly from the adventitial vasa vasorum as a response to hypoxia. The leakage and rupture of neovessels lead to the formation of extravasations and foci of inflammation that destabilize the plaque. Vascular endothelial growth factor and its receptors are key regulators of neoangiogenesis. Neovascularization can be analyzed by advanced computed tomography and magnetic resonance imaging. The basic tools for the ultrasound assessment of IPN are contrast-enhanced ultrasound, superb microvascular imaging, and ultrasound molecular imaging. A promising direction of research seems to be the identification of patients with advanced plaque neovascularization. A simple test assessing low-velocity flow in the IPN can detect patients at risk of stroke before they experience rupture of defective neovessels and intracerebral embolism. In addition to surgical treatment, the stabilization of carotid atherosclerotic plaque can be supported pharmacologically. Statins have the best-documented role in this respect. The ideal moment of intensified therapeutic intervention in patients with previously stable carotid plaque is its increased neovascularization. However, the time frame in which intracerebral embolization may occur is unknown, and therapeutic intervention may be too late. The formation of deficient neovessels can currently be non-invasively evaluated with ultrasound. Superb microvascular imaging may change the clinical approach for asymptomatic patients at risk of cerebral ischemia.

Keywords: Carotid stenosis, neovascularization, vulnerable carotid plaque, carotid plaque destabilization, intraplaque hemorrhage.

Graphical Abstract
[1]
Gasecki AP, Eliasziw M, Ferguson GG, Hachinski V, Barnett HJ, Group NASCET. Long-term prognosis and effect of endarterectomy in patients with symptomatic severe carotid stenosis and contralateral carotid stenosis or occlusion: Results from NASCET. J Neurosurg 1995; 83(5): 778-82.
[http://dx.doi.org/10.3171/jns.1995.83.5.0778] [PMID: 7472542]
[2]
Group ECSTC. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998; 351(9113): 1379-87.
[http://dx.doi.org/10.1016/S0140-6736(97)09292-1] [PMID: 9593407]
[3]
Naylor R, Rantner B, Ancetti S, et al. Editor’s choice – European society for vascular surgery (ESVS) 2023 clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Endovasc Surg 2023; 65(1): 7-111.
[http://dx.doi.org/10.1016/j.ejvs.2022.04.011] [PMID: 35598721]
[4]
Beckman JA, Ansel GM, Lyden SP, Das TS. Carotid artery stenting in asymptomatic carotid artery stenosis. J Am Coll Cardiol 2020; 75(6): 648-56.
[http://dx.doi.org/10.1016/j.jacc.2019.11.054] [PMID: 32057380]
[5]
Chang X, Feng J, Ruan L, et al. Positive correlation between neovascularization degree of carotid atherosclerosis determined by contrast-enhanced ultrasound and level of serum C-reactive protein. Vasa 2015; 44(3): 0187-94.
[http://dx.doi.org/10.1024/0301-1526/a000429] [PMID: 26098322]
[6]
Xu J, Lu X, Shi GP. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci 2015; 16(12): 11574-608.
[http://dx.doi.org/10.3390/ijms160511574] [PMID: 26006236]
[7]
Le Dall J, Ho-Tin-Noé B, Louedec L, et al. Immaturity of microvessels in haemorrhagic plaques is associated with proteolytic degradation of angiogenic factors. Cardiovasc Res 2010; 85(1): 184-93.
[http://dx.doi.org/10.1093/cvr/cvp253] [PMID: 19620132]
[8]
Sun J, Underhill HR, Hippe DS, Xue Y, Yuan C, Hatsukami TS. Sustained acceleration in carotid atherosclerotic plaque progression with intraplaque hemorrhage: A long-term time course study. JACC Cardiovasc Imaging 2012; 5(8): 798-804.
[http://dx.doi.org/10.1016/j.jcmg.2012.03.014] [PMID: 22897993]
[9]
Simpson RJ, Akwei S, Hosseini AA, MacSweeney ST, Auer DP, Altaf N. MR imaging-detected carotid plaque hemorrhage is stable for 2 years and a marker for stenosis progression. AJNR Am J Neuroradiol 2015; 36(6): 1171-5.
[http://dx.doi.org/10.3174/ajnr.A4267] [PMID: 25742988]
[10]
Alonso A, Artemis D, Hennerici MG. Molecular imaging of carotid plaque vulnerability. Cerebrovasc Dis 2015; 39(1): 5-12.
[http://dx.doi.org/10.1159/000369123] [PMID: 25547782]
[11]
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann Med 2017; 49(8): 661-77.
[http://dx.doi.org/10.1080/07853890.2017.1366041] [PMID: 28797175]
[12]
van Hinsbergh VWM, Eringa EC, Daemen MJAP. Neovascularization of the atherosclerotic plaque. Curr Opin Lipidol 2015; 26(5): 405-11.
[http://dx.doi.org/10.1097/MOL.0000000000000210] [PMID: 26241102]
[13]
Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 1994; 331(7): 417-24.
[http://dx.doi.org/10.1056/NEJM199408183310701] [PMID: 7880233]
[14]
Lim HS, Blann AD, Lip GYH. Raised levels of vascular endothelial growth factor and angiopoietin-2 are related to atherosclerosis and endothelial damage/dysfunction in diabetes: effect of treatment. Eur Heart J 2004; 25(S): 50.
[15]
Konopka A, Janas J, Piotrowski W, Stępińska J. Concentration of vascular endothelial growth factor in patients with acute coronary syndrome. Cytokine 2013; 61(2): 664-9.
[http://dx.doi.org/10.1016/j.cyto.2012.12.001] [PMID: 23313225]
[16]
Ylä-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007; 49(10): 1015-26.
[http://dx.doi.org/10.1016/j.jacc.2006.09.053] [PMID: 17349880]
[17]
O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 1996; 93(4): 672-82.
[http://dx.doi.org/10.1161/01.CIR.93.4.672] [PMID: 8640995]
[18]
Sadat U, Jaffer FA, van Zandvoort MAMJ, Nicholls SJ, Ribatti D, Gillard JH. Inflammation and neovascularization intertwined in atherosclerosis: Imaging of structural and molecular imaging targets. Circulation 2014; 130(9): 786-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010369] [PMID: 25156914]
[19]
Schmidt C, Fischer T, Rückert RI, et al. Identification of neovascularization by contrast–enhanced ultrasound to detect unstable carotid stenosis. PLoS One 2017; 12(4): e0175331.
[http://dx.doi.org/10.1371/journal.pone.0175331] [PMID: 28388659]
[20]
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145(3): 341-55.
[http://dx.doi.org/10.1016/j.cell.2011.04.005] [PMID: 21529710]
[21]
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol 2013; 13(10): 709-21.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[22]
Hinkley H, Counts DA, VonCanon E, Lacy M. T cells in atherosclerosis: Key players in the pathogenesis of vascular disease. Cells 2023; 12(17): 2152.
[http://dx.doi.org/10.3390/cells12172152] [PMID: 37681883]
[23]
Zamani M, Skagen K, Scott H, Lindberg B, Russell D, Skjelland M. Carotid plaque neovascularization detected with superb microvascular imaging ultrasound without using contrast media. Stroke 2019; 50(11): 3121-7.
[http://dx.doi.org/10.1161/STROKEAHA.119.025496] [PMID: 31510899]
[24]
Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification from mechanism to molecular imaging. JACC Cardiovasc Imaging 2017; 10(5): 582-93.
[http://dx.doi.org/10.1016/j.jcmg.2017.03.005] [PMID: 28473100]
[25]
Zhang H, Du J, Wang H, et al. Comparison of diagnostic values of ultrasound micro-flow imaging and contrast-enhanced ultrasound for neovascularization in carotid plaques. Exp Ther Med 2017; 14(1): 680-8.
[http://dx.doi.org/10.3892/etm.2017.4525] [PMID: 28672985]
[26]
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9(6): 669-76.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[27]
Shibuya M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001; 33(4): 409-20.
[http://dx.doi.org/10.1016/S1357-2725(01)00026-7] [PMID: 11312109]
[28]
Wada H, Satoh N, Kitaoka S, et al. Soluble VEGF receptor-2 is increased in sera of subjects with metabolic syndrome in association with insulin resistance. Atherosclerosis 2010; 208(2): 512-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.07.045] [PMID: 19695569]
[29]
Silha JV, Krsek M, Sucharda P, Murphy LJ. Angiogenic factors are elevated in overweight and obese individuals. Int J Obes 2005; 29(11): 1308-14.
[http://dx.doi.org/10.1038/sj.ijo.0802987] [PMID: 15953938]
[30]
Migdalski A. Activation of tissue factor-dependent coagulation, angiogenesis stimulation and heparanase concentration in patients with carotid artery stenosis. Scientific Publishing House of the Nicolaus Copernicus University 2019; pp. 95-6.
[31]
Saba L, Lai ML, Montisci R, et al. Association between carotid plaque enhancement shown by multidetector CT angiography and histologically validated microvessel density. Eur Radiol 2012; 22(10): 2237-45.
[http://dx.doi.org/10.1007/s00330-012-2467-5] [PMID: 22572988]
[32]
Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH III, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol 2012; 33(4): 755-60.
[http://dx.doi.org/10.3174/ajnr.A2863] [PMID: 22194363]
[33]
Dong L, Kerwin WS, Chen H, et al. Carotid artery atherosclerosis: Effect of intensive lipid therapy on the vasa vasorum--evaluation by using dynamic contrast-enhanced MR imaging. Radiology 2011; 260(1): 224-31.
[http://dx.doi.org/10.1148/radiol.11101264] [PMID: 21493792]
[34]
Kerwin W, Hooker A, Spilker M, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 2003; 107(6): 851-6.
[http://dx.doi.org/10.1161/01.CIR.0000048145.52309.31] [PMID: 12591755]
[35]
Yuan J, Makris G, Patterson A, et al. Relationship between carotid plaque surface morphology and perfusion: A 3D DCE-MRI study. MAGMA 2018; 31(1): 191-9.
[http://dx.doi.org/10.1007/s10334-017-0621-4] [PMID: 28455630]
[36]
Bissacco D, Carmo M, Barbetta I, Dallatana R, Settembrini PG. Medical therapy before carotid endarterectomy: Changes over a 13-year period and comparison between asymptomatic and symptomatic patients. Angiology 2018; 69(2): 113-9.
[http://dx.doi.org/10.1177/0003319717706626] [PMID: 28446026]
[37]
Saba L, Moody AR, Saam T, et al. Vessel wall–imagingbiomarkers of carotid plaque vulnerability in stroke prevention trials. JACC Cardiovasc Imaging 2020; 13(11): 2445-56.
[http://dx.doi.org/10.1016/j.jcmg.2020.07.046] [PMID: 33153534]
[38]
Saba L, Loewe C, Weikert T, et al. State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: Standardization of scanning protocols and measurements—a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiol 2022; 33(2): 1063-87.
[http://dx.doi.org/10.1007/s00330-022-09024-7] [PMID: 36194267]
[39]
Kurosaki Y, Yoshida K, Fukuda H, Handa A, Chin M, Yamagata S. Asymptomatic carotid T1-high-Intense plaque as a risk factor for a subsequent cerebrovascular ischemic event. Cerebrovasc Dis 2017; 43(5-6): 250-6.
[http://dx.doi.org/10.1159/000455973] [PMID: 28259876]
[40]
Byrnes KR, Ross CB, Morasch M. The current role of carotid duplex ultrasonography in the management of carotid atherosclerosis: Foundations and advances. Int J Vasc Med 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/187872] [PMID: 22489269]
[41]
Coli S, Magnoni M, Sangiorgi G, et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: Correlation with histology and plaque echogenicity. J Am Coll Cardiol 2008; 52(3): 223-30.
[http://dx.doi.org/10.1016/j.jacc.2008.02.082] [PMID: 18617072]
[42]
Huang P, Huang F, Zou C, et al. Contrast-enhanced sonographic characteristics of neovascularization in carotid atherosclerotic plaques. J Clin Ultrasound 2008; 36(6): 346-51.
[http://dx.doi.org/10.1002/jcu.20448] [PMID: 18286514]
[43]
Li C, He W, Guo D, et al. Quantification of carotid plaque neovascularization using contrast-enhanced ultrasound with histopathologic validation. Ultrasound Med Biol 2014; 40(8): 1827-33.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2014.02.010] [PMID: 24798387]
[44]
Rafailidis V, Pitoulias G, Kouskouras K, Rafailidis D. Contrast-enhanced ultrasonography of the carotids. Ultrasonography 2015; 34(4): 312-23.
[http://dx.doi.org/10.14366/usg.15005] [PMID: 25868732]
[45]
Hoshino M, Shimizu T, Ogura H, et al. Intraplaque microvascular flow signal in superb microvascular imaging and magnetic resonance imaging carotid plaque imaging in patients with atheromatous carotid artery stenosis. J Stroke Cerebrovasc Dis 2018; 27(12): 3529-34.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.017] [PMID: 30197167]
[46]
Shah F, Balan P, Weinberg M, et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization: A new surrogate marker of atherosclerosis? Vasc Med 2007; 12(4): 291-7.
[http://dx.doi.org/10.1177/1358863X07083363] [PMID: 18048465]
[47]
Evdokimenko AN, Gulevskaya TS, Druina LD, et al. Neovascularization of carotid atherosclerotic plaque and quantitative methods of its dynamic assessment in vivo. Bull Exp Biol Med 2018; 165(4): 521-5.
[http://dx.doi.org/10.1007/s10517-018-4208-5] [PMID: 30121924]
[48]
Czarniecki M, Ranchod A, Mellam Y, et al. Contrast-enhanced ultrasound Radiopaedia. Available From :https://radiopaedia.org/articles/contrast-enhanced-ultrasound-2 (Accessed on 25 Nov 2023).
[http://dx.doi.org/10.53347/rID-27413]
[49]
Main ML, Ryan AC, Davis TE, Albano MP, Kusnetzky LL, Hibberd M. Acute mortality in hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent (multicenter registry results in 4,300,966 consecutive patients). Am J Cardiol 2008; 102(12): 1742-6.
[http://dx.doi.org/10.1016/j.amjcard.2008.08.019] [PMID: 19064035]
[50]
Vicenzini E, Giannoni MF, Puccinelli F, et al. Detection of carotid adventitial vasa vasorum and plaque vascularization with ultrasound cadence contrast pulse sequencing technique and echo-contrast agent. Stroke 2007; 38(10): 2841-3.
[http://dx.doi.org/10.1161/STROKEAHA.107.487918] [PMID: 17761913]
[51]
Camps-Renom P, Prats-Sánchez L, Casoni F, et al. Plaque neovascularization detected with contrast‐enhanced ultrasound predicts ischaemic stroke recurrence in patients with carotid atherosclerosis. Eur J Neurol 2020; 27(5): 809-16.
[http://dx.doi.org/10.1111/ene.14157] [PMID: 31997418]
[52]
Mantella LE, Colledanchise KN, Hétu MF, Feinstein SB, Abunassar J, Johri AM. Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events. Eur Heart J Cardiovasc Imaging 2019; 20(11): 1239-47.
[http://dx.doi.org/10.1093/ehjci/jez070] [PMID: 31621834]
[53]
Song Y, Dang Y, Wang J, et al. Carotid intraplaque neovascularization predicts ischemic stroke recurrence in patients with carotid atherosclerosis. Gerontology 2021; 67(2): 144-51.
[http://dx.doi.org/10.1159/000511360] [PMID: 33582668]
[54]
Fresilli D, Di Leo N, Martinelli O, et al. 3D-Arterial analysis software and CEUS in the assessment of severity and vulnerability of carotid atherosclerotic plaque: A comparison with CTA and histopathology. Radiol Med (Torino) 2022; 127(11): 1254-69.
[http://dx.doi.org/10.1007/s11547-022-01551-z] [PMID: 36114929]
[55]
Lindner JR, Coggins MP, Kaul S, Klibanov AL, Brandenburger GH, Ley K. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation 2000; 101(6): 668-75.
[http://dx.doi.org/10.1161/01.CIR.101.6.668] [PMID: 10673260]
[56]
Tsutsui JM, Xie F, Cano M, et al. Detection of retained microbubbles in carotid arteries with real-time low mechanical index imaging in the setting of endothelial dysfunction. J Am Coll Cardiol 2004; 44(5): 1036-46.
[http://dx.doi.org/10.1016/j.jacc.2004.05.056] [PMID: 15337216]
[57]
Owen DR, Shalhoub J, Miller S, et al. Inflammation within carotid atherosclerotic plaque: Assessment with late-phase contrast-enhanced US. Radiology 2010; 255(2): 638-44.
[http://dx.doi.org/10.1148/radiol.10091365] [PMID: 20413774]
[58]
Shalhoub J, Monaco C, Owen DRJ, et al. Late-phase contrast-enhanced ultrasound reflects biological features of instability in human carotid atherosclerosis. Stroke 2011; 42(12): 3634-6.
[http://dx.doi.org/10.1161/STROKEAHA.111.631200] [PMID: 21960570]
[59]
Li J, Wang K, Pan W, Li N, Tang B. Targeted imaging in atherosclerosis. Anal Chem 2022; 94(36): 12263-73.
[http://dx.doi.org/10.1021/acs.analchem.2c02644] [PMID: 36039871]
[60]
Chadderdon SM, Belcik JT, Bader L, et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation 2014; 129(4): 471-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003645] [PMID: 24163066]
[61]
Khanicheh E, Mitterhuber M, Xu L, Haeuselmann SP, Kuster GM, Kaufmann BA. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS One 2013; 8(3): e58761.
[http://dx.doi.org/10.1371/journal.pone.0058761] [PMID: 23554922]
[62]
Liu H, Wang X, Tan KB, et al. Molecular imaging of vulnerable plaques in rabbits using contrast-enhanced ultrasound targeting to vascular endothelial growth factor receptor-2. J Clin Ultrasound 2011; 39(2): 83-90.
[http://dx.doi.org/10.1002/jcu.20759] [PMID: 21213333]
[63]
Zhang X, Wu M, Zhang Y, Zhang J, Su J, Yang C. Molecular imaging of atherosclerotic plaque with lipid nanobubbles as targeted ultrasound contrast agents. Colloids Surf B Biointerfaces 2020; 189: 110861-1.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110861] [PMID: 32070864]
[64]
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques—an updated review of the literature. Front Cardiovasc Med 2023; 10: 1069745-5.
[http://dx.doi.org/10.3389/fcvm.2023.1069745] [PMID: 37293284]
[65]
Oura K, Kato T, Ohba H, Terayama Y. Evaluation of intraplaque neovascularization using superb microvascular imaging and contrast-enhanced ultrasonography. J Stroke Cerebrovasc Dis 2018; 27(9): 2348-53.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.023] [PMID: 29754774]
[66]
Zhu YC, Jiang XZ, Bai QK, et al. Evaluating the efficacy of atorvastatin on patients with carotid plaque by an innovative ultrasonography. J Stroke Cerebrovasc Dis 2019; 28(3): 830-7.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.027] [PMID: 30563776]
[67]
Meng Q, Xie X, Li L, et al. Assessment of neovascularization of carotid artery atherosclerotic plaques using superb microvascular imaging: A comparison with contrast-enhanced ultrasound imaging and histology. Quant Imaging Med Surg 2021; 11(5): 1958-69.
[http://dx.doi.org/10.21037/qims-20-933] [PMID: 33936978]
[68]
Reiff T, Eckstein HH, Mansmann U, et al. Angioplasty in asymptomatic carotid artery stenosis vs. endarterectomy compared to best medical treatment: One-year interim results of SPACE-2. Int J Stroke 2019; 15(6): 1747493019833017.
[PMID: 30873912]
[69]
Aday AW, Beckman JA. Medical management of asymptomatic carotid artery stenosis. Prog Cardiovasc Dis 2017; 59(6): 585-90.
[http://dx.doi.org/10.1016/j.pcad.2017.05.008] [PMID: 28539213]
[70]
Shah Z, Masoomi R, Thapa R, et al. Optimal medical management reduces risk of disease progression and ischemic events in asymptomatic carotid stenosis patients: A long-term follow- up study. Cerebrovasc Dis 2017; 44(3-4): 150-9.
[http://dx.doi.org/10.1159/000477501] [PMID: 28689200]
[71]
AbuRahma AF, Avgerinos ED, Chang RW, et al. Society for Vascular Surgery clinical practice guidelines for management of extracranial cerebrovascular disease. J Vasc Surg 2022; 75(1): 4S-22S.
[http://dx.doi.org/10.1016/j.jvs.2021.04.073] [PMID: 34153348]
[72]
Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American heart association/American stroke association. Stroke 2014; 45(12): 3754-832.
[http://dx.doi.org/10.1161/STR.0000000000000046] [PMID: 25355838]
[73]
Yang DB, Zhou J, Feng L, Xu R, Wang YC. Value of superb micro-vascular imaging in predicting ischemic stroke in patients with carotid atherosclerotic plaques. World J Clin Cases 2019; 7(7): 839-48.
[http://dx.doi.org/10.12998/wjcc.v7.i7.839] [PMID: 31024955]
[74]
Paraskevas KI, Gloviczki P, Antignani PL, et al. Benefits and drawbacks of statins and non-statin lipid lowering agents in carotid artery disease. Prog Cardiovasc Dis 2022; 73: 41-7.
[http://dx.doi.org/10.1016/j.pcad.2022.05.003] [PMID: 35605696]
[75]
Brinjikji W, Lehman VT, Kallmes DF, et al. The effects of statin therapy on carotid plaque composition and volume: A systematic review and meta-analysis. J Neuroradiol 2017; 44(4): 234-40.
[http://dx.doi.org/10.1016/j.neurad.2016.12.004] [PMID: 28187866]
[76]
Paraskevas KI, Veith FJ, Eckstein HH, Ricco JB, Mikhailidis DP. Cholesterol, carotid artery disease and stroke: What the vascular specialist needs to know. Ann Transl Med 2020; 8(19): 1265.
[http://dx.doi.org/10.21037/atm.2020.02.176] [PMID: 33178797]
[77]
Artom N, Montecucco F, Dallegri F, Pende A. Carotid atherosclerotic plaque stenosis: The stabilizing role of statins. Eur J Clin Invest 2014; 44(11): 1122-34.
[http://dx.doi.org/10.1111/eci.12340] [PMID: 25231921]
[78]
Tsiara S, Elisaf M, Mikhailidis DP. Early vascular benefits of statin therapy. Curr Med Res Opin 2003; 19(6): 540-56.
[http://dx.doi.org/10.1185/030079903125002225] [PMID: 14594527]
[79]
Makris GC, Lavida A, Griffin M, Geroulakos G, Nicolaides AN. Three-dimensional ultrasound imaging for the evaluation of carotid atherosclerosis. Atherosclerosis 2011; 219(2): 377-83.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.006] [PMID: 21663910]
[80]
Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: A tool for targeting and evaluating vascular preventive therapy. Stroke 2002; 33(12): 2916-22.
[http://dx.doi.org/10.1161/01.STR.0000042207.16156.B9] [PMID: 12468791]
[81]
Migrino RQ, Bowers M, Harmann L, Prost R, LaDisa JF Jr. Carotid plaque regression following 6-month statin therapy assessed by 3T cardiovascular magnetic resonance: Comparison with ultrasound intima media thickness. J Cardiovasc Magn Reson 2011; 13(1): 37.
[http://dx.doi.org/10.1186/1532-429X-13-37] [PMID: 21812992]
[82]
Du R, Cai J, Cui B, Wu H, Zhao XQ, Ye P. Rapid improvement in carotid adventitial angiogenesis and plaque neovascularization after rosuvastatin therapy in statin treatment–naïve subjects. J Clin Lipidol 2019; 13(5): 847-53.
[http://dx.doi.org/10.1016/j.jacl.2019.07.008] [PMID: 31783975]
[83]
O’Brien KD, Hippe DS, Chen H, et al. Longer duration of statin therapy is associated with decreased carotid plaque vascularity by magnetic resonance imaging. Atherosclerosis 2016; 245: 74-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.032] [PMID: 26708287]
[84]
Bonati LH, Kakkos S, Berkefeld J, et al. European Stroke Organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur Stroke J 2021; 6(2): I-XLVII.
[http://dx.doi.org/10.1177/23969873211012121]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy