Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Synthesis, Characterization, and Antimicrobial Evaluation of Schiff Base-mixed Ligand Complexes with Divalent Metal Ions Derived from Amoxicillin and Vanillin/Nicotinamide

Author(s): Manhel R. Bahry, Taghreed H. Al-Noor*, Ali M. Fardous, Ahmad R. Heydari, Aly Abdou, Shaimaa Fayez, Mohamed El-Shazly and Na'il Saleh*

Volume 30, Issue 23, 2024

Published on: 28 May, 2024

Page: [1852 - 1866] Pages: 15

DOI: 10.2174/0113816128298883240509110406

Open Access Journals Promotions 2
conference banner
Abstract

Introduction: This study focuses on the development of novel antimicrobial agents. A Schiff base ligand, 6-(2-(4-hydroxy-3-methoxybenzylideneamino)-2-(4-hydroxyphenyl)acetamido)-3,3-dimethyl-7-oxo- 4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid, synthesized through the condensation of amoxicillin and vanillin in methanol, served as the foundation. Polydentate mixed ligand complexes were then formed by reacting the Schiff base with metal ions (Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)) and nicotinamide in specific ratios.

Methods: Characterization involved various techniques, such as 1H-NMR, FT-IR, UV-Vis, and elemental analysis for the ligand, and Atomic Absorption, FT-IR, UV-Vis, magnetic susceptibility, and conductance measurements for the Schiff base-metal ion complexes.

Results: Quantum chemical features of both ligands and metal complexes were computed, refining their electronic and molecular structures theoretically. Antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Acinetobacter baumannii, and Pseudomonas aeruginosa was assessed for the starting materials, ligands, and synthesized complexes, revealing significant effects on certain species. In-silico binding modes with Escherichia coli (PDB ID: 5iq9) were determined through molecular docking.

Conclusion: This study underscores the potential applications of the Schiff base ligands and their metal complexes in developing new antimicrobial agents.

Keywords: Amoxicillin, Schiff base, nicotinamide-mixed ligand complexes, antibacterial evaluation, molecular docking, metal ions.

« Previous
[1]
Wessal MK, Suhair SM, Amer HA, Hanan GS, Shaemmaa HAS, Gwan AD. Enzymatic activity and photo-kinetic study of Cr (III), Mn (II), Co (II), Ni (II) and Cu (II) complexes with tetradentate schiff base ligand. Int J Engin Techn 2018; 7(4): 37.
[2]
Kumar Naik KH, Selvaraj S, Naik N. Metal complexes of ONO donor Schiff base ligand as a new class of bioactive compounds; Synthesis, characterization and biological evolution. Spectrochim Acta A Mol Biomol Spectrosc 2014; 131: 599-605.
[http://dx.doi.org/10.1016/j.saa.2014.03.038] [PMID: 24858195]
[3]
MOHAMED GG, Omar MM, Hindy AM. Metal complexes of Schiff bases: Preparation, characterization, and biological activity. Turk J Chem 2006; 30(3): 361-82.
[4]
Khamis WM, Abbas BF, Abd-Al-Sada SH, Mohammed MT, Sultan AA, Khamim NM. Preparation, investigation and enzymatic activity of mixed iigand complexes of mefenamic acid and phenyl alanine with some transition metal. J Eng Appl Sci 2019; 14(3): 734-43.
[5]
Obaleye JA, Caira MR, Tella AC. Synthesis, characterization and crystal structures of the tetrachlorocuprate and tetrabromocadmate salts of the antimalarial mefloquine. Struct Chem 2009; 20(5): 859-68.
[http://dx.doi.org/10.1007/s11224-009-9484-2]
[6]
Dignum MJW, Kerler J, Verpoorte R. Vanilla production: Technological, chemical, and biosynthetic aspects. Food Rev Int 2001; 17(2): 119-20.
[http://dx.doi.org/10.1081/FRI-100000269]
[7]
Hrioua A, Loudiki A, Farahi A, et al. Complexation of amoxicillin by transition metals: Physico-chemical and antibacterial activity evaluation. Bioelectrochemis 2021; 142: 107936.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107936] [PMID: 34474204]
[8]
Khushbu R, Jindal R. Comparative evaluation for controlled release of amoxicillin from RSM-CCD-optimized nanocomposites based on sodium alginate and chitosan-containing inclusion complexes. Mol Pharm 2021; 18(10): 3795-810.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00340] [PMID: 34482691]
[9]
Orabi AS, Abdelhameed M, Abbas AM, Mostafa GM. Modern view for binary and ternary complexes of metal ions with amoxicillin and some amino acids. Adv Environ Lif Sci 2022; 1(1): 22-39.
[10]
Torre P, Enobakhare Y, Torrado G, Torrado S. Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 2003; 24(8): 1499-506.
[http://dx.doi.org/10.1016/S0142-9612(02)00512-4] [PMID: 12527291]
[11]
Tella AC, Owalude SO, Mehlana G, et al. Synthesis, thermal properties, and biological study of metal(II) nicotinamide complexes containing fumarate dianion and fumaric acid: Crystal structure of [Ni(H2O)4(nia)2](fum)·(H2fum). Inorgan Nano-Met Chem 2017; 47(6): 859-64.
[http://dx.doi.org/10.1080/15533174.2016.1212234]
[12]
Al-Obidi L, Al-Noor T. Synthesis, spectral and bacterial studies of mixed ligand complexes of schiff base derived from methyldopa and anthranilic acid with some metal ions. Ibn AL-Haitham J Pure Appl Sci 2018; pp. 235-47.
[13]
Geraghty M, Cronin JF, Devereux M, McCann M. Synthesis and antimicrobial activity of copper(II) and manganese(II) α,ω-dicarboxylate complexes. Biometals 2000; 13(1): 1-8.
[http://dx.doi.org/10.1023/A:1009271221684] [PMID: 10831218]
[14]
Suresh M, Prakash V. Preparation and characterization of Cr (III), Mn (II), Co (III), Ni (II), Cu (II), Zn (II) and Cd (II) chelates of Schiff’s base derived from vanillin and 4-aminoantipyrine. Int Phys Sci 2010; 5(14): 2203-11.
[15]
Kudrat-E-Zahan M, Haque MM. Synthesis, characterization and biological activity studies of mixed ligand complexes with schiff base and 2, 2′-Bipyridine. Int J Appl 2019; 6(1): 2.
[16]
Fricker RA, Green EL, Jenkins SI, Griffin SM. The influence of nicotinamide on health and disease in the central nervous system. Int J Tryptophan Res 2018; 11: 1178646918776658.
[http://dx.doi.org/10.1177/1178646918776658] [PMID: 29844677]
[17]
Battin S. Vanillin-aminoquinoline schiff bases and their Co (II), Ni (II) and Cu (II) complexes. Lulu 2019; p. 280.
[18]
Al-Noor TH. AL-Jeboori AT, Aziz MR. Preparation, characterization and antimicrobial activities of {Fe (II), Co (II), Ni (II), Cu (II), and Zn (II)} mixed ligand complexes Schiff base derived from cephalexin drug and 4 (dimethylamino) benzaldehyde with nicotinamide. Adv Phys Theor Appl 2013; 18: 1-8.
[19]
Gurusamy S, Sankarganesh M, Revathi N, Asha RN, Mathavan A. Synthesis and structural investigation of o-Vanillin scaffold Schiff base metal complexes: Biomolecular interaction and molecular docking studies. J Mol Liq 2023; 369: 120941.
[http://dx.doi.org/10.1016/j.molliq.2022.120941]
[20]
Ozturk C, Akbaba GB. Investigation of antibacterial and cytotoxic properties of mix ligand complex of zinc 2-fluorobenzoate with nicotinamide. Hittite J Sci Eng 2019; 6(4): 269-74.
[http://dx.doi.org/10.17350/HJSE19030000157]
[21]
Claudel M, Schwarte JV, Fromm KM. New antimicrobial strategies based on metal complexes. Chemistry 2020; 2(4): 849-99.
[http://dx.doi.org/10.3390/chemistry2040056]
[22]
Sharma R, Otieno S, Otieno S. Kirby Bauer disc diffusion method for antibiotic susceptibility testing. Microbe Notes 2022.
[23]
Babamale HF, Lawal A, Rajee OA, Oloyede EA. Synthesis, characterization and biological activity studies of mixed paracetamol-ascorbic acid metal complexes. J Appl Sci Environ Manag 2017; 20(4): 1157-61.
[http://dx.doi.org/10.4314/jasem.v20i4.32]
[24]
Azam M, Mohammad Wabaidur S, Alam M, et al. Design, structural investigations and antimicrobial activity of pyrazole nucleating copper and zinc complexes. Polyhedron 2021; 195: 114991.
[http://dx.doi.org/10.1016/j.poly.2020.114991]
[25]
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988; 38(6): 3098-100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[26]
Bühl M, Kabrede H. Geometries of transition-metal complexes from density-functional theory. J Chem Theory Comput 2006; 2(5): 1282-90.
[http://dx.doi.org/10.1021/ct6001187] [PMID: 26626836]
[27]
Wong MW, Gill PMW, Nobes RH, Radom L. 6-311G(MC)(d,p): A second-row analogue of the 6-311G(d,p) basis set: Calculated heats of formation for second-row hydrides. J Phys Chem 1988; 92(17): 4875-80.
[http://dx.doi.org/10.1021/j100328a015]
[28]
Costa AC Jr, Ondar GF, Versiane O, et al. DFT: B3LYP/6-311G (d, p) vibrational analysis of bis-(diethyldithiocarbamate)zinc (II) and natural bond orbitals. Spectrochim Acta A Mol Biomol Spectrosc 2013; 105: 251-8.
[http://dx.doi.org/10.1016/j.saa.2012.11.097] [PMID: 23314390]
[29]
Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS. Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements. J Phys Chem A 2001; 105(34): 8111-6.
[http://dx.doi.org/10.1021/jp011945l]
[30]
Chiodo S, Russo N, Sicilia E. LANL2DZ basis sets recontracted in the framework of density functional theory. J Chem Phys 2006; 125(10): 104107.
[http://dx.doi.org/10.1063/1.2345197] [PMID: 16999515]
[31]
Sheela NR, Muthu S, Sampathkrishnan S. Molecular orbital studies (hardness, chemical potential and electrophilicity), vibrational investigation and theoretical NBO analysis of 4-4′-(1H-1,2,4-triazol-1-yl methylene) dibenzonitrile based on abinitio and DFT methods. Spectrochim Acta A Mol Biomol Spectrosc 2014; 120: 237-51.
[http://dx.doi.org/10.1016/j.saa.2013.10.007] [PMID: 24184626]
[32]
Mahmood A, Akram T, de Lima EB. Syntheses, spectroscopic investigation and electronic properties of two sulfonamide derivatives: A combined experimental and quantum chemical approach. J Mol Struct 2016; 1108: 496-507.
[http://dx.doi.org/10.1016/j.molstruc.2015.12.039]
[33]
Bourouai MA, Si Larbi K, Bouchoucha A, Terrachet-Bouaziz S, Djebbar S. New Ni(II) and Pd(II) complexes bearing derived sulfa drug ligands: synthesis, characterization, DFT calculations, and in silico and in vitro biological activity studies. Biometals 2023; 36(1): 153-88.
[http://dx.doi.org/10.1007/s10534-022-00469-3] [PMID: 36427181]
[34]
Zhao Y, Shadrick WR, Wallace MJ, et al. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg Med Chem Lett 2016; 26(16): 3950-4.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.006] [PMID: 27423480]
[35]
Shaaban S, Al-Faiyz YS, Alsulaim GM, et al. Synthesis of new organoselenium-based succinanilic and maleanilic derivatives and in silico studies as possible SARS-CoV-2 main protease inhibitors. Inorganics 2023; 11(8): 321.
[http://dx.doi.org/10.3390/inorganics11080321]
[36]
Shah R, Alharbi A, Hameed AM, et al. Synthesis and structural elucidation for new Schiff base complexes; Conductance, conformational, MOE-docking and biological studies. J Inorg Organomet Polym Mater 2020; 30(9): 3595-607.
[http://dx.doi.org/10.1007/s10904-020-01505-w]
[37]
Abd El-Lateef HM, Khalaf MM, Kandeel M, Amer AA, Abdelhamid AA, Abdou A. Designing, characterization, biological, DFT, and molecular docking analysis for new FeAZD, NiAZD, and CuAZD complexes incorporating 1-(2-hydroxyphenylazo)-2-naphthol (H2AZD). Comput Biol Chem 2023; 105: 107908.
[http://dx.doi.org/10.1016/j.compbiolchem.2023.107908] [PMID: 37352589]
[38]
Najar AM, Eswayah A, Moftah MB, et al. Rigidity and flexibility of pyrazole, s-triazole, and v-triazole derivative of chloroquine as potential therapeutic against COVID-19. J Medi Chemi Sci 2023; 6(9): 2056-84.
[39]
Singh V, Singh J, Mishra V. Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions. J Environ Chem Eng 2021; 9(2): 105124.
[http://dx.doi.org/10.1016/j.jece.2021.105124]
[40]
Singh V, Singh J, Singh N, et al. Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. Biometals 2023; 36(4): 829-45.
[http://dx.doi.org/10.1007/s10534-022-00476-4] [PMID: 36454510]
[41]
Al-Noor TH, Mohapatra RK, Azam M, et al. Mixed-ligand complexes of ampicillin derived Schiff base ligand and Nicotinamide: Synthesis, physico-chemical studies, DFT calculation, antibacterial study and molecular docking analysis. J Mol Struct 2021; 1229: 129832.
[http://dx.doi.org/10.1016/j.molstruc.2020.129832]
[42]
Sabaa MW, Mohamed RR. Organic thermal stabilizers for rigid poly(vinyl chloride). Part XIII: Eugenol (4-allyl-2-methoxy-phenol). Polym Degrad Stabil 2007; 92(4): 587-95.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.01.015]
[43]
Sabaa MW, Oraby EH, Abdel-Naby AS, Mohamed RR. Organic thermal stabilizers for rigid poly(vinyl chloride). Part XII: N-phenyl-3-substituted-5-pyrazolone derivatives. Polym Degrad Stabil 2006; 91(4): 911-23.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.031]
[44]
Lever A. Inorganic Electronic Spectroscopy. Amsterdam, London, New York: Elsevier Publishing House 1984.
[45]
Salh HM, Al-Noor TH. Synthesis and characterization with antimicrobial studies of mixed curcumin schiff base–l-dopa with divalent cations complexes. J Med Chem Sci 2023; 6: 1621-30.
[46]
Connor SC, Everett JR, Jennings KR, Nicholson JK, Woodnutt G. High resolution 1H NMR spectroscopic studies of the metabolism and excretion of ampicillin in rats and amoxycillin in rats and man. J Pharm Pharmacol 2011; 46(2): 128-34.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03755.x] [PMID: 8021801]
[47]
Orojloo M, Zolgharnein P, Solimannejad M, Amani S. Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes derived from two Schiff base ligands: Spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies. Inorg Chim Acta 2017; 467: 227-37.
[http://dx.doi.org/10.1016/j.ica.2017.08.016]
[48]
Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. John Wiley & Sons 1999.
[49]
Günther H. NMR spectroscopy: basic principles, concepts and applications in chemistry. Pittsburgh, USA: John Wiley & Sons 2013; p. 734.
[50]
Salh HM, Al-Noor TH. Preparation, structural characterization] and biological activities of curcumin-metal(II)-L-3,4-dihydroxy-phenylalanin (L-dopa) complexes. Ibn AL-Haitham J Pure Appl Sci 2023; 36(1): 170-85.
[http://dx.doi.org/10.30526/36.1.2899]
[51]
Altun Ö, Şuözer M. Synthesis, spectral analysis, stability constants, antioxidant and biological activities of Co (II), Ni (II) and Cu (II) mixed ligand complexes of nicotinamide, theophylline and thiocyanate. J Mol Struct 2017; 1149: 307-14.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.069]
[52]
Murugan T, Venkatesh R, Geetha K, Abdou A. Synthesis, spectral investigation, DFT, antibacterial, antifungal and molecular docking studies of Ni(II), Zn(II), Cd(II) complexes of tetradentate schiff-base ligand. Asian J Chem 2023; 35(6): 1509-17.
[http://dx.doi.org/10.14233/ajchem.2023.27808]
[53]
Eno EA, Patrick-Inezi FA, Louis H, et al. Theoretical investigation and antineoplastic potential of Zn (II) and Pd (II) complexes of] 6-methylpyridine-2-carbaldehyde-N (4)-ethylthiosemicarbazone. Chemical Physics Impact 2022; 5: 100094.
[http://dx.doi.org/10.1016/j.chphi.2022.100094]
[54]
Abdou A, Omran OA, Al-Fahemi JH, et al. Lower rim thiacalixarenes derivatives incorporating multiple coordinating carbonyl groups: Synthesis, characterization, ion-responsive ability and DFT computational analysis. J Mol Struct 2023; 1293: 136264.
[http://dx.doi.org/10.1016/j.molstruc.2023.136264]
[55]
Azam M, Al-Resayes S, Wabaidur S, et al. Synthesis, structural characterization and antimicrobial activity of Cu (II) and Fe (III) complexes incorporating azo-azomethine ligand. Molecules 2018; 23(4): 813.
[http://dx.doi.org/10.3390/molecules23040813] [PMID: 29614828]
[56]
El-Remaily MAEAAA, Elhady O, Abdou A, Alhashmialameer D, Eskander TNA, Abu-Dief AM. Development of new 2-(Benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as a robust catalysts for synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies. J Mol Struct 2023; 1292: 136188.
[http://dx.doi.org/10.1016/j.molstruc.2023.136188]
[57]
Demircioğlu Z, Kaştaş ÇA, Büyükgüngör O. Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino) methyl)-3-methoxyphenol. J Mol Struct 2015; 1091: 183-95.
[http://dx.doi.org/10.1016/j.molstruc.2015.02.076]
[58]
Abd El-Lateef HM, Khalaf MM, Amer AA, Kandeel M, Abdelhamid AA, Abdou A. Synthesis, characterization, antimicrobial, density functional theory, and molecular docking studies of novel Mn(II), Fe(III), and Cr(III) complexes incorporating 4-(2-hydroxyphenyl azo)-1-naphthol (Az). ACS Omega 2023; 8(29): 25877-91.
[http://dx.doi.org/10.1021/acsomega.3c01413] [PMID: 37521661]
[59]
Kingsley LJ, Lill MA. Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins 2015; 83(4): 599-611.
[http://dx.doi.org/10.1002/prot.24772] [PMID: 25663659]
[60]
Du X, Li Y, Xia YL, et al. Insights into protein-ligand interactions: Mechanisms, models, and methods. Int J Mol Sci 2016; 17(2): 144.
[http://dx.doi.org/10.3390/ijms17020144] [PMID: 26821017]
[61]
Scheiner S. Comparison of various means of evaluating molecular electrostatic potentials for noncovalent interactions. J Comput Chem 2018; 39(9): 500-10.
[http://dx.doi.org/10.1002/jcc.25085] [PMID: 29083034]
[62]
Saidj M, Djafri A, Rahmani R, et al. Molecular structure, experimental and theoretical vibrational spectroscopy, (HOMO-LUMO, NBO) investigation,(RDG, AIM) analysis, (MEP, NLO) study] and molecular docking of ethyl-2-{[4-ethyl-5-(quinolin-8-yloxymethyl)-4H-1,2,4-triazol-3-yl]sulfanyl} acetate. Polycycl Aromat Compd 2023; 43(3): 2152-76.
[http://dx.doi.org/10.1080/10406638.2022.2039238]
[63]
Kanchana S, Kaviya T, Rajkumar P, Kumar MD, Elangovan N, Sowrirajan S. Computational investigation of solvent interaction (TD-DFT, MEP, HOMO-LUMO), wavefunction studies and] molecular docking studies of 3-(1-(3-(5-((1-methylpiperidin-4-yl)methoxy)pyrimidin-2-yl)benzyl)-6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile. Chem Phys Impact 2023; 7: 100263.
[http://dx.doi.org/10.1016/j.chphi.2023.100263]
[64]
Li H. Computer-Aided Drug Discovery and Protein-Ligand Docking. Hong Kong: The Chinese University of Hong Kong 2015.
[65]
Zayed EM, Mohamed GG, Abd El Salam HA. Ni(II), Co(II), Fe(III), and Zn(II) mixed ligand complexes of indoline-dione and naphthalene-dione: Synthesis, characterization, thermal, antimicrobial, and molecular modeling studies. Inorg Chem Commun 2023; 147: 110276.
[http://dx.doi.org/10.1016/j.inoche.2022.110276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy