Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Complex Interplay between Nutrition and Alcohol use Disorder: Implications for Breaking the Vicious Cycle

Author(s): Brooke White and Sunil Sirohi*

Volume 30, Issue 23, 2024

Published on: 23 May, 2024

Page: [1822 - 1837] Pages: 16

DOI: 10.2174/0113816128292367240510111746

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Approximately 16.5% of the United States population met the diagnostic criteria for substance use disorder (SUD) in 2021, including 29.5 million individuals with alcohol use disorder (AUD). Individuals with AUD are at increased risk for malnutrition, and impairments in nutritional status in chronic alcohol users can be detrimental to physical and emotional well-being. Furthermore, these nutritional deficiencies could contribute to the never-ending cycle of alcoholism and related pathologies, thereby jeopardizing the prospects of recovery and treatment outcomes. Improving nutritional status in AUD patients may not only compensate for general malnutrition but could also reduce adverse symptoms during recovery, thereby promoting abstinence and successful treatment of AUD. In this review, we briefly summarize alterations in the nutritional status of people with addictive disorders, in addition to the underlying neurobiological mechanisms and clinical implications regarding the role of nutritional intervention in recovery from alcohol use disorder.

Keywords: Alcohol use disorder, nutrition, malnutrition, palatable diet, alcohol drinking, dopamine, ghrelin, GLP-1.

[1]
UNODC. World Drug Report 2023. 2023. Available from: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html
[2]
Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: Results from the 2021 National Survey on Drug Use and Health. (HHS Publication No. PEP22-07-01-005, NSDUH Series H-57). Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. https://www.samhsa.gov/data/report/2021-nsduh-annual-national-report2022. Available from: www.samhsa.gov/data/sites/default/files/reports/rpt39443/2021NSDUHFFRRev010323.pdf
[3]
Spencer MR, Miniño AM, Warner M. Drug overdose deaths in the United States, 2001–2021 NCHS Data Brief, no 457. Hyattsville, MD: National Center for Health Statistics 2022.
[http://dx.doi.org/10.15620/cdc:122556]
[4]
Pilar MR, Eyler AA, Moreland-Russell S, Brownson RC. Actual causes of death in relation to media, policy, and funding attention: Examining public health priorities. Front Public Health 2020; 8: 279.
[http://dx.doi.org/10.3389/fpubh.2020.00279] [PMID: 32733836]
[5]
Sacks JJ, Gonzales KR, Bouchery EE, Tomedi LE, Brewer RD. 2010 national and state costs of excessive alcohol consumption. Am J Prev Med 2015; 49(5): e73-9.
[http://dx.doi.org/10.1016/j.amepre.2015.05.031] [PMID: 26477807]
[6]
Mestre-Bach G, Potenza MN. Neural mechanisms linked to treatment outcomes and recovery in substance-related and addictive disorders. Dialogues Clin Neurosci 2023; 25(1): 75-91.
[http://dx.doi.org/10.1080/19585969.2023.2242359] [PMID: 37594217]
[7]
Kramer J, Dick DM, King A, et al. Mechanisms of alcohol addiction: Bridging human and animal studies. Alcohol Alcohol 2020; 55(6): 603-7.
[http://dx.doi.org/10.1093/alcalc/agaa068] [PMID: 32781467]
[8]
Perkins FN, Freeman KB. Pharmacotherapies for decreasing maladaptive choice in drug addiction: Targeting the behavior and the drug. Pharmacol Biochem Behav 2018; 164: 40-9.
[http://dx.doi.org/10.1016/j.pbb.2017.06.015] [PMID: 28666892]
[9]
Mason BJ. Emerging pharmacotherapies for alcohol use disorder. Neuropharmacology 2017; 122: 244-53.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.032] [PMID: 28454983]
[10]
Charney DA, Zikos E, Gill KJ. Early recovery from alcohol dependence: Factors that promote or impede abstinence. J Subst Abuse Treat 2010; 38(1): 42-50.
[http://dx.doi.org/10.1016/j.jsat.2009.06.002] [PMID: 19632079]
[11]
Blum K, Bowirrat A, Gomez LL, et al. Why haven’t we solved the addiction crisis? J Neurol Sci 2022; 442: 120404.
[http://dx.doi.org/10.1016/j.jns.2022.120404] [PMID: 36084363]
[12]
Waddington F, Naunton M, Thomas J, Kyle G, Wheatley B, Oguoma V. Examination of the nutritional intake of patients undergoing opioid replacement therapy: A systematic review. Nutr Diet 2023; 80(1): 55-64.
[http://dx.doi.org/10.1111/1747-0080.12784] [PMID: 36535902]
[13]
Sebastiani G, Borrás-Novell C, Casanova MA, et al. The effects of alcohol and drugs of abuse on maternal nutritional profile during pregnancy. Nutrients 2018; 10(8): 1008.
[http://dx.doi.org/10.3390/nu10081008] [PMID: 30072661]
[14]
Lieber CS. Alcohol and malnutrition in the pathogenesis of liver disease. JAMA 1975; 233(10): 1077-80.
[http://dx.doi.org/10.1001/jama.1975.03260100047019] [PMID: 1174154]
[15]
Lieber CS. Relationships between nutrition, alcohol use, and liver disease. Alcohol Res Health 2003; 27(3): 220-31.
[PMID: 15535450]
[16]
Dasarathy S. Nutrition and alcoholic liver disease: Effects of alcoholism on nutrition, Effects of nutrition on ALD and nutritional therapies for ALD. Clin Liver Dis 2016; 20(3): 535-50.
[http://dx.doi.org/10.1016/j.cld.2016.02.010] [PMID: 27373615]
[17]
Mellion M, Gilchrist JM, De La Monte S. Alcohol-related peripheral neuropathy: Nutritional, toxic, or both? Muscle Nerve 2011; 43(3): 309-16.
[http://dx.doi.org/10.1002/mus.21946] [PMID: 21321947]
[18]
Grant LP, Haughton B, Sachan DS. Nutrition education is positively associated with substance abuse treatment program outcomes. J Am Diet Assoc 2004; 104(4): 604-10.
[http://dx.doi.org/10.1016/j.jada.2004.01.008] [PMID: 15054346]
[19]
Biery JR, Williford JH Jr, McMullen EA. Alcohol craving in rehabilitation: Assessment of nutrition therapy. J Am Diet Assoc 1991; 91(4): 463-6.
[http://dx.doi.org/10.1016/S0002-8223(21)01147-0] [PMID: 2016494]
[20]
Thomson AD, Cook CCH, Touquet R, Henry JA. The royal college of physicians report on alcohol: Guidelines for managing Wernicke’s encephalopathy in the accident and Emergency Department. Alcohol Alcohol 2002; 37(6): 513-21.
[http://dx.doi.org/10.1093/alcalc/37.6.513] [PMID: 12414541]
[21]
Addolorato G, Capristo E, Leggio L, et al. Relationship between ghrelin levels, alcohol craving, and nutritional status in current alcoholic patients. Alcohol Clin Exp Res 2006; 30(11): 1933-7.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00238.x] [PMID: 17067359]
[22]
Skibicka KP. The central GLP-1: Implications for food and drug reward. Front Neurosci 2013; 7: 181.
[http://dx.doi.org/10.3389/fnins.2013.00181] [PMID: 24133407]
[23]
Yung L, Gordis E, Holt J. Dietary choices and likelihood of abstinence among alcoholic patients in an outpatient clinic. Drug Alcohol Depend 1983; 12(4): 355-62.
[http://dx.doi.org/10.1016/0376-8716(83)90007-8] [PMID: 6671419]
[24]
Stickel A, Rohdemann M, Landes T, et al. Changes in nutrition-related behaviors in alcohol-dependent patients after outpatient detoxification: The role of chocolate. Subst Use Misuse 2016; 51(5): 545-52.
[http://dx.doi.org/10.3109/10826084.2015.1117107] [PMID: 27050118]
[25]
Alcoholics Anonymous World Service. Living Sober, New York, NY, USA: Alcoholics Anonymous World Services Inc. Alcoholics Anonymous World Services, 475 Riverside Drive, New York, NY 10115. 2007. Available from: http://aaposigintergrouptrinidad.org/wordpress/wp-content/uploads/2015/12/Living-Sober.pdf [cited 2019 Oct 17].
[26]
Schroeder RD, Higgins GE. You are what you eat: The impact of nutrition on alcohol and drug use. Subst Use Misuse 2017; 52(1): 10-24.
[http://dx.doi.org/10.1080/10826084.2016.1212603] [PMID: 27617497]
[27]
Santolaria-Fernández F, Gómez-Sirvent JL, González-Reimers CE, et al. Nutritional assessment of drug addicts. Drug Alcohol Depend 1995; 38(1): 11-8.
[http://dx.doi.org/10.1016/0376-8716(94)01088-3] [PMID: 7648992]
[28]
Nazrul Islam SK, Hossain KJ, Ahmed A, Ahsan M. Nutritional status of drug addicts undergoing detoxification: prevalence of malnutrition and influence of illicit drugs and lifestyle. Br J Nutr 2002; 88(5): 507-13.
[http://dx.doi.org/10.1079/BJN2002702] [PMID: 12425731]
[29]
Ross LJ, Wilson M, Banks M, Rezannah F, Daglish M. Prevalence of malnutrition and nutritional risk factors in patients undergoing alcohol and drug treatment. Nutrition 2012; 28(7-8): 738-43.
[http://dx.doi.org/10.1016/j.nut.2011.11.003] [PMID: 22356728]
[30]
Ersche KD, Stochl J, Woodward JM, Fletcher PC. The skinny on cocaine: Insights into eating behavior and body weight in cocaine-dependent men. Appetite 2013; 71: 75-80.
[http://dx.doi.org/10.1016/j.appet.2013.07.011] [PMID: 23920064]
[31]
Morabia A, Fabre J, Ghee E, Zeger S, Orsat E, Robert A. Diet and opiate addiction: A quantitative assessment of the diet of non-institutionalized opiate addicts. Br J Addict 1989; 84(2): 173-80.
[http://dx.doi.org/10.1111/j.1360-0443.1989.tb00566.x] [PMID: 2720181]
[32]
Jeynes KD, Gibson EL. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend 2017; 179: 229-39.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.07.006] [PMID: 28806640]
[33]
Sæland M, Haugen M, Eriksen FL, et al. High sugar consumption and poor nutrient intake among drug addicts in Oslo, Norway. Br J Nutr 2011; 105(4): 618-24.
[http://dx.doi.org/10.1017/S0007114510003971] [PMID: 20880416]
[34]
Neale J, Nettleton S, Pickering L, Fischer J. Eating patterns among heroin users: A qualitative study with implications for nutritional interventions. Addiction 2012; 107(3): 635-41.
[http://dx.doi.org/10.1111/j.1360-0443.2011.03660.x] [PMID: 21933297]
[35]
Nolte-Troha C, Roser P, Henkel D, Scherbaum N, Koller G, Franke AG. Unemployment and substance use: An updated review of studies from North America and Europe. Healthcare 2023; 11(8): 1182.
[http://dx.doi.org/10.3390/healthcare11081182] [PMID: 37108016]
[36]
Forrester JE, Tucker KL, Gorbach SL. The effect of drug abuse on body mass index in Hispanics with and without HIV infection. Public Health Nutr 2005; 8(1): 61-8.
[http://dx.doi.org/10.1079/PHN2005667] [PMID: 15705246]
[37]
Li J, Yang C, Davey-Rothwell M, Latkin C. Associations between body weight status and substance use among African American women in Baltimore, Maryland: The chat study. Subst Use Misuse 2016; 51(6): 669-81.
[http://dx.doi.org/10.3109/10826084.2015.1135950] [PMID: 27050238]
[38]
Lv D, Zhang M, Jin X, et al. The body mass index, blood pressure, and fasting blood glucose in patients with methamphetamine dependence. Medicine 2016; 95(12): e3152.
[http://dx.doi.org/10.1097/MD.0000000000003152] [PMID: 27015198]
[39]
McIlwraith F, Betts KS, Jenkinson R, Hickey S, Burns L, Alati R. Is low BMI associated with specific drug use among injecting drug users? Subst Use Misuse 2014; 49(4): 374-82.
[http://dx.doi.org/10.3109/10826084.2013.841246] [PMID: 24102254]
[40]
Aguinaga D, Medrano M, Cordomí A, et al. Cocaine blocks effects of hunger hormone, ghrelin, via interaction with neuronal sigma-1 receptors. Mol Neurobiol 2019; 56(2): 1196-210.
[http://dx.doi.org/10.1007/s12035-018-1140-7] [PMID: 29876881]
[41]
Richardson RA, Wiest K. A preliminary study examining nutritional risk factors, body mass index, and treatment retention in opioid-dependent patients. J Behav Health Serv Res 2015; 42(3): 401-8.
[http://dx.doi.org/10.1007/s11414-013-9371-x] [PMID: 24091612]
[42]
Díaz-Flores JF, Sañudo RI, Rodríguez EM, Romero CD. Serum concentrations of macro and trace elements in heroin addicts of the Canary Islands. J Trace Elem Med Biol 2004; 17(4): 235-42.
[http://dx.doi.org/10.1016/S0946-672X(04)80024-5] [PMID: 15139385]
[43]
Hossain KJ, Kamal MM, Ahsan M, Islam SKN. Serum antioxidant micromineral (Cu, Zn, Fe) status of drug dependent subjects: Influence of illicit drugs and lifestyle. Subst Abuse Treat Prev Policy 2007; 2(1): 12.
[http://dx.doi.org/10.1186/1747-597X-2-12] [PMID: 17417973]
[44]
Mahboub N, Rizk R, Karavetian M, de Vries N. Nutritional status and eating habits of people who use drugs and/or are undergoing treatment for recovery: A narrative review. Nutr Rev 2021; 79(6): 627-35.
[http://dx.doi.org/10.1093/nutrit/nuaa095] [PMID: 32974658]
[45]
Wilkens Knudsen A, Jensen JEB, Nordgaard-Lassen I, Almdal T, Kondrup J, Becker U. Nutritional intake and status in persons with alcohol dependency: Data from an outpatient treatment programme. Eur J Nutr 2014; 53(7): 1483-92.
[http://dx.doi.org/10.1007/s00394-014-0651-x] [PMID: 24442425]
[46]
Amadieu C, Leclercq S, Coste V, et al. Dietary fiber deficiency as a component of malnutrition associated with psychological alterations in alcohol use disorder. Clin Nutr 2021; 40(5): 2673-82.
[http://dx.doi.org/10.1016/j.clnu.2021.03.029] [PMID: 33933733]
[47]
Cummings JR, Gearhardt AN, Ray LA, Choi AK, Tomiyama AJ. Experimental and observational studies on alcohol use and dietary intake: A systematic review. Obes Rev 2020; 21(2): e12950.
[http://dx.doi.org/10.1111/obr.12950] [PMID: 31691442]
[48]
Colditz GA, Giovannucci E, Rimm EB, et al. Alcohol intake in relation to diet and obesity in women and men. Am J Clin Nutr 1991; 54(1): 49-55.
[http://dx.doi.org/10.1093/ajcn/54.1.49] [PMID: 2058587]
[49]
Liangpunsakul S. Relationship between alcohol intake and dietary pattern: Findings from NHANES III. World J Gastroenterol 2010; 16(32): 4055-60.
[http://dx.doi.org/10.3748/wjg.v16.i32.4055] [PMID: 20731019]
[50]
Badawy AAB. Pellagra and alcoholism: A biochemical perspective. Alcohol Alcohol 2014; 49(3): 238-50.
[http://dx.doi.org/10.1093/alcalc/agu010] [PMID: 24627570]
[51]
Brown G. Defects of thiamine transport and metabolism. J Inherit Metab Dis 2014; 37(4): 577-85.
[http://dx.doi.org/10.1007/s10545-014-9712-9] [PMID: 24789339]
[52]
Ghorbani Z, Hajizadeh M, Hekmatdoost A. Dietary supplementation in patients with alcoholic liver disease: A review on current evidence. Hepatobiliary Pancreat Dis Int 2016; 15(4): 348-60.
[http://dx.doi.org/10.1016/S1499-3872(16)60096-6] [PMID: 27498574]
[53]
Hoyumpa AM Jr. Mechanisms of thiamin deficiency in chronic alcoholism. Am J Clin Nutr 1980; 33(12): 2750-61.
[http://dx.doi.org/10.1093/ajcn/33.12.2750] [PMID: 6254354]
[54]
McLean J, Manchip S. Wernicke’s encephalopathy induced by magnesium depletion. Lancet 1999; 353(9166): 1768.
[http://dx.doi.org/10.1016/S0140-6736(99)00182-8] [PMID: 10348000]
[55]
Rink EB. Magnesium deficiency in alcoholism. Alcohol Clin Exp Res 1986; 10(6): 590-4.
[http://dx.doi.org/10.1111/j.1530-0277.1986.tb05150.x] [PMID: 3544909]
[56]
Gleissenthall G, Geisler S, Malik P, et al. Tryptophan metabolism in post-withdrawal alcohol-dependent patients. Alcohol Alcohol 2014; 49(3): 251-5.
[http://dx.doi.org/10.1093/alcalc/agu011] [PMID: 24644258]
[57]
McClain CJ, Antonow DR, Cohen DA, Shedlofsky SI. Zinc metabolism in alcoholic liver disease. Alcohol Clin Exp Res 1986; 10(6): 582-9.
[http://dx.doi.org/10.1111/j.1530-0277.1986.tb05149.x] [PMID: 3544908]
[58]
Vech RL, Lumeng L, Li TK. Vitamin B6 metabolism in chronic alcohol abuse the effect of ethanol oxidation on hepatic pyridoxal 5′-phosphate metabolism. J Clin Invest 1975; 55(5): 1026-32.
[http://dx.doi.org/10.1172/JCI108003] [PMID: 1168205]
[59]
Vodoz JF, Luisier M, Donath A, Courvoisier B, Garcia B. Decrease of intestinal absorption of 47-calcium in chronic alcoholism. Schweiz Med Wochenschr 1977; 107(43): 1525-9.
[PMID: 929126]
[60]
Wani NA, Kaur J. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism. J Cell Physiol 2011; 226(3): 579-87.
[http://dx.doi.org/10.1002/jcp.22525] [PMID: 21069807]
[61]
Mezey E. Liver disease and protein needs. Annu Rev Nutr 1982; 2(1): 21-50.
[http://dx.doi.org/10.1146/annurev.nu.02.070182.000321] [PMID: 6764731]
[62]
Ebuehi OAT, Asonye C. Gender and alcohol consumption affect human serum enzymes, protein and bilirubin. Asian Journal of Biochemistry 2007; 2(5): 330-6.
[http://dx.doi.org/10.3923/ajb.2007.330.336]
[63]
Ho AMC, Pozsonyiova S, Waller TC, et al. Associations of sex-related steroid hormones and proteins with alcohol dependence: A United Kingdom Biobank study. Drug Alcohol Depend 2023; 244: 109781.
[http://dx.doi.org/10.1016/j.drugalcdep.2023.109781] [PMID: 36701934]
[64]
Zhu C, Hou X, Li M, et al. Serum glycated albumin levels are affected by alcohol in men of the jinuo ethnic group in China. Can J Infect Dis Med Microbiol 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/6627074] [PMID: 33628351]
[65]
Rothschild MA, Oratz M, Morland J, Schreiber SS, Burks A, Martin B. Effects of ethanol on protein synthesis and secretion. Pharmacol Biochem Behav 1980; 13 (Suppl. 1): 31-6.
[http://dx.doi.org/10.1016/S0091-3057(80)80005-0] [PMID: 7243832]
[66]
Baraona E, Lieber CS. Effects of alcohol on hepatic transport of proteins. Annu Rev Med 1982; 33(1): 281-92.
[http://dx.doi.org/10.1146/annurev.me.33.020182.001433] [PMID: 7044272]
[67]
Dean JT, Richard BJ, Michael FS. Effect of ethanol on the synthesis and secretion of hepatic secretory glycoproteins and albumin. Hepatology 1981; 1(6): 590-8.
[68]
Rothschild MA, Schreiber SS, Oratz M. Effects of ethanol on protein synthesis. Adv Exp Med Biol 1975; 56: 179-94.
[http://dx.doi.org/10.1007/978-1-4684-7529-6_8] [PMID: 1096551]
[69]
Wu N, Liu T, Tian M, et al. Albumin, an interesting and functionally diverse protein, varies from ‘native’ to ‘effective’ (Review). Mol Med Rep 2023; 29(2): 24.
[http://dx.doi.org/10.3892/mmr.2023.13147] [PMID: 38099350]
[70]
Borgohain DL, Das A, Phukan J. Serum protein and its fractions in patients of alcohol dependence and healthy individuals – A comparative study. JMSCR 2017; 5(10): 29596-603.
[http://dx.doi.org/10.18535/jmscr/v5i10.187]
[71]
Das SK, Vasudevan DM. Biochemical diagnosis of alcoholism. Indian J Clin Biochem 2005; 20(1): 35-42.
[http://dx.doi.org/10.1007/BF02893039] [PMID: 23105491]
[72]
Marsano LS, Mendez C, Hill D, Barve S, McClain CJ. Diagnosis and treatment of alcoholic liver disease and its complications. Alcohol Res Health 2003; 27(3): 247-56.
[PMID: 15535453]
[73]
Eckart A, Struja T, Kutz A, et al. Relationship of nutritional status, inflammation, and serum albumin levels during acute illness: A prospective study. Am J Med 2020; 133(6): 713-722.e7.
[http://dx.doi.org/10.1016/j.amjmed.2019.10.031] [PMID: 31751531]
[74]
Gremese E, Bruno D, Varriano V, Perniola S, Petricca L, Ferraccioli G. Serum albumin levels: A biomarker to be repurposed in different disease settings in clinical practice. J Clin Med 2023; 12(18): 6017.
[http://dx.doi.org/10.3390/jcm12186017] [PMID: 37762957]
[75]
Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr 2019; 43(2): 181-93.
[http://dx.doi.org/10.1002/jpen.1451] [PMID: 30288759]
[76]
Wiedermann CJ. Hypoalbuminemia as surrogate and culprit of infections. Int J Mol Sci 2021; 22(9): 4496.
[http://dx.doi.org/10.3390/ijms22094496] [PMID: 33925831]
[77]
Arques S. Serum albumin and cardiovascular disease: State-of-the-art review. Ann Cardiol Angeiol 2020; 69(4): 192-200.
[http://dx.doi.org/10.1016/j.ancard.2020.07.012] [PMID: 32797938]
[78]
Seidu S, Kunutsor SK, Khunti K. Serum albumin, cardiometabolic and other adverse outcomes: Systematic review and meta-analyses of 48 published observational cohort studies involving 1,492,237 participants. Scand Cardiovasc J 2020; 54(5): 280-93.
[http://dx.doi.org/10.1080/14017431.2020.1762918] [PMID: 32378436]
[79]
Zoanni B, Brioschi M, Mallia A, et al. Novel insights about albumin in cardiovascular diseases: Focus on heart failure. Mass Spectrom Rev 2023; 42(4): 1113-28.
[http://dx.doi.org/10.1002/mas.21743] [PMID: 34747521]
[80]
Vincent JL, Dubois MJ, Navickis RJ, Wilkes MM. Hypoalbuminemia in acute illness: Is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg 2003; 237(3): 319-34.
[http://dx.doi.org/10.1097/01.SLA.0000055547.93484.87] [PMID: 12616115]
[81]
Djoussé L, Rothman KJ, Cupples LA, Levy D, Ellison RC. Serum albumin and risk of myocardial infarction and all-cause mortality in the Framingham Offspring Study. Circulation 2002; 106(23): 2919-24.
[http://dx.doi.org/10.1161/01.CIR.0000042673.07632.76] [PMID: 12460872]
[82]
Yang Q, He YM, Cai DP, Yang XJ, Xu HF. Risk burdens of modifiable risk factors incorporating lipoprotein (a) and low serum albumin concentrations for first incident acute myocardial infarction. Sci Rep 2016; 6(1): 35463.
[http://dx.doi.org/10.1038/srep35463] [PMID: 27748452]
[83]
Ronit A, Kirkegaard-Klitbo DM, Dohlmann TL, et al. Plasma albumin and incident cardiovascular disease. Arterioscler Thromb Vasc Biol 2020; 40(2): 473-82.
[http://dx.doi.org/10.1161/ATVBAHA.119.313681] [PMID: 31852221]
[84]
Selçuk M, Çınar T, Şaylık F, et al. Predictive value of uric acid/albumin ratio for the prediction of new-onset atrial fibrillation in patients with ST-Elevation myocardial infarction. Rev Invest Clin 2022; 74(3): 156-64.
[PMID: 35797660]
[85]
Çınar T, Şaylık F, Hayıroğlu Mİ, et al. The association of serum uric acid/albumin ratio with no-reflow in patients with ST elevation myocardial infarction. Angiology 2023; 74(4): 381-6.
[http://dx.doi.org/10.1177/00033197221110700] [PMID: 35726733]
[86]
Hayıroğlu Mİ, Çınar T, Çinier G, et al. Cardiac variables associated with atrial fibrillation occurrence and mortality in octogenarians implanted with dual chamber permanent pacemakers. Aging Clin Exp Res 2022; 34(10): 2533-9.
[http://dx.doi.org/10.1007/s40520-022-02194-w] [PMID: 35834163]
[87]
Hayıroğlu Mİ, Çınar T, Çinier G, et al. Prognostic value of serum albumin for long-term mortality in patients with dual-chamber permanent pacemakers. Biomarkers Med 2022; 16(5): 341-8.
[http://dx.doi.org/10.2217/bmm-2021-0991] [PMID: 35234522]
[88]
Galizia G, Lieto E, Auricchio A, et al. Naples prognostic score, based on nutritional and inflammatory status, is an independent predictor of long-term outcome in patients undergoing surgery for colorectal cancer. Dis Colon Rectum 2017; 60(12): 1273-84.
[http://dx.doi.org/10.1097/DCR.0000000000000961] [PMID: 29112563]
[89]
Şaylık F, Çınar T, Selçuk M, Akbulut T, Hayıroğlu Mİ, Tanboğa İH. Evaluation of naples score for long-term mortality in patients With ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Angiology 2023; 33197231170982.
[PMID: 37058422]
[90]
Öner E, Kahraman S. Predictive value of the naples score for inhospital mortality in patients with st-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Koşuyolu Heart J 2023; 26(3): 115-20.
[http://dx.doi.org/10.51645/khj.2023.m382]
[91]
Erdogan A, Genc O, Inan D, et al. Impact of naples prognostic score on midterm all-cause mortality in patients with decompensated heart failure. Biomarkers Med 2023; 17(4): 219-30.
[http://dx.doi.org/10.2217/bmm-2022-0689] [PMID: 37129507]
[92]
Artac I, Karakayali M, Omar T, et al. Predictive value of the naples prognostic score on long-term outcomes in patients with peripheral artery disease revascularized via percutaneous intervention. Ann Vasc Surg 2024; 102: 121-32.
[http://dx.doi.org/10.1016/j.avsg.2023.11.028] [PMID: 38307231]
[93]
Peng SM, Ren JJ, Yu N, et al. The prognostic value of the Naples prognostic score for patients with non-small-cell lung cancer. Sci Rep 2022; 12(1): 5782.
[http://dx.doi.org/10.1038/s41598-022-09888-1] [PMID: 35388133]
[94]
Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol Depend 2015; 156: 1-13.
[http://dx.doi.org/10.1016/j.drugalcdep.2015.08.023] [PMID: 26371405]
[95]
Peltier MR, Verplaetse TL, Mineur YS, et al. Sex differences in stress-related alcohol use. Neurobiol Stress 2019; 10: 100149.
[http://dx.doi.org/10.1016/j.ynstr.2019.100149] [PMID: 30949562]
[96]
Flores-Bonilla A, Richardson HN. Sex differences in the neurobiology of alcohol use disorder. Alcohol Res Curr Rev 2020; 40(2): 4.
[http://dx.doi.org/10.35946/arcr.v40.2.04]
[97]
Grace S, Rossetti MG, Allen N, et al. Sex differences in the neuroanatomy of alcohol dependence: Hippocampus and amygdala subregions in a sample of 966 people from the ENIGMA Addiction Working Group. Transl Psychiatry 2021; 11(1): 156.
[http://dx.doi.org/10.1038/s41398-021-01204-1] [PMID: 33664226]
[98]
Holmila M, Raitasalo K. Gender differences in drinking: Why do they still exist? Addiction 2005; 100(12): 1763-9.
[http://dx.doi.org/10.1111/j.1360-0443.2005.01249.x] [PMID: 16367976]
[99]
Schulte MT, Ramo D, Brown SA. Gender differences in factors influencing alcohol use and drinking progression among adolescents. Clin Psychol Rev 2009; 29(6): 535-47.
[http://dx.doi.org/10.1016/j.cpr.2009.06.003] [PMID: 19592147]
[100]
Redgrave GW, Swartz KL, Romanoski AJ. Alcohol misuse by women. Int Rev Psychiatry 2003; 15(3): 256-68.
[http://dx.doi.org/10.1080/0954026031000136875] [PMID: 15276964]
[101]
Nolen-Hoeksema S, Hilt L. Possible contributors to the gender differences in alcohol use and problems. J Gen Psychol 2006; 133(4): 357-74.
[http://dx.doi.org/10.3200/GENP.133.4.357-374] [PMID: 17128956]
[102]
Ceylan-Isik AF, McBride SM, Ren J. Sex difference in alcoholism: Who is at a greater risk for development of alcoholic complication? Life Sci 2010; 87(5-6): 133-8.
[http://dx.doi.org/10.1016/j.lfs.2010.06.002] [PMID: 20598716]
[103]
Blow FC, Barry KL. Use and misuse of alcohol among older women. Alcohol Res Health 2002; 26(4): 308-15.
[PMID: 12875042]
[104]
Epstein EE, Fischer-Elber K, Al-Otaiba Z. Women, aging, and alcohol use disorders. J Women Aging 2007; 19(1-2): 31-48.
[http://dx.doi.org/10.1300/J074v19n01_03] [PMID: 17588878]
[105]
Miller MA, Weafer J, Fillmore MT. Gender differences in alcohol impairment of simulated driving performance and driving-related skills. Alcohol Alcohol 2009; 44(6): 586-93.
[http://dx.doi.org/10.1093/alcalc/agp051] [PMID: 19786725]
[106]
Schweinsburg BC, Alhassoon OM, Taylor MJ, et al. Effects of alcoholism and gender on brain metabolism. Am J Psychiatry 2003; 160(6): 1180-3.
[http://dx.doi.org/10.1176/appi.ajp.160.6.1180] [PMID: 12777281]
[107]
Agabio R, Pisanu C, Gessa GL, Franconi F. Sex differences in alcohol use disorder. Curr Med Chem 2017; 24(24): 2661-70.
[PMID: 27915987]
[108]
Center for Behavioral Health Statistics and Quality. 2022 National Survey on Drug Use and Health. Table 2.28-Binge alcohol use in past month: Among people aged 12 or older; by age group and demographic characteristics, numbers in thousands, 2021 and 2022. 2022. Available from: https://www.samhsa.gov/data/sites/default/files/reports/rpt42728/NSDUHDetailedTabs2022/NSDUHDetailedTabs2022/NSDUHDetTabsSect2pe2022.htm#tab2.25a [cited 2024 Apr 19].
[109]
Center for Behavioral Health Statistics and Quality. 2022 National Survey on Drug Use and Health. Table 2.44-Alcohol use in lifetime, past year, and past month and binge alcohol and heavy alcohol use in past month: among people aged 12 to 20; by demographic characteristics, numbers in thousands, 2021 and 2022. 2022. Available from: https://www.samhsa.gov/data/sites/default/files/reports/rpt42728/NSDUHDetailedTabs2022/NSDUHDetailedTabs2022/NSDUHDetTabs2-44and2-45pe2022.pdf [cited 2024 Apr 19].
[110]
Center for Behavioral Health Statistics and Quality. 2022 National Survey on Drug Use and Health. Table 5.9 -Alcohol use disorder in past year: among people aged 12 or older; by age group and demographic characteristics, numbers in thousands, 2021 and 2022. 2022. Available from: https://www.samhsa.gov/data/sites/default/files/reports/rpt42728/NSDUHDetailedTabs2022/NSDUHDetailedTabs2022/NSDUHDetTabsSect5pe2022.htm#tab5.9a [cited 2024 Apr 21].
[111]
Eagon PK. Alcoholic liver injury: Influence of gender and hormones. World J Gastroenterol 2010; 16(11): 1377-84.
[http://dx.doi.org/10.3748/wjg.v16.i11.1377] [PMID: 20238405]
[112]
Fernández-Solà J, Nicolás-Arfelis JM. Gender differences in alcoholic cardiomyopathy. J Gend Specif Med 2002; 5(1): 41-7.
[PMID: 11859686]
[113]
Kezer CA, Simonetto DA, Shah VH. Sex differences in alcohol consumption and alcohol-associated liver disease. Mayo Clin Proc 2021; 96(4): 1006-16.
[http://dx.doi.org/10.1016/j.mayocp.2020.08.020] [PMID: 33714602]
[114]
Nolen-Hoeksema S. Gender differences in risk factors and consequences for alcohol use and problems. Clin Psychol Rev 2004; 24(8): 981-1010.
[http://dx.doi.org/10.1016/j.cpr.2004.08.003] [PMID: 15533281]
[115]
Verplaetse TL, Peltier MR, Roberts W, et al. Sex and alcohol use disorder predict the presence of cancer, respiratory, and other medical conditions: Findings from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Addict Behav 2021; 123: 107055.
[http://dx.doi.org/10.1016/j.addbeh.2021.107055] [PMID: 34311184]
[116]
Hydes TJ, Burton R, Inskip H, Bellis MA, Sheron N. A comparison of gender-linked population cancer risks between alcohol and tobacco: how many cigarettes are there in a bottle of wine? BMC Public Health 2019; 19(1): 316.
[http://dx.doi.org/10.1186/s12889-019-6576-9] [PMID: 30917803]
[117]
Wilsnack SC, Wilsnack RW, Kantor LW. Focus on: Women and the costs of alcohol use. Alcohol Res 2013; 35(2): 219-28.
[PMID: 24881330]
[118]
Bizzaro D, Becchetti C, Trapani S, et al. Influence of sex in alcohol-related liver disease: Pre-clinical and clinical settings. United European Gastroenterol J 2023; 11(2): 218-27.
[http://dx.doi.org/10.1002/ueg2.12370] [PMID: 36866682]
[119]
Wagnerberger S, Schäfer C, Schwarz E, Bode C, Parlesak A. Is nutrient intake a gender-specific cause for enhanced susceptibility to alcohol-induced liver disease in women? Alcohol Alcohol 2007; 43(1): 9-14.
[http://dx.doi.org/10.1093/alcalc/agm161] [PMID: 18003723]
[120]
Addolorato G, Capristo E, Greco AV, Caputo F, Stefanini GF, Gasbarrini G. Three months of abstinence from alcohol normalizes energy expenditure and substrate oxidation in alcoholics: A longitudinal study. Am J Gastroenterol 1998; 93(12): 2476-81.
[http://dx.doi.org/10.1111/j.1572-0241.1998.00707.x] [PMID: 9860412]
[121]
Addolorato G, Capristo E, Marini M, et al. Body composition changes induced by chronic ethanol abuse: Evaluation by dual energy x-ray absorptiometry. Am J Gastroenterol 2000; 95(9): 2323-7.
[http://dx.doi.org/10.1111/j.1572-0241.2000.02320.x] [PMID: 11007236]
[122]
de Timary P, Cani PD, Duchemin J, et al. The loss of metabolic control on alcohol drinking in heavy drinking alcohol-dependent subjects. PLoS One 2012; 7(7): e38682.
[http://dx.doi.org/10.1371/journal.pone.0038682] [PMID: 22808013]
[123]
Liangpunsakul S, Crabb DW, Qi R. Relationship among alcohol intake, body fat, and physical activity: A population-based study. Ann Epidemiol 2010; 20(9): 670-5.
[http://dx.doi.org/10.1016/j.annepidem.2010.05.014] [PMID: 20696406]
[124]
Gautron MA, Questel F, Lejoyeux M, Bellivier F, Vorspan F. Nutritional status during inpatient alcohol detoxification. Alcohol Alcohol 2018; 53(1): 64-70.
[http://dx.doi.org/10.1093/alcalc/agx086] [PMID: 29136089]
[125]
Halsted CH, Medici V. Vitamin-dependent methionine metabolism and alcoholic liver disease. Adv Nutr 2011; 2(5): 421-7.
[http://dx.doi.org/10.3945/an.111.000661] [PMID: 22332083]
[126]
Bonnet U, Pohlmann L, McAnally H, Claus BB. Further evidence of relationship between thiamine blood level and cognition in chronic alcohol-dependent adults: Prospective pilot study of an inpatient detoxification with oral supplementation protocol. Alcohol Fayettev N 2023; 110: 23-31.
[127]
Clergue-Duval V, Azuar J, Fonsart J, et al. Ascorbic acid deficiency prevalence and associated cognitive impairment in alcohol detoxification inpatients: A pilot study. Antioxidants 2021; 10(12): 1892.
[http://dx.doi.org/10.3390/antiox10121892] [PMID: 34942994]
[128]
Fama R, Le Berre AP, Hardcastle C, et al. Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism. Addict Biol 2019; 24(2): 290-302.
[http://dx.doi.org/10.1111/adb.12584] [PMID: 29243370]
[129]
Vedder LC, Hall JM, Jabrouin KR, Savage LM. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility. Alcohol Clin Exp Res 2015; 39(11): 2143-53.
[http://dx.doi.org/10.1111/acer.12859] [PMID: 26419807]
[130]
Issac TG, Soundarya S, Christopher R, Chandra SR. Vitamin B12 deficiency: An important reversible co-morbidity in neuropsychiatric manifestations. Indian J Psychol Med 2015; 37(1): 26-9.
[http://dx.doi.org/10.4103/0253-7176.150809] [PMID: 25722508]
[131]
Neupane SP, Lien L, Hilberg T, Bramness JG. Vitamin D deficiency in alcohol-use disorders and its relationship to comorbid major depression: A cross-sectional study of inpatients in Nepal. Drug Alcohol Depend 2013; 133(2): 480-5.
[http://dx.doi.org/10.1016/j.drugalcdep.2013.07.006] [PMID: 23916323]
[132]
Sahu P, Thippeswamy H, Chaturvedi SK. Neuropsychiatric manifestations in vitamin B12 deficiency. Vitam Horm 2022; 119: 457-70.
[http://dx.doi.org/10.1016/bs.vh.2022.01.001] [PMID: 35337631]
[133]
Bulik CM, Klump KL, Thornton L, et al. Alcohol use disorder comorbidity in eating disorders: A multicenter study. J Clin Psychiatry 2004; 65(7): 1000-6.
[http://dx.doi.org/10.4088/JCP.v65n0718] [PMID: 15291691]
[134]
Krahn DD, Kurth CL, Gomberg E, Drewnowski A. Pathological dieting and alcohol use in college women-a continuum of behaviors. Eat Behav 2005; 6(1): 43-52.
[http://dx.doi.org/10.1016/j.eatbeh.2004.08.004] [PMID: 15567110]
[135]
Kelly-Weeder S. Binge drinking and disordered eating in college students. J Am Acad Nurse Pract 2011; 23(1): 33-41.
[http://dx.doi.org/10.1111/j.1745-7599.2010.00568.x] [PMID: 21208332]
[136]
Escrivá-Martínez T, Herrero R, Molinari G, Rodríguez-Arias M, Verdejo-García A, Baños RM. Binge eating and binge drinking: A two-way road? An integrative review. Curr Pharm Des 2020; 26(20): 2402-15.
[http://dx.doi.org/10.2174/1381612826666200316153317] [PMID: 32175840]
[137]
Sonneville KR, Horton NJ, Micali N, et al. Longitudinal associations between binge eating and overeating and adverse outcomes among adolescents and young adults: Does loss of control matter? JAMA Pediatr 2013; 167(2): 149-55.
[http://dx.doi.org/10.1001/2013.jamapediatrics.12] [PMID: 23229786]
[138]
Leggio L, Addolorato G, Cippitelli A, Jerlhag E, Kampov-Polevoy AB, Swift RM. Role of feeding-related pathways in alcohol dependence: A focus on sweet preference, NPY, and ghrelin. Alcohol Clin Exp Res 2011; 35(2): 194-202.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01334.x] [PMID: 21058960]
[139]
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8: 288.
[http://dx.doi.org/10.3389/fnins.2014.00288] [PMID: 25278825]
[140]
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110: 133-49.
[http://dx.doi.org/10.1016/j.neubiorev.2018.06.021] [PMID: 29949733]
[141]
Gorka SM, Phan KL. Orexin modulation of stress reactivity as a novel targeted treatment for anxiety and alcohol use disorder. Neuropsychopharmacology 2022; 47(1): 397-8.
[http://dx.doi.org/10.1038/s41386-021-01120-4] [PMID: 34341494]
[142]
Engel JA, Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: Implications for pharmacotherapy. CNS Drugs 2014; 28(10): 875-86.
[http://dx.doi.org/10.1007/s40263-014-0178-y] [PMID: 24958205]
[143]
Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice. PLoS ONE 2013; 8(10): e77284.
[144]
Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS ONE 2013; 8(7): e69010.
[145]
Egecioglu E, Steensland P, Fredriksson I, Feltmann K, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology 2013; 38(8): 1259-70.
[http://dx.doi.org/10.1016/j.psyneuen.2012.11.009] [PMID: 23219472]
[146]
Leggio L, Zywiak WH, Fricchione SR, et al. Intravenous ghrelin administration increases alcohol craving in alcohol-dependent heavy drinkers: A preliminary investigation. Biol Psychiatry 2014; 76(9): 734-41.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.019] [PMID: 24775991]
[147]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409-39.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[148]
Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 1999; 403(2): 261-80.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>3.0.CO;2-5] [PMID: 9886047]
[149]
Kreymann B, Ghatei MA, Williams G, Bloom SR. Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet 1987; 330(8571): 1300-4.
[http://dx.doi.org/10.1016/S0140-6736(87)91194-9] [PMID: 2890903]
[150]
Shirazi RH, Dickson SL, Skibicka KP. Gut peptide GLP-1 and its analogue, Exendin-4, decrease alcohol intake and reward. PLoS One 2013; 8(4): e61965.
[http://dx.doi.org/10.1371/journal.pone.0061965] [PMID: 23613987]
[151]
Vallöf D, Maccioni P, Colombo G, et al. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents. Addict Biol 2016; 21(2): 422-37.
[http://dx.doi.org/10.1111/adb.12295] [PMID: 26303264]
[152]
Marty VN, Farokhnia M, Munier JJ, Mulpuri Y, Leggio L, Spigelman I. Long-acting glucagon-like peptide-1 receptor agonists suppress voluntary alcohol intake in male wistar rats. Front Neurosci 2020; 14: 599646.
[http://dx.doi.org/10.3389/fnins.2020.599646] [PMID: 33424537]
[153]
Thomsen M, Holst JJ, Molander A, Linnet K, Ptito M, Fink-Jensen A. Effects of glucagon-like peptide 1 analogs on alcohol intake in alcohol-preferring vervet monkeys. Psychopharmacology 2019; 236(2): 603-11.
[http://dx.doi.org/10.1007/s00213-018-5089-z] [PMID: 30382353]
[154]
Suchankova P, Yan J, Schwandt ML, et al. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: Evidence from human genetic association studies and a mouse model of alcohol dependence. Transl Psychiatry 2015; 5(6): e583.
[http://dx.doi.org/10.1038/tp.2015.68] [PMID: 26080318]
[155]
Thomsen M, Dencker D, Wörtwein G, et al. The glucagon-like peptide 1 receptor agonist Exendin-4 decreases relapse-like drinking in socially housed mice. Pharmacol Biochem Behav 2017; 160: 14-20.
[http://dx.doi.org/10.1016/j.pbb.2017.07.014] [PMID: 28778739]
[156]
Sirohi S, Schurdak JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiol Behav 2016; 161(161): 140-4.
[http://dx.doi.org/10.1016/j.physbeh.2016.04.013] [PMID: 27072507]
[157]
Aranäs C, Edvardsson CE, Shevchouk OT, et al. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. EBioMedicine 2023; 93: 104642.
[http://dx.doi.org/10.1016/j.ebiom.2023.104642] [PMID: 37295046]
[158]
Sharma AN, Pise A, Sharma JN, Shukla P. Glucagon-like peptide-1 (GLP-1) receptor agonist prevents development of tolerance to anti-anxiety effect of ethanol and withdrawal-induced anxiety in rats. Metab Brain Dis 2015; 30(3): 719-30.
[http://dx.doi.org/10.1007/s11011-014-9627-z] [PMID: 25380665]
[159]
Sharma AN, Pise A, Sharma JN, Shukla P. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats. Metab Brain Dis 2015; 30(3): 659-67.
[http://dx.doi.org/10.1007/s11011-014-9603-7] [PMID: 25129124]
[160]
Kalra S. Change in alcohol consumption following liraglutide initiation: A real life experience. Proceedings of the 71st American Diabetes Association Conference. San Diego, CA: 2011, vol. 2011.
[161]
Klausen MK, Jensen ME, Møller M, et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 2022; 7(19): e159863.
[http://dx.doi.org/10.1172/jci.insight.159863] [PMID: 36066977]
[162]
Farokhnia M, Browning BD, Crozier ME, Sun H, Akhlaghi F, Leggio L. The glucagon-like peptide-1 system is modulated by acute and chronic alcohol exposure: Findings from human laboratory experiments and a post-mortem brain study. Addict Biol 2022; 27(5): e13211.
[http://dx.doi.org/10.1111/adb.13211] [PMID: 36001436]
[163]
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762): 656-60.
[http://dx.doi.org/10.1038/45230] [PMID: 10604470]
[164]
Kharbanda KK, Farokhnia M, Deschaine SL, et al. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: A narrative review. Alcohol Clin Exp Res 2022; 46(12): 2149-59.
[http://dx.doi.org/10.1111/acer.14967] [PMID: 36316764]
[165]
Jerlhag E. Animal studies reveal that the ghrelin pathway regulates alcohol-mediated responses. Front Psychiatry 2023; 14: 1050973.
[http://dx.doi.org/10.3389/fpsyt.2023.1050973] [PMID: 36970276]
[166]
Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci USA 2009; 106(27): 11318-23.
[http://dx.doi.org/10.1073/pnas.0812809106] [PMID: 19564604]
[167]
Landgren S, Simms JA, Hyytiä P, Engel JA, Bartlett SE, Jerlhag E. Ghrelin receptor (GHS-R1A) antagonism suppresses both operant alcohol self-administration and high alcohol consumption in rats. Addict Biol 2012; 17(1): 86-94.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00280.x] [PMID: 21309944]
[168]
Suchankova P, Steensland P, Fredriksson I, Engel JA, Jerlhag E. Ghrelin receptor (GHS-R1A) antagonism suppresses both alcohol consumption and the alcohol deprivation effect in rats following long-term voluntary alcohol consumption. PLoS One 2013; 8(8): e71284.
[http://dx.doi.org/10.1371/journal.pone.0071284] [PMID: 23977009]
[169]
Suchankova P, Yan J, Schwandt ML, et al. The Leu72Met polymorphism of the prepro-ghrelin gene is associated with alcohol consumption and subjective responses to alcohol: Preliminary findings. Alcohol Alcohol 2017; 52(4): 425-30.
[http://dx.doi.org/10.1093/alcalc/agx021] [PMID: 28481975]
[170]
Suchankova P, Nilsson S, von der Pahlen B, et al. Genetic variation of the growth hormone secretagogue receptor gene is associated with alcohol use disorders identification test scores and smoking. Addict Biol 2016; 21(2): 481-8.
[http://dx.doi.org/10.1111/adb.12277] [PMID: 26059200]
[171]
Landgren S, Jerlhag E, Hallman J, et al. Genetic variation of the ghrelin signaling system in females with severe alcohol dependence. Alcohol Clin Exp Res 2010; 34(9): 1519-24.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01236.x] [PMID: 20586762]
[172]
Zallar LJ, Beurmann S, Tunstall BJ, et al. Ghrelin receptor deletion reduces binge-like alcohol drinking in rats. J Neuroendocrinol 2019; 31(7): e12663.
[http://dx.doi.org/10.1111/jne.12663] [PMID: 30456835]
[173]
Jerlhag E, Ivanoff L, Vater A, Engel JA. Peripherally circulating ghrelin does not mediate alcohol-induced reward and alcohol intake in rodents. Alcohol Clin Exp Res 2014; 38(4): 959-68.
[http://dx.doi.org/10.1111/acer.12337] [PMID: 24428428]
[174]
Jerlhag E, Landgren S, Egecioglu E, Dickson SL, Engel JA. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol Fayettev N 2011; 45(4): 341-7.
[http://dx.doi.org/10.1016/j.alcohol.2010.10.002]
[175]
Koopmann A, Bach P, Schuster R, et al. Ghrelin modulates mesolimbic reactivity to alcohol cues in alcohol-addicted subjects: A functional imaging study. Addict Biol 2019; 24(5): 1066-76.
[http://dx.doi.org/10.1111/adb.12651] [PMID: 29984874]
[176]
Leggio L, Ferrulli A, Cardone S, et al. Ghrelin system in alcohol-dependent subjects: Role of plasma ghrelin levels in alcohol drinking and craving. Addict Biol 2012; 17(2): 452-64.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00308.x] [PMID: 21392177]
[177]
Farokhnia M, Grodin EN, Lee MR, et al. Exogenous ghrelin administration increases alcohol self-administration and modulates brain functional activity in heavy-drinking alcohol-dependent individuals. Mol Psychiatry 2018; 23(10): 2029-38.
[http://dx.doi.org/10.1038/mp.2017.226] [PMID: 29133954]
[178]
Lee MR, Tapocik JD, Ghareeb M, et al. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: Preclinical safety experiments and a phase 1b human laboratory study. Mol Psychiatry 2020; 25(2): 461-75.
[http://dx.doi.org/10.1038/s41380-018-0064-y] [PMID: 29728704]
[179]
Tufvesson-Alm M, Shevchouk OT, Jerlhag E. Insight into the role of the gut-brain axis in alcohol-related responses: Emphasis on GLP-1, amylin, and ghrelin. Front Psychiatry 2023; 13: 1092828.
[http://dx.doi.org/10.3389/fpsyt.2022.1092828] [PMID: 36699502]
[180]
Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. Curr Drug Abuse Rev 2011; 4(3): 163-73.
[http://dx.doi.org/10.2174/1874473711104030163] [PMID: 21999690]
[181]
Labarthe A, Fiquet O, Hassouna R, et al. Ghrelin-derived peptides: A link between appetite/reward, GH axis, and psychiatric disorders? Front Endocrinol 2014; 5: 163.
[http://dx.doi.org/10.3389/fendo.2014.00163] [PMID: 25386163]
[182]
Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: At the interface of stress, mood and food reward. Pharmacol Ther 2012; 135(3): 316-26.
[http://dx.doi.org/10.1016/j.pharmthera.2012.06.004] [PMID: 22749794]
[183]
Messman-Moore T, Ward RM, Zerubavel N, Chandley RB, Barton SN. Emotion dysregulation and drinking to cope as predictors and consequences of alcohol-involved sexual assault: Examination of short-term and long-term risk. J Interpers Violence 2015; 30(4): 601-21.
[http://dx.doi.org/10.1177/0886260514535259] [PMID: 24919992]
[184]
Messman-Moore TL, Ward RM. Emotion dysregulation and coping drinking motives in college women. Am J Health Behav 2014; 38(4): 553-9.
[http://dx.doi.org/10.5993/AJHB.38.4.8] [PMID: 24636117]
[185]
Howell AN, Leyro TM, Hogan J, Buckner JD, Zvolensky MJ. Anxiety sensitivity, distress tolerance, and discomfort intolerance in relation to coping and conformity motives for alcohol use and alcohol use problems among young adult drinkers. Addict Behav 2010; 35(12): 1144-7.
[http://dx.doi.org/10.1016/j.addbeh.2010.07.003] [PMID: 20719435]
[186]
Da Silva GE, Vendruscolo LF, Takahashi RN. Effects of ethanol on locomotor and anxiety-like behaviors and the acquisition of ethanol intake in Lewis and spontaneously hypertensive rats. Life Sci 2005; 77(6): 693-706.
[http://dx.doi.org/10.1016/j.lfs.2005.01.013] [PMID: 15922000]
[187]
Izídio GS, Ramos A. Positive association between ethanol consumption and anxiety-related behaviors in two selected rat lines. Alcohol Fayettev N 2007; 41(7): 517-24.
[http://dx.doi.org/10.1016/j.alcohol.2007.07.008]
[188]
Braun TD, Kunicki ZJ, Blevins CE, et al. Prospective associations between attitudes toward sweet foods, sugar consumption, and cravings for alcohol and sweets in early recovery from alcohol use disorders. Alcohol Treat Q 2021; 39(3): 269-81.
[http://dx.doi.org/10.1080/07347324.2020.1868958] [PMID: 34566252]
[189]
Nolan LJ, Scagnelli LM. Preference for sweet foods and higher body mass index in patients being treated in long-term methadone maintenance. Subst Use Misuse 2007; 42(10): 1555-66.
[http://dx.doi.org/10.1080/10826080701517727] [PMID: 17918026]
[190]
Caan B, Coates A, Schaefer C, Finkler L, Sternfeld B, Corbett K. Women gain weight 1 year after smoking cessation while dietary intake temporarily increases. J Am Diet Assoc 1996; 96(11): 1150-5.
[http://dx.doi.org/10.1016/S0002-8223(96)00296-9] [PMID: 8906140]
[191]
Cowan J, Devine C. Food, eating, and weight concerns of men in recovery from substance addiction. Appetite 2008; 50(1): 33-42.
[http://dx.doi.org/10.1016/j.appet.2007.05.006] [PMID: 17602790]
[192]
Zador D, Wall PML, Webster I. High sugar intake in a group of women on methadone maintenance in South Western Sydney, Australia. Addiction 1996; 91(7): 1053-61.
[http://dx.doi.org/10.1046/j.1360-0443.1996.917105311.x] [PMID: 8688819]
[193]
Samson HH, Roehrs TA, Tolliver GA. Ethanol reinforced responding in the rat: A concurrent analysis using sucrose as the alternate choice. Pharmacol Biochem Behav 1982; 17(2): 333-9.
[http://dx.doi.org/10.1016/0091-3057(82)90088-0] [PMID: 7134241]
[194]
Kampov-Polevoy AB, Overstreet DH, Rezvani AH, Janowsky DS. Suppression of ethanol intake in alcohol-preferring rats by prior voluntary saccharin consumption. Pharmacol Biochem Behav 1995; 52(1): 59-64.
[http://dx.doi.org/10.1016/0091-3057(94)00430-Q] [PMID: 7501679]
[195]
Cummings JR, Ray LA, Nooteboom P, Tomiyama AJ. Acute effect of eating sweets on alcohol cravings in a sample with at-risk drinking. Ann Behav Med 2019; 54(2): 132-8.
[196]
Abrantes AM, Kunicki Z, Braun T, et al. Daily associations between alcohol and sweets craving and consumption in early AUD recovery: Results from an ecological momentary assessment study. J Subst Abuse Treat 2022; 132: 108614.
[http://dx.doi.org/10.1016/j.jsat.2021.108614] [PMID: 34493429]
[197]
Wiers CE, Vendruscolo LF, van der Veen JW, et al. Ketogenic diet reduces alcohol withdrawal symptoms in humans and alcohol intake in rodents. Sci Adv 2021; 7(15): eabf6780.
[http://dx.doi.org/10.1126/sciadv.abf6780] [PMID: 33837086]
[198]
Mahajan VR, Elvig SK, Vendruscolo LF, et al. Nutritional ketosis as a potential treatment for alcohol use disorder. Front Psychiatry 2021; 12: 781668.
[http://dx.doi.org/10.3389/fpsyt.2021.781668] [PMID: 34916977]
[199]
Blanco-Gandía MC, Ródenas-González F, Pascual M, et al. Ketogenic diet decreases alcohol intake in adult male mice. Nutrients 2021; 13(7): 2167.
[http://dx.doi.org/10.3390/nu13072167] [PMID: 34202492]
[200]
Dencker D, Molander A, Thomsen M, Schlumberger C, Wortwein G, Weikop P. Ketogenic diet suppresses alcohol withdrawal syndrome in rats. Alcohol Clin Exp Res 2018; 42(2): 270-7.
[PMID: 29160944]
[201]
Bornebusch AB, Mason GF, Tonetto S, et al. Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology 2021; 238(3): 833-44.
[http://dx.doi.org/10.1007/s00213-020-05735-1] [PMID: 33410985]
[202]
Dikaiou P, Björck L, Adiels M, et al. Obesity, overweight and risk for cardiovascular disease and mortality in young women. Eur J Prev Cardiol 2021; 28(12): 1351-9.
[http://dx.doi.org/10.1177/2047487320908983] [PMID: 34647583]
[203]
Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev 2018; 84: 225-44.
[http://dx.doi.org/10.1016/j.neubiorev.2017.11.020] [PMID: 29203421]
[204]
Luppino FS, de Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010; 67(3): 220-9.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.2] [PMID: 20194822]
[205]
Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all- cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013; 309(1): 71-82.
[http://dx.doi.org/10.1001/jama.2012.113905] [PMID: 23280227]
[206]
Sirohi S, Van Cleef A, Davis JF. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats. Pharmacol Biochem Behav 2017; 153: 105-15.
[http://dx.doi.org/10.1016/j.pbb.2016.12.009] [PMID: 27998722]
[207]
Shah K, Shaw C, Sirohi S. Reduced alcohol drinking following patterned feeding: Role of palatability and acute contingent availability. Physiol Behav 2020; 224: 113020.
[http://dx.doi.org/10.1016/j.physbeh.2020.113020] [PMID: 32574662]
[208]
Villavasso S, Shaw C, Skripnikova E, Shah K, Davis JF, Sirohi S. Nutritional contingency reduces alcohol drinking by altering central neurotransmitter receptor gene expression in rats. Nutrients 2019; 11(11): 2731.
[http://dx.doi.org/10.3390/nu11112731] [PMID: 31717954]
[209]
Leon Z, Shah K, Bailey LS, Karkhanis AN, Sirohi S. Patterned feeding of a hyper-palatable food (oreo cookies) reduces alcohol drinking in rats. Front Behav Neurosci 2021; 15: 725856.
[http://dx.doi.org/10.3389/fnbeh.2021.725856] [PMID: 34744651]
[210]
Lewis MJ. Alcoholism and nutrition: A review of vitamin supplementation and treatment. Curr Opin Clin Nutr Metab Care 2020; 23(2): 138-44.
[http://dx.doi.org/10.1097/MCO.0000000000000622] [PMID: 31977336]
[211]
Chandrakumar A, Bhardwaj A, ’t Jong GW. Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. J Basic Clin Physiol Pharmacol 2019; 30(2): 153-62.
[http://dx.doi.org/10.1515/jbcpp-2018-0075] [PMID: 30281514]
[212]
Fernandes LMP, Bezerra FR, Monteiro MC, et al. Thiamine deficiency, oxidative metabolic pathways and ethanol-induced neurotoxicity: How poor nutrition contributes to the alcoholic syndrome, as Marchiafava–Bignami disease. Eur J Clin Nutr 2017; 71(5): 580-6.
[http://dx.doi.org/10.1038/ejcn.2016.267] [PMID: 28225048]
[213]
Petrie WM, Ban TA. Vitamins in psychiatry. Do they have a role? Drugs 1985; 30(1): 58-65.
[http://dx.doi.org/10.2165/00003495-198530010-00006] [PMID: 3896744]
[214]
Sriram K, Manzanares W, Joseph K. Thiamine in nutrition therapy. Nutr Clin Pract 2012; 27(1): 41-50.
[http://dx.doi.org/10.1177/0884533611426149] [PMID: 22223666]
[215]
DiNicolantonio JJ, O’Keefe JH. The importance of marine omega-3s for brain development and the prevention and treatment of behavior, mood, and other brain disorders. Nutrients 2020; 12(8): 2333.
[http://dx.doi.org/10.3390/nu12082333] [PMID: 32759851]
[216]
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: Implications for health and disease. Physiol Rev 2015; 95(1): 1-46.
[http://dx.doi.org/10.1152/physrev.00012.2014] [PMID: 25540137]
[217]
Młyniec K, Davies CL, de Agüero Sánchez IG, Pytka K, Budziszewska B, Nowak G. Essential elements in depression and anxiety. Part I. Pharmacol Rep 2014; 66(4): 534-44.
[http://dx.doi.org/10.1016/j.pharep.2014.03.001] [PMID: 24948052]
[218]
Młyniec K, Gaweł M, Doboszewska U, et al. Essential elements in depression and anxiety. Part II. Pharmacol Rep 2015; 67(2): 187-94.
[http://dx.doi.org/10.1016/j.pharep.2014.09.009] [PMID: 25712638]
[219]
Sher L. Depression and suicidal behavior in alcohol abusing adolescents: Possible role of selenium deficiency. Minerva Pediatr 2008; 60(2): 201-9.
[PMID: 18449137]
[220]
Skalny AV, Skalnaya MG, Grabeklis AR, Skalnaya AA, Tinkov AA. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr 2018; 57(7): 2313-22.
[http://dx.doi.org/10.1007/s00394-017-1584-y] [PMID: 29177978]
[221]
Marik PE, Liggett A. Adding an orange to the banana bag: Vitamin C deficiency is common in alcohol use disorders. Crit Care 2019; 23(1): 165.
[http://dx.doi.org/10.1186/s13054-019-2435-4] [PMID: 31077227]
[222]
Flannery AH, Adkins DA, Cook AM. Unpeeling the evidence for the banana bag: evidence-based recommendations for the management of alcohol-associated vitamin and electrolyte deficiencies in the ICU. Crit Care Med 2016; 44(8): 1545-52.
[http://dx.doi.org/10.1097/CCM.0000000000001659] [PMID: 27002274]
[223]
Yang M, Zhou X, Tan X, et al. The status of oxidative stress in patients with alcohol dependence: A meta-analysis. Antioxidants 2022; 11(10): 1919.
[http://dx.doi.org/10.3390/antiox11101919] [PMID: 36290642]
[224]
Fernández-Checa JC, Kaplowitz N, Colell A, García-Ruiz C. Oxidative stress and alcoholic liver disease. Alcohol Health Res World 1997; 21(4): 321-4.
[PMID: 15706743]
[225]
Tobore TO. On the neurobiological role of oxidative stress in alcohol-induced impulsive, aggressive and suicidal behavior. Subst Use Misuse 2019; 54(14): 2290-303.
[http://dx.doi.org/10.1080/10826084.2019.1645179] [PMID: 31369300]
[226]
Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res 2010; 68(4): 261-75.
[http://dx.doi.org/10.1016/j.neures.2010.08.007] [PMID: 20804792]
[227]
Kim SHK, K Cho S, Min TS, et al. Ameliorating effects of mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with H-NMR based metabolic profiling. J Clin Biochem Nutr 2011; 48(3): 214-21.
[http://dx.doi.org/10.3164/jcbn.10-96] [PMID: 21562641]
[228]
Liu CT, Raghu R, Lin SH, et al. Metabolomics of ginger essential oil against alcoholic fatty liver in mice. J Agric Food Chem 2013; 61(46): 11231-40.
[http://dx.doi.org/10.1021/jf403523g] [PMID: 24171385]
[229]
Marino MD, Aksenov MY, Kelly SJ. Vitamin E protects against alcohol-induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 2004; 22(5-6): 363-77.
[http://dx.doi.org/10.1016/j.ijdevneu.2004.04.005] [PMID: 15380836]
[230]
Carai MAM, Agabio R, Bombardelli E, et al. Potential use of medicinal plants in the treatment of alcoholism. Fitoterapia 2000; 71 (Suppl. 1): S38-42.
[http://dx.doi.org/10.1016/S0367-326X(00)00178-7] [PMID: 10930711]
[231]
Fu L, Xu BT, Gan RY, et al. Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int J Mol Sci 2011; 12(4): 2112-24.
[http://dx.doi.org/10.3390/ijms12042112] [PMID: 21731430]
[232]
Fu L, Xu BT, Xu XR, et al. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 2011; 129(2): 345-50.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.079] [PMID: 30634236]
[233]
Wang F, Li Y, Zhang YJ, Zhou Y, Li S, Li HB. Natural products for the prevention and treatment of hangover and alcohol use disorder. Molecules 2016; 21(1): 64.
[http://dx.doi.org/10.3390/molecules21010064] [PMID: 26751438]
[234]
Shanmugam KR, Ramakrishna CH, Mallikarjuna K, Reddy KS. Protective effect of ginger against alcohol-induced renal damage and antioxidant enzymes in male albino rats. Indian J Exp Biol 2010; 48(2): 143-9.
[PMID: 20455323]
[235]
Pekala J, Patkowska-Sokoła B, Bodkowski R, et al. L-carnitine-metabolic functions and meaning in humans life. Curr Drug Metab 2011; 12(7): 667-78.
[http://dx.doi.org/10.2174/138920011796504536] [PMID: 21561431]
[236]
Martinotti G, Reina D, Di Nicola M, et al. Acetyl-L-carnitine for alcohol craving and relapse prevention in anhedonic alcoholics: A randomized, double-blind, placebo-controlled pilot trial. Alcohol Alcohol 2010; 45(5): 449-55.
[http://dx.doi.org/10.1093/alcalc/agq039] [PMID: 20595193]
[237]
Martinotti G, Andreoli S, Reina D, et al. Acetyl-l-Carnitine in the treatment of anhedonia, melancholic and negative symptoms in alcohol dependent subjects. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(4): 953-8.
[http://dx.doi.org/10.1016/j.pnpbp.2011.01.013] [PMID: 21256179]
[238]
Tempesta E, Troncon R, Janiri L, et al. Role of acetyl-L-carnitine in the treatment of cognitive deficit in chronic alcoholism. Int J Clin Pharmacol Res 1990; 10(1-2): 101-7.
[PMID: 2201652]
[239]
Bota AB, Simmons JG, DiBattista A, Wilson K. Carnitine in alcohol use disorders: A scoping review. Alcohol Clin Exp Res 2021; 45(4): 666-74.
[http://dx.doi.org/10.1111/acer.14568] [PMID: 33576525]
[240]
Koob GF. Theoretical frameworks and mechanistic aspects of alcohol addiction: Alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci 2011; 13: 3-30.
[http://dx.doi.org/10.1007/978-3-642-28720-6_129] [PMID: 21744309]
[241]
Jukić T, Rojc B, Boben-Bardutzky D, Hafner M, Ihan A. The use of a food supplementation with D-phenylalanine, L-glutamine and L-5-hydroxytriptophan in the alleviation of alcohol withdrawal symptoms. Coll Antropol 2011; 35(4): 1225-30.
[PMID: 22397264]
[242]
Mohajeri MH, Wittwer J, Vargas K, et al. Chronic treatment with a tryptophan-rich protein hydrolysate improves emotional processing, mental energy levels and reaction time in middle-aged women. Br J Nutr 2015; 113(2): 350-65.
[http://dx.doi.org/10.1017/S0007114514003754] [PMID: 25572038]
[243]
Gibson EL, Vargas K, Hogan E, et al. Effects of acute treatment with a tryptophan-rich protein hydrolysate on plasma amino acids, mood and emotional functioning in older women. Psychopharmacology 2014; 231(24): 4595-610.
[http://dx.doi.org/10.1007/s00213-014-3609-z] [PMID: 24858376]
[244]
Haque IM, Mishra A, Kalra BS, Chawla S. Role of standardized plant extracts in controlling alcohol withdrawal syndrome-an experimental study. Brain Sci 2021; 11(7): 919.
[http://dx.doi.org/10.3390/brainsci11070919] [PMID: 34356153]
[245]
Coskun I, Tayfun Uzbay I, Ozturk N, Ozturk Y. Attenuation of ethanol withdrawal syndrome by extract of Hypericum perforatum in Wistar rats. Fundam Clin Pharmacol 2006; 20(5): 481-8.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00432.x] [PMID: 16968419]
[246]
Kim HJ, Lee MY, Kim GR, et al. Korean Red Ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation. J Ginseng Res 2023; 47(4): 583-92.
[http://dx.doi.org/10.1016/j.jgr.2023.02.003] [PMID: 37397415]
[247]
McLean C, Tapsell L, Grafenauer S, McMahon AT. Systematic review of nutritional interventions for people admitted to hospital for alcohol withdrawal. Nutr Diet 2020; 77(1): 76-89.
[http://dx.doi.org/10.1111/1747-0080.12593] [PMID: 31797519]
[248]
Russell RM. Vitamin A and zinc metabolism in alcoholism. Am J Clin Nutr 1980; 33(12): 2741-9.
[http://dx.doi.org/10.1093/ajcn/33.12.2741] [PMID: 7001892]
[249]
Manari A, Preedy V, Peters T. Nutritional intake of hazardous drinkers and dependent alcoholics in the UK. Addict Biol 2003; 8(2): 201-10.
[http://dx.doi.org/10.1080/1355621031000117437] [PMID: 12850779]
[250]
Leevy CM. Thiamin deficiency and alcoholism. Ann N Y Acad Sci 1982; 378(1): 316-26.
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb31206.x] [PMID: 7044226]
[251]
Hoyumpa AM Jr. Alcohol and thiamine metabolism. Alcohol Clin Exp Res 1983; 7(1): 11-4.
[http://dx.doi.org/10.1111/j.1530-0277.1983.tb05403.x] [PMID: 6342440]
[252]
Pitts TO, Van Thiel DH. Disorders of divalent ions and vitamin D metabolism in chronic alcoholism. Recent Dev Alcohol 1986; 4: 357-77.
[http://dx.doi.org/10.1007/978-1-4899-1695-2_16] [PMID: 3754648]
[253]
Shane SR, Flink EB. Magnesium deficiency in alcohol addiction and withdrawal. Magnes Trace Elem 1992; 10(2-4): 263-8.
[254]
Suzuki H, Mamata Y, Mizuno H, et al. Influence of alcohol on branched-chain amino acid/tyrosine molar ratio in patients with cirrhosis. Alcohol Clin Exp Res 1998; 22(S3 Pt 1) (Suppl. 1): 137.
[http://dx.doi.org/10.1097/00000374-199803001-00013] [PMID: 9622391]
[255]
Clugston RD, Blaner WS. The adverse effects of alcohol on vitamin A metabolism. Nutrients 2012; 4(5): 356-71.
[http://dx.doi.org/10.3390/nu4050356] [PMID: 22690322]
[256]
Dimmitt SB, Rakic V, Puddey IB, et al. The effects of alcohol on coagulation and fibrinolytic factors. Blood Coagul Fibrinolysis 1998; 9(1): 39-46.
[http://dx.doi.org/10.1097/00001721-199801000-00005] [PMID: 9607117]
[257]
Fonda ML, Brown SG, Pendleton MW. Concentration of vitamin B6 and activities of enzymes of B6 metabolism in the blood of alcoholic and nonalcoholic men. Alcohol Clin Exp Res 1989; 13(6): 804-9.
[http://dx.doi.org/10.1111/j.1530-0277.1989.tb00426.x] [PMID: 2557775]
[258]
Branchey L, Lieber CS. Activation of tryptophan pyrrolase after chronic alcohol administration. Subst Alcohol Actions Misuse 1982; 3(4): 225-9.
[PMID: 6891969]
[259]
Aagaard NK, Thøgersen T, Grøfte T, Greisen J, Vilstrup H. Alcohol acutely down-regulates urea synthesis in normal men. Alcohol Clin Exp Res 2004; 28(5): 697-701.
[http://dx.doi.org/10.1097/01.ALC.0000125355.31808.DC] [PMID: 15166643]
[260]
Chang T, Lewis J, Glazko AJ. Effect of ethanol and other alcohols on the transport of amino acids and glucose by everted sacs of rat small intestine. Biochim Biophys Acta Biomembr 1967; 135(5): 1000-7.
[http://dx.doi.org/10.1016/0005-2736(67)90070-3] [PMID: 6065668]
[261]
Subramanian VS, Subramanya SB, Ghosal A, Said HM. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport. Am J Physiol Cell Physiol 2013; 305(5): C539-46.
[http://dx.doi.org/10.1152/ajpcell.00089.2013] [PMID: 23804199]
[262]
Lindenbaum J, Lieber CS. Alcohol-induced malabsorption of vitamin B12 in man. Nature 1969; 224(5221): 806.
[http://dx.doi.org/10.1038/224806a0] [PMID: 5361658]
[263]
Duane P, Raja KB, Simpson RJ, Peters TJ. Intestinal iron absorption in chronic alcoholics. Alcohol Alcohol 1992; 27(5): 539-44.
[PMID: 1476557]
[264]
Antonson DL, Vanderhoof JA. Effect of chronic ethanol ingestion on zinc absorption in rat small intestine. Dig Dis Sci 1983; 28(7): 604-8.
[http://dx.doi.org/10.1007/BF01299920] [PMID: 6861590]
[265]
Pauluci R, Noto AR, Curado DF, Siqueira-Campos M Jr, Bezerra AG, Galduróz JCF. Omega-3 for the prevention of alcohol use disorder relapse: A placebo-controlled, randomized clinical trial. Front Psychiatry 2022; 13: 826448.
[http://dx.doi.org/10.3389/fpsyt.2022.826448] [PMID: 35463514]
[266]
Barbadoro P, Annino I, Ponzio E, et al. Fish oil supplementation reduces cortisol basal levels and perceived stress: A randomized, placebo-controlled trial in abstinent alcoholics. Mol Nutr Food Res 2013; 57(6): 1110-4.
[http://dx.doi.org/10.1002/mnfr.201200676] [PMID: 23390041]
[267]
Serrano M, Rico-Barrio I, Grandes P. The effect of omega-3 fatty acids on alcohol-induced damage. Front Nutr 2023; 10: 1068343.
[http://dx.doi.org/10.3389/fnut.2023.1068343] [PMID: 37090780]
[268]
Shi Z, Xie Y, Ren H, et al. Fish oil treatment reduces chronic alcohol exposure induced synaptic changes. Addict Biol 2019; 24(4): 577-89.
[http://dx.doi.org/10.1111/adb.12623] [PMID: 29569345]
[269]
Wang Y, Zhang N, Zhou J, Sun P, Zhao L, Zhou F. Protective effects of several common amino acids, vitamins, organic acids, flavonoids and phenolic acids against hepatocyte damage caused by alcohol. Foods 2022; 11(19): 3014.
[http://dx.doi.org/10.3390/foods11193014] [PMID: 36230090]
[270]
Listabarth S, Vyssoki B, Marculescu R, et al. Can thiamine substitution restore cognitive function in alcohol use disorder? Alcohol Alcohol 2023; 58(3): 315-23.
[http://dx.doi.org/10.1093/alcalc/agad017] [PMID: 36935203]
[271]
Back SE, McCauley JL, Korte KJ, et al. A double-blind, randomized, controlled pilot trial of N-acetylcysteine in veterans with posttraumatic stress disorder and substance use disorders. J Clin Psychiatry 2016; 77(11): e1439-46.
[http://dx.doi.org/10.4088/JCP.15m10239] [PMID: 27736051]
[272]
Fernández-Rodríguez S, Cano-Cebrián MJ, Esposito-Zapero C, et al. N-Acetylcysteine normalizes brain oxidative stress and neuroinflammation observed after protracted ethanol abstinence: A preclinical study in long-term ethanol-experienced male rats. Psychopharmacology 2023; 240(4): 725-38.
[http://dx.doi.org/10.1007/s00213-023-06311-z] [PMID: 36708386]
[273]
Ozaras R, Tahan V, Aydin S, Uzun H, Kaya S, Senturk H. N-acetylcysteine attenuates alcohol-induced oxidative stress in the rat. World J Gastroenterol 2003; 9(1): 125-8.
[http://dx.doi.org/10.3748/wjg.v9.i1.125] [PMID: 12508366]
[274]
Ferreira Seiva FR, Amauchi JF, Ribeiro Rocha KK, Souza GA, Ebaid GX, Burneiko RM. Effects of N-acetylcysteine on alcohol abstinence and alcohol-induced adverse effects in rats. Alcohol Fayettev N 2009; 43(2): 127-35.
[275]
Fredriksson I, Jayaram-Lindström N, Kalivas PW, Melas PA, Steensland P. N-acetylcysteine improves impulse control and attenuates relapse-like alcohol intake in long-term drinking rats. Behav Brain Res 2023; 436: 114089.
[http://dx.doi.org/10.1016/j.bbr.2022.114089] [PMID: 36063970]
[276]
Cano-Cebrián MJ, Fernández-Rodríguez S, Hipólito L, Granero L, Polache A, Zornoza T. Efficacy of N-acetylcysteine in the prevention of alcohol relapse-like drinking: Study in long-term ethanol-experienced male rats. J Neurosci Res 2021; 99(2): 638-48.
[http://dx.doi.org/10.1002/jnr.24736] [PMID: 33063355]
[277]
Lee H, Ok H, Kwon O. Protective effects of korean red ginseng against alcohol-induced fatty liver in rats. Molecules 2015; 20(6): 11604-16.
[http://dx.doi.org/10.3390/molecules200611604] [PMID: 26111184]
[278]
Yeo M, Kim DK, Cho SW, Hong HD. Ginseng, the root of Panax ginseng C.A. Meyer, protects ethanol-induced gastric damages in rat through the induction of cytoprotective heat-shock protein 27. Dig Dis Sci 2008; 53(3): 606-13.
[http://dx.doi.org/10.1007/s10620-007-9946-6] [PMID: 17763949]
[279]
Colombo G, Agabio R, Lobina C, Reali R, Morazzoni P, Bombardelli E. Salvia miltiorrhiza extract inhibits alcohol absorption, preference, and discrimination in sP rats. Alcohol Fayettev N 1999; 18(1): 65-70.
[http://dx.doi.org/10.1016/S0741-8329(98)00069-X]
[280]
Colombo G, Serra S, Vacca G, et al. Identification of miltirone as active ingredient of Salvia miltiorrhiza responsible for the reducing effect of root extracts on alcohol intake in rats. Alcohol Clin Exp Res 2006; 30(5): 754-62.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00088.x] [PMID: 16634843]
[281]
Serra S, Vacca G, Tumatis S, et al. Anti-relapse properties of IDN 5082, a standardized extract of Salvia miltiorrhiza, in alcohol-preferring rats. J Ethnopharmacol 2003; 88(2-3): 249-52.
[http://dx.doi.org/10.1016/S0378-8741(03)00260-5] [PMID: 12963151]
[282]
Brunetti G, Serra S, Vacca G, et al. IDN 5082, a standardized extract of Salvia miltiorrhiza, delays acquisition of alcohol drinking behavior in rats. J Ethnopharmacol 2003; 85(1): 93-7.
[http://dx.doi.org/10.1016/S0378-8741(02)00363-X] [PMID: 12576207]
[283]
Penetar DM, Toto LH, Farmer SL, et al. The isoflavone puerarin reduces alcohol intake in heavy drinkers: A pilot study. Drug Alcohol Depend 2012; 126(1-2): 251-6.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.04.012] [PMID: 22578529]
[284]
Lukas SE, Penetar D, Berko J, et al. An extract of the Chinese herbal root kudzu reduces alcohol drinking by heavy drinkers in a naturalistic setting. Alcohol Clin Exp Res 2005; 29(5): 756-62.
[http://dx.doi.org/10.1097/01.ALC.0000163499.64347.92] [PMID: 15897719]
[285]
Benlhabib E, Baker JI, Keyler DE, Singh AK. Kudzu root extract suppresses voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J Med Food 2004; 7(2): 168-79.
[http://dx.doi.org/10.1089/1096620041224210] [PMID: 15298764]
[286]
Overstreet DH, Kralic JE, Morrow AL, Ma ZZ, Zhang YW, Lee DYW. NPI-031G (puerarin) reduces anxiogenic effects of alcohol withdrawal or benzodiazepine inverse or 5-HT2C agonists. Pharmacol Biochem Behav 2003; 75(3): 619-25.
[http://dx.doi.org/10.1016/S0091-3057(03)00114-X] [PMID: 12895679]
[287]
Li R, Xu L, Liang T, Li Y, Zhang S, Duan X. Puerarin mediates hepatoprotection against CCl4-induced hepatic fibrosis rats through attenuation of inflammation response and amelioration of metabolic function. Food Chem Toxicol 2013; 52: 69-75.
[http://dx.doi.org/10.1016/j.fct.2012.10.059] [PMID: 23146695]
[288]
Perfumi M, Mattioli L, Cucculelli M, Massi M. Reduction of ethanol intake by chronic treatment with Hypericum perforatum, alone or combined with naltrexone in rats. J Psychopharmacol 2005; 19(5): 448-54.
[http://dx.doi.org/10.1177/0269881105056519] [PMID: 16166181]
[289]
Rezvani AH, Overstreet DH, Yang Y, Clark E Jr. Attenuation of alcohol intake by extract of Hypericum perforatum (St. John’s Wort) in two different strains of alcohol-preferring rats. Alcohol Alcohol 1999; 34(5): 699-705.
[http://dx.doi.org/10.1093/alcalc/34.5.699] [PMID: 10528812]
[290]
Perfumi M, Mattioli L, Forti L, Massi M, Ciccocioppo R. Effect of Hypericum perforatum CO2 extract on the motivational properties of ethanol in alcohol-preferring rats. Alcohol Alcohol 2005; 40(4): 291-6.
[http://dx.doi.org/10.1093/alcalc/agh133] [PMID: 15870093]
[291]
Wright CW, Gott M, Grayson B, et al. Correlation of hyperforin content of Hypericum perforatum (St John’s Wort) extracts with their effects on alcohol drinking in C57BL/6J mice: A preliminary study. J Psychopharmacol 2003; 17(4): 403-8.
[http://dx.doi.org/10.1177/0269881103174018] [PMID: 14870952]
[292]
Mishra A, Gupta P, Singh Kalr B, Kumar Tiwa Y. Efficacy of Ashwagandha and Brahmi extract on alcohol withdrawal syndrome in laboratory rats. Int J Pharmacol 2020; 16(4): 343-50.
[http://dx.doi.org/10.3923/ijp.2020.343.350]
[293]
Ruby B, Benson MK, Kumar EP, Sudha S, Wilking JE. Evaluation of Ashwagandha in alcohol withdrawal syndrome. Asian Pac J Trop Dis 2012; 2: S856-60.
[http://dx.doi.org/10.1016/S2222-1808(12)60279-5]
[294]
Banerjee S, Bansal P. Effect of Withinia somnifera and shilajit on alcohol addiction in mice. Pharmacogn Mag 2016; 12(46) (Suppl. 2): 121.
[http://dx.doi.org/10.4103/0973-1296.182170] [PMID: 27279696]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy