Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Mini-Review Article

Biological Potential and Therapeutic Effectiveness of Phytoproduct ‘Fargesin’ in Medicine: Focus on the Potential of an Active Phytochemical of Magnolia fargesii

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 18, Issue 2, 2024

Published on: 09 May, 2024

Page: [79 - 89] Pages: 11

DOI: 10.2174/0127722708286664240429093913

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from Magnolia fargesii and it is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, etc. In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on PubMed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.

Keywords: Bone disorders, lung injury, colon cancer, atherosclerosis, neurological, ischemia, sars-cov-2, allergy, metabolism, melanin, enzymes, anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, antifeedant, medicine.

« Previous
Graphical Abstract
[1]
Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis. Endocr Metab Immune Disord Drug Targets 2023; 23(3): 273-82.
[http://dx.doi.org/10.2174/1871530322666220520162251] [PMID: 35619306]
[2]
Patel K, Patel DK. Medicinal importance and therapeutic benefit of bioactive flavonoid eriocitrin: An update on pharmacological activity and analytical aspects. Nat Prod J 2024; 14(2): e100723218583.
[http://dx.doi.org/10.2174/2210315514666230710112336]
[3]
Patel DK. Biological potential and therapeutic benefit of Chrysosplenetin: An applications of polymethoxylated flavonoid in medicine from natural sources. PharmacolRes Mod Chin Med 2022; 4: 100155.
[http://dx.doi.org/10.1016/j.prmcm.2022.100155]
[4]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[5]
Jian X, Liu Y, Zhao Z, Zhao L, Wang D, Liu Q. The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity. Biomed Pharmacother 2019; 118: 109375.
[http://dx.doi.org/10.1016/j.biopha.2019.109375] [PMID: 31548175]
[6]
Costa RA, Barros GA, da Silva JN, et al. Experimental and theoretical study on spectral features, reactivity, solvation, topoisomerase I inhibition and in vitro cytotoxicity in human HepG2 cells of guadiscine and guadiscidine aporphine alkaloids. J Mol Struct 2021; 1229: 129844.
[http://dx.doi.org/10.1016/j.molstruc.2020.129844]
[7]
Pan SY, Litscher G, Gao SH, et al. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med 2014; 2014: 1-20.
[http://dx.doi.org/10.1155/2014/525340] [PMID: 24872833]
[8]
Chen H, Zhu Y, Zhang YL, et al. Neolignans and amide alkaloids from the stems of Piper kadsura and their neuroprotective activity. Phytochemistry 2022; 203: 113336.
[http://dx.doi.org/10.1016/j.phytochem.2022.113336] [PMID: 35933005]
[9]
Zálešák F, Bon DJYD, Pospíšil J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 2019; 146: 104284.
[http://dx.doi.org/10.1016/j.phrs.2019.104284] [PMID: 31136813]
[10]
Patel K, Patel DK. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr Bioact Compd 2020; 16(3): 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[11]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni Suef Univ J Basic Appl Sci 2018; 7(1): 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[12]
Patel DK, Patel K. Biological potential and antiviral activity of strictinin in the medicine through literature data analysis. Int J Surg 2022; 100: 106288.
[http://dx.doi.org/10.1016/j.ijsu.2022.106288]
[13]
Patel DK. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications. PharmacolRes Mod Chinese Med 2022; 5: 100185.
[http://dx.doi.org/10.1016/j.prmcm.2022.100185]
[14]
Patel DK. Therapeutic role of columbianadin in human disorders: Medicinal importance, biological properties and analytical aspects. PharmacolRes Mod Chinese Med 2023; 6: 100212.
[http://dx.doi.org/10.1016/j.prmcm.2022.100212]
[15]
Patel DK. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus Artemisia. Endocr Metab Immune Disord Drug Targets 2023; 23(7): 894-907.
[http://dx.doi.org/10.2174/1871530323666221122123456] [PMID: 36415094]
[16]
Patel DK. Biological importance, therapeutic benefits, and analytical aspects of active flavonoidal compounds ‘corylin’ from psoralea corylifolia in the field of medicine. Infect Disord Drug Targets 2023; 23(1): e250822208005.
[http://dx.doi.org/10.2174/1871526522666220825160906] [PMID: 36028973]
[17]
Patel DK. Biological potential and therapeutic effectiveness of hinokiflavone in medicine: The effective components of herbal medicines for treatment of cancers and associated complications. Curr Nutr Food Sci 2024; 20(4): 439-49.
[http://dx.doi.org/10.2174/1573401319666230602121227]
[18]
Patel DK, Patel K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. PharmacolRes Mod Chinese Med 2022; 5: 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[19]
Patel DK. Grandisin and its therapeutic potential and pharmacological activities: A review. Pharmacol Res 2022; 5: 100176.
[20]
Patel DK. Therapeutic effectiveness of Magnolin on cancers and other human complications. Pharmacol Res 2023; 6: 100203.
[21]
Batista ANL, Santos CHT, de Albuquerque ACF, Santos FM Jr, Garcez FR, Batista JM Jr. Absolute configuration reassignment of nectamazin A: Implications to related neolignans. Spectrochim Acta A Mol Biomol Spectrosc 2024; 304: 123283.
[http://dx.doi.org/10.1016/j.saa.2023.123283] [PMID: 37633100]
[22]
Patel K, Patel DK. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Curr Bioact Compd 2021; 17(9): e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[23]
Sciacca C, Cardullo N, Pulvirenti L, Di Francesco A, Muccilli V. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors. Bioorg Chem 2023; 134: 106455.
[http://dx.doi.org/10.1016/j.bioorg.2023.106455] [PMID: 36913880]
[24]
Mansoor TA, Borralho PM, Luo X, Mulhovo S, Rodrigues CMP, Ferreira MJU. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells. Phytomedicine 2013; 20(10): 923-9.
[http://dx.doi.org/10.1016/j.phymed.2013.03.026] [PMID: 23643093]
[25]
Patel DK, Patel K. An overview of medicinal importance, pharmacological activities and analytical aspects of fraxin from cortex fraxinus. Curr Tradit Med 2023; 9(5): e190922208921.
[http://dx.doi.org/10.2174/2215083808666220919114652]
[26]
Patel DK, Patel K. Herbal medicines genkwadaphnin as therapeutic agent for cancers and other human disorders: A review of pharmacological activities through scientific evidence. Curr Tradit Med 2024; 10(4): e230523217251.
[http://dx.doi.org/10.2174/2215083810666230523155650]
[27]
Patel DK. Herbal phytomedicine ‘irisolidone’ in chronic diseases: Biological efficacy and pharmacological activity. Rec Adv Anti-Inf Drug Disc 2022; 17(1): 13-22.
[http://dx.doi.org/10.2174/1574891X16666220304231934] [PMID: 35249525]
[28]
Patel DK. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives. Pharmacol Res Mod Chin Med 2023; 7: 100232.
[http://dx.doi.org/10.1016/j.prmcm.2023.100232]
[29]
Patel DK. Biological Importance of a Biflavonoid ‘Bilobetin’ in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects. Infect Disord Drug Targets 2022; 22(5): e210322202490.
[http://dx.doi.org/10.2174/1871526522666220321152036] [PMID: 35319397]
[30]
Patel DK, Patel K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects. Curr Cancer Ther Rev 2022; 18(1): 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[31]
Li J, Wen J, Tang G, et al. Development of a comprehensive quality control method for the quantitative analysis of volatiles and lignans in Magnolia biondii Pamp. by near infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2020; 230: 118080.
[http://dx.doi.org/10.1016/j.saa.2020.118080] [PMID: 31982656]
[32]
Xia H, Zhang JF, Wang LY, et al. Bioactive neolignans and lignans from the roots of Paeonia lactiflora Chin J Nat Med 2022; 20(3): 210-4.
[http://dx.doi.org/10.1016/S1875-5364(22)60164-X] [PMID: 35369965]
[33]
Nie W, Ding LF, Lei T, et al. Biphenyl-type neolignans with NO inhibitory activity from the fruits of Magnolia tripetala. Phytochem Lett 2021; 44: 222-6.
[http://dx.doi.org/10.1016/j.phytol.2021.06.026]
[34]
Renouard S, Tribalatc MA, Lamblin F, et al. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: Consequences on lignans and neolignans accumulation. J Plant Physiol 2014; 171(15): 1372-7.
[http://dx.doi.org/10.1016/j.jplph.2014.06.005] [PMID: 25046758]
[35]
Anjum S, Abbasi BH, Doussot J, Favre-Réguillon A, Hano C. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax). J Photochem Photobiol B 2017; 167: 216-27.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.006] [PMID: 28088102]
[36]
Wang LX, Wang HL, Huang J, et al. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. Phytochemistry 2022; 202: 113326.
[http://dx.doi.org/10.1016/j.phytochem.2022.113326] [PMID: 35842031]
[37]
Zahir A, Ahmad W, Nadeem M, Giglioli-Guivarc’h N, Hano C, Abbasi BH. in vitro cultures of Linum usitatissimum L.: Synergistic effects of mineral nutrients and photoperiod regimes on growth and biosynthesis of lignans and neolignans. J Photochem Photobiol B 2018; 187: 141-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.009] [PMID: 30145465]
[38]
Ahmad W, Zahir A, Nadeem M, et al. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process Biochem 2019; 79: 155-65.
[http://dx.doi.org/10.1016/j.procbio.2018.12.025]
[39]
Sathish Kumar B, Singh A, Kumar A, et al. Synthesis of neolignans as microtubule stabilisers. Bioorg Med Chem 2014; 22(4): 1342-54.
[http://dx.doi.org/10.1016/j.bmc.2013.12.067] [PMID: 24457094]
[40]
Basini G, Spatafora C, Tringali C, Bussolati S, Grasselli F. Effects of a ferulate-derived dihydrobenzofuran neolignan on angiogenesis, steroidogenesis, and redox status in a swine cell model. SLAS Discov 2014; 19(9): 1282-9.
[http://dx.doi.org/10.1177/1087057114536226] [PMID: 24916413]
[41]
Vu VT, Xu XJ, Chen K, et al. New oligomeric neolignans from the leaves of Magnolia officinalis var. biloba. Chin J Nat Med 2021; 19(7): 491-9.
[http://dx.doi.org/10.1016/S1875-5364(21)60048-1] [PMID: 34247772]
[42]
Wang X, Cheng Y, Xue H, Yue Y, Zhang W, Li X. Fargesin as a potential β1 adrenergic receptor antagonist protects the hearts against ischemia/reperfusion injury in rats via attenuating oxidative stress and apoptosis. Fitoterapia 2015; 105: 16-25.
[http://dx.doi.org/10.1016/j.fitote.2015.05.016] [PMID: 26025856]
[43]
Pham TH, Kim MS, Le MQ, et al. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling. Phytomedicine 2017; 24: 96-103.
[http://dx.doi.org/10.1016/j.phymed.2016.11.014] [PMID: 28160867]
[44]
Lee GE, Lee CJ, An HJ, et al. Fargesin inhibits EGF-induced cell transformation and colon cancer cell growth by suppression of CDK2/Cyclin E signaling pathway. Int J Mol Sci 2021; 22(4): 2073.
[http://dx.doi.org/10.3390/ijms22042073] [PMID: 33669811]
[45]
Jeong JH, Kim DK, Ji HY, Oh SR, Lee HK, Lee HS. Liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for the simultaneous determination of dimethoxyaschantin, dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin in rat plasma. Biomed Chromatogr 2011; 25(8): 879-89.
[http://dx.doi.org/10.1002/bmc.1538] [PMID: 21058411]
[46]
Wang G, Gao JH, He LH, et al. Fargesin alleviates atherosclerosis by promoting reverse cholesterol transport and reducing inflammatory response. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865(5): 158633.
[http://dx.doi.org/10.1016/j.bbalip.2020.158633] [PMID: 31988050]
[47]
Fu T, Chai B, Shi Y, Dang Y, Ye X. Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways. J Dermatol Sci 2019; 94(1): 213-9.
[http://dx.doi.org/10.1016/j.jdermsci.2019.03.004] [PMID: 30956031]
[48]
Lu J, Zhang H, Pan J, et al. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23(1): 142.
[http://dx.doi.org/10.1186/s13075-021-02512-z] [PMID: 33990219]
[49]
Yue B, Ren YJ, Zhang JJ, et al. Anti-inflammatory effects of fargesin on chemically induced inflammatory bowel disease in mice. Molecules 2018; 23(6): 1380.
[http://dx.doi.org/10.3390/molecules23061380] [PMID: 29880739]
[50]
Sha S, Xu D, Wang Y, Zhao W, Li X. Antihypertensive effects of fargesin in vitro and in vivo via attenuating oxidative stress and promoting nitric oxide release. Can J Physiol Pharmacol 2016; 94(8): 900-6.
[http://dx.doi.org/10.1139/cjpp-2015-0615] [PMID: 27409158]
[51]
Kim JH, Kwon SS, Jeong HU, Lee HS. Inhibitory effects of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on cytochrome p450 enzyme activities in human liver microsomes. Int J Mol Sci 2017; 18(5): 952.
[http://dx.doi.org/10.3390/ijms18050952] [PMID: 28468305]
[52]
Lee YS, Cha BY, Choi SS, et al. Fargesin improves lipid and glucose metabolism in 3T3‐L1 adipocytes and high‐fat diet‐induced obese mice. Biofactors 2012; 38(4): 300-8.
[http://dx.doi.org/10.1002/biof.1022] [PMID: 22674784]
[53]
Park R, Park EJ, Cho YY, et al. Tetrahydrofurofuranoid lignans, eudesmin, fargesin, epimagnolin A, magnolin, and yangambin inhibit UDP-glucuronosyltransferase 1A1 and 1A3 activities in human liver microsomes. Pharmaceutics 2021; 13(2): 187.
[http://dx.doi.org/10.3390/pharmaceutics13020187] [PMID: 33535454]
[54]
EM De Lima SY, Da Silva ARN, Leal CEY, De Alencar Filho EB. Virtual screening of fargesin analogs as candidates as inhibitors of aedes aegypti sterol carrier protein. Pharmacognosy Res 2021; 14(1): 12-8.
[http://dx.doi.org/10.5530/pres.14.1.3]
[55]
Min Seo L, Chang Ho L, Young Yoon B, Hye Suk L. Quantification of fargesin in mouse plasma using liquid chromatography-high resolution mass spectrometry: Application to pharmacokinetics of fargesin in mice. Mass Spectrom Lett 2022; 13: 20-5.
[56]
Chun HW, Kim SJ, Pham TH, et al. Epimagnolin A inhibits IL‐6 production by inhibiting p38/NF‐κB and AP‐1 signaling pathways in PMA‐stimulated THP‐1 cells. Environ Toxicol 2019; 34(7): 796-803.
[http://dx.doi.org/10.1002/tox.22746] [PMID: 30919561]
[57]
Jun AY, Kim HJ, Park KK, et al. Tetrahydrofurofuran-type lignans inhibit breast cancer-mediated bone destruction by blocking the vicious cycle between cancer cells, osteoblasts and osteoclasts. Invest New Drugs 2014; 32(1): 1-13.
[http://dx.doi.org/10.1007/s10637-013-9969-0] [PMID: 23673814]
[58]
Zhang Y, Ma R, Wang J. Protective effects of fargesin on cadmium‐induced lung injury through regulating aryl hydrocarbon receptor. J Biochem Mol Toxicol 2022; 36(11): e23197.
[http://dx.doi.org/10.1002/jbt.23197] [PMID: 35983679]
[59]
Jayaraman S, Umapathy VR, Govindaraj J, Govidaraj K. Molecular docking analysis of vascular endothelial growth factor receptor with bioactive molecules from Piper longum as potential anti-cancer agents. Bioinformation 2021; 17(1): 223-8.
[http://dx.doi.org/10.6026/97320630017223] [PMID: 34393441]
[60]
Choi SS, Cha BY, Choi BK, et al. Fargesin, a component of Flos Magnoliae, stimulates glucose uptake in L6 myotubes. J Nat Med 2013; 67(2): 320-6.
[http://dx.doi.org/10.1007/s11418-012-0685-4] [PMID: 22791412]
[61]
Chen CC, Chen HY, Shiao MS, Lin YL, Kuo YH, Ou JC. Inhibition of low density lipoprotein oxidation by tetrahydrofurofuran lignans from Forsythia suspensa and Magnolia coco. Planta Med 1999; 65(8): 709-11.
[http://dx.doi.org/10.1055/s-1999-14093] [PMID: 10630110]
[62]
Kaur K, Devi B, Agrawal V, Kumar R, Sandhir R. Identification of potential inhibitors of brain-specific CYP46A1 from phytoconstituents in Indian traditional medicinal plants. J Proteins Proteomics. 2022; 13: pp. (4)227-45.
[http://dx.doi.org/10.1007/s42485-022-00098-x]
[63]
Baek JA, Lee YD, Lee CB, et al. Extracts of Magnoliae flos inhibit inducible nitric oxide synthase via ERK in human respiratory epithelial cells. Nitric Oxide 2009; 20(2): 122-8.
[http://dx.doi.org/10.1016/j.niox.2008.10.003] [PMID: 18976718]
[64]
Kim JS, Kim JY, Lee HJ, et al. Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells. Phytother Res 2010; 24(5): 748-53.
[http://dx.doi.org/10.1002/ptr.3028] [PMID: 19943243]
[65]
Lim H, Son KH, Bae KH, Hung TM, Kim YS, Kim HP. 5-Lipoxygenase-inhibitory constituents from Schizandra fructus and Magnolia flos. Phytother Res 2009; 23(10): 1489-92.
[http://dx.doi.org/10.1002/ptr.2783] [PMID: 19277963]
[66]
Tripathi D, Koora S, Satyanarayana K, Saleem Basha S, Jayaraman S. Molecular docking analysis of COX-2 with compounds from Piper longum. Bioinformation 2021; 17(6): 623-7.
[http://dx.doi.org/10.6026/97320630017623] [PMID: 35173384]
[67]
Jiménez-Arellanes A, León-Díaz R, Meckes M, et al. Antiprotozoal and antimycobacterial activities of pure compounds from aristolochia elegans Rhizomes. Evid Based Complement Alternat Med 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/593403] [PMID: 22454670]
[68]
Sartorelli P, Salomone Carvalho C, Quero Reimão J, Lorenzi H, Tempone A. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera. Planta Med 2010; 76(13): 1454-6.
[http://dx.doi.org/10.1055/s-0029-1240952] [PMID: 20301059]
[69]
Lakhera S, Devlal K, Ghosh A, Rana M. In silico investigation of phytoconstituents of medicinal herb ‘Piper longum’ against SARS-CoV-2 by molecular docking and molecular dynamics analysis. Resul Chem 2021; 3: 100199.
[http://dx.doi.org/10.1016/j.rechem.2021.100199] [PMID: 34603947]
[70]
Kim HJ, Nam YR, Nam JH. Flos Magnoliae inhibits chloride secretion via ANO1 inhibition in Calu-3 Cells. Am J Chin Med 2018; 46(5): 1079-92.
[http://dx.doi.org/10.1142/S0192415X18500568] [PMID: 29976084]
[71]
Shen Y, Pang ECK, Xue CCL, Zhao ZZ, Lin JG, Li CG. Inhibitions of mast cell-derived histamine release by different Flos Magnoliae species in rat peritoneal mast cells. Phytomedicine 2008; 15(10): 808-14.
[http://dx.doi.org/10.1016/j.phymed.2008.04.012] [PMID: 18585022]
[72]
Zhang W, Wang Y, Geng Z, et al. Antifeedant activities of lignans from stem bark of zanthoxylum armatum DC. against Tribolium castaneum. Molecules 2018; 23(3): 617.
[http://dx.doi.org/10.3390/molecules23030617] [PMID: 29522428]
[73]
Messiano GB, Vieira L, Machado MB, Lopes LMX, de Bortoli SA, Zukerman-Schpector J. Evaluation of insecticidal activity of diterpenes and lignans from Aristolochia malmeana against Anticarsia gemmatalis. J Agric Food Chem 2008; 56(8): 2655-9.
[http://dx.doi.org/10.1021/jf703594z] [PMID: 18380460]
[74]
Agnihotri S, Dobhal P, Tamta S. Chemical composition, polyphenol contents and antioxidant activities of the ‘Himalayan toothache relieving tree’ ( zanthoxylum armatum DC.). Nat Prod Res 2023; 37(16): 2759-64.
[http://dx.doi.org/10.1080/14786419.2022.2128344] [PMID: 36200684]
[75]
Guo T, Su D, Huang Y, Wang Y, Li YH. Ultrasound-assisted aqueous two-phase system for extraction and enrichment of zanthoxylum armatum lignans. Molecules 2015; 20(8): 15273-86.
[http://dx.doi.org/10.3390/molecules200815273] [PMID: 26307958]
[76]
Samad A, Badshah S, Khan D, Ali F, Amanullah M, Hanrahan J. New prenylated carbazole alkaloids from zanthoxylum armatum. J Asian Nat Prod Res 2014; 16(12): 1126-31.
[http://dx.doi.org/10.1080/10286020.2014.967228] [PMID: 25355272]
[77]
Li DX, Liu M, Zhou XJ. A new dimeric lignan from Zanthoxylum simulans. Zhongguo Zhongyao Zazhi 2015; 40(14): 2843-8.
[PMID: 26666037]
[78]
Kalia NK, Singh B, Sood RP. A new amide from zanthoxylum armatum. J Nat Prod 1999; 62(2): 311-2.
[http://dx.doi.org/10.1021/np980224j] [PMID: 10075770]
[79]
Bhatt V, Kumar V, Singh B, Kumar N. A New Geranylbenzofuranone from zanthoxylum armatum. Nat Prod Commun 2015; 10(2): 1-4.
[http://dx.doi.org/10.1177/1934578X1501000225]
[80]
Kumar V, Kumar S, Singh B, Kumar N. Quantitative and structural analysis of amides and lignans in zanthoxylum armatum by UPLC-DAD-ESI-QTOF–MS/MS. J Pharm Biomed Anal 2014; 94: 23-9.
[http://dx.doi.org/10.1016/j.jpba.2014.01.028] [PMID: 24534301]
[81]
Liu YQ, Yang SH, Liu Q, et al. Study on chemical constituents of Zanthoxyli cortex’s ethyl acetate extract. Zhong Yao Cai 2013; 36(11): 1792-5.
[PMID: 24956821]
[82]
Bhatt V, Sharma S, Kumar N, Sharma U, Singh B. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of zanthoxylum armatum using UPLC-DAD-ESI-QTOF–MS/MS. J Pharm Biomed Anal 2017; 132: 46-55.
[http://dx.doi.org/10.1016/j.jpba.2016.09.035] [PMID: 27693952]
[83]
Zhou X, Chen C, Ye X, Song F, Fan G, Wu F. Analysis of lignans in Magnoliae flos by turbulent flow chromatography with online solid‐phase extraction and high‐performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2016; 39(7): 1266-72.
[http://dx.doi.org/10.1002/jssc.201501167] [PMID: 26833996]
[84]
Yu HJ, Chen CC, Shieh BJ. Two new constituents from the leaves of Magnolia coco. J Nat Prod 1998; 61(8): 1017-9.
[http://dx.doi.org/10.1021/np970571d] [PMID: 9722488]
[85]
Anaya AL, Macías-Rubalcava M, Cruz-Ortega R, et al. Allelochemicals from stauranthus perforatus, a rutaceous tree of the yucatan peninsula, Mexico. Phytochemistry 2005; 66(4): 487-94.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.028] [PMID: 15694456]
[86]
Guo T, Deng YX, Xie H, et al. Antinociceptive and anti-inflammatory activities of ethyl acetate fraction from zanthoxylum armatum in mice. Fitoterapia 2011; 82(3): 347-51.
[http://dx.doi.org/10.1016/j.fitote.2010.11.004] [PMID: 21059381]
[87]
Zhao W, Zhou T, Fan G, Chai Y, Wu Y. Isolation and purification of lignans from Magnolia biondii Pamp by isocratic reversed‐phase two‐dimensional liquid chromatography following microwave‐assisted extraction. J Sep Sci 2007; 30(15): 2370-81.
[http://dx.doi.org/10.1002/jssc.200700098] [PMID: 17628872]
[88]
Lin Y, Xu J, Jia Q, et al. Cell membrane chromatography coupled online with LC‐MS to screen anti‐anaphylactoid components from Magnolia biondii Pamp. targeting on Mas‐related G protein‐coupled receptor X2. J Sep Sci 2020; 43(13): 2571-8.
[http://dx.doi.org/10.1002/jssc.202000014] [PMID: 32281296]
[89]
Ma Y, Han G. Biologically active lignins from Magnolia biondii Pamp. Zhongguo Zhongyao Zazhi 1995; 20(2): 102-104, 127.
[PMID: 7779269]
[90]
Srivastava S, Gupta MM, Verma RK, Kumar S. Determination of 1,3-benzodioxanes in Piper mullesua by high-performance thin-layer chromatography. J AOAC Int 2000; 83(6): 1484-8.
[http://dx.doi.org/10.1093/jaoac/83.6.1484] [PMID: 11128158]
[91]
Kim MR, Moon HT, Lee DG, Woo ER. A new lignan glycoside from the stem bark of styrax japonica s. et Z. Arch Pharm Res 2007; 30(4): 425-30.
[http://dx.doi.org/10.1007/BF02980215] [PMID: 17489357]
[92]
Hong PTL, Kim HJ, Kim WK, Nam JH. Flos Magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition. Korean J Physiol Pharmacol 2021; 25(3): 251-8.
[http://dx.doi.org/10.4196/kjpp.2021.25.3.251] [PMID: 33859065]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy