Abstract
Introduction: This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science.
Methods: Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a threedimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings.
Results: The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a blu-ray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/ nanopattern arrays.
Conclusion: Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.
Keywords: Laser interference, Direct Laser Lithography System (DLLS), Micro/nano patterns, Depth of Focus (DOF), Depth of Penetration (DOP), optoelectronics.
[http://dx.doi.org/10.1103/PhysRevLett.118.183602] [PMID: 28524681]
[http://dx.doi.org/10.1364/OE.24.009308] [PMID: 27137546]
[http://dx.doi.org/10.3390/mi8060168]
[http://dx.doi.org/10.1016/j.precisioneng.2016.05.006]
[http://dx.doi.org/10.1103/PhysRevLett.119.253201] [PMID: 29303327]
[http://dx.doi.org/10.1109/ICINFA.2010.5512128]
[http://dx.doi.org/10.1364/AO.55.007287] [PMID: 27661364]
[http://dx.doi.org/10.1016/j.carbon.2011.12.011]
[http://dx.doi.org/10.1016/j.optlaseng.2016.02.003]
[http://dx.doi.org/10.3390/photonics5040034]
[http://dx.doi.org/10.1007/s00339-012-6801-1]
[http://dx.doi.org/10.1002/jsid.745]
[http://dx.doi.org/10.1007/s13391-013-6035-1]
[http://dx.doi.org/10.1002/latj.201090109]
[http://dx.doi.org/10.1088/2051-672X/4/2/024004]
[http://dx.doi.org/10.1016/j.cirp.2011.05.005]
[http://dx.doi.org/10.12693/APhysPolA.121.543]
[http://dx.doi.org/10.3103/S8756699012040012]
[http://dx.doi.org/10.1364/AO.54.001808]
[http://dx.doi.org/10.1166/jnn.2014.9199] [PMID: 24749439]
[http://dx.doi.org/10.1016/j.phpro.2011.06.185]
[http://dx.doi.org/10.1016/j.phpro.2012.03.640]
[http://dx.doi.org/10.1088/2040-8986/aa6e82]
[http://dx.doi.org/10.1364/OE.24.018695] [PMID: 27505832]
[http://dx.doi.org/10.1364/OE.22.018778] [PMID: 25089495]
[http://dx.doi.org/10.1016/j.mee.2018.01.031]
[http://dx.doi.org/10.1002/adem.200900221]