Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advancing Novel Strategies against Post-surgical Tendon Adhesion Bands, Exploring New Frontiers

Author(s): Maryam Alaei, Doaa Jawad-Kadhim Abdulhasan, Amirhossein Barjasteh, Abdulridha Mohammed Al-Asady, Hanieh Latifi, Ehsan Vahedi, Amir Avan, Majid Khazaei, Mikhail Ryzhikov and Seyed Mahdi Hassanian*

Volume 30, Issue 21, 2024

Published on: 06 May, 2024

Page: [1650 - 1658] Pages: 9

DOI: 10.2174/0113816128299091240423121840

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Current interest in adhesion formation stems from its global impact on the function and quality of life, spanning a spectrum of subtle impairments to significant disabilities, based on the affected area and the extent of adhesion. Yet therapeutic agents are restricted to prophylactic anti-inflammatories, revision surgeries, and biological and physical techniques, none of which grant a decent outcome. Recent advancements in tissue- engineered biomaterials, drug delivery systems, and fabricating technologies such as nanoparticles, hydrogels, and weaving or braiding demonstrate potential for improved outcomes. However, none of the mentioned methods have reliable outcomes, thus this study aims to elucidate the mechanisms involved in the pathophysiology of tendon adhesion and post-surgical adhesion band formation (PSAB), with a closer look at inflammatory pathways stimulating the process. This article consolidates information on diverse therapeutic and prophylactic methods and cutting-edge technologies, aiming to provide a comprehensive update on this topic, and providing researchers an avenue for new and innovative ideas for further investigations.

Keywords: Tendon, post-surgical adhesion band, adhesion therapy, spectrum, quality of life, anti-inflammation.

[1]
Gaut L, Duprez D. Tendon development and diseases. Wiley Interdiscip Rev Dev Biol 2016; 5(1): 5-23.
[http://dx.doi.org/10.1002/wdev.201] [PMID: 26256998]
[2]
Yan Z, Yan H, Nerlich M, Pfeifer CG, Docheva D. Boosting tendon repair: Interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop 2018; 5(1): 1.
[http://dx.doi.org/10.1186/s40634-017-0117-1]
[3]
Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev 2015; 84: 222-39.
[http://dx.doi.org/10.1016/j.addr.2014.11.015] [PMID: 25446135]
[4]
Nichols AEC, Best KT, Loiselle AE. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl Res 2019; 209: 156-68.
[http://dx.doi.org/10.1016/j.trsl.2019.02.002] [PMID: 30776336]
[5]
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9(1): 18.
[http://dx.doi.org/10.1186/1749-799X-9-18] [PMID: 24628910]
[6]
Tang JB, Zhou YL, Wu YF, Liu PY, Wang XT. Gene therapy strategies to improve strength and quality of flexor tendon healing. Expert Opin Biol Ther 2016; 16(3): 291-301.
[http://dx.doi.org/10.1517/14712598.2016.1134479] [PMID: 26853840]
[7]
Snedeker JG, Foolen J. Tendon injury and repair: A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63: 18-36.
[http://dx.doi.org/10.1016/j.actbio.2017.08.032] [PMID: 28867648]
[8]
Yao Z, Wang W, Ning J, et al. Hydroxycamptothecin inhibits peritendinous adhesion via the endoplasmic reticulum stress-dependent apoptosis. Front Pharmacol 2019; 10: 967.
[http://dx.doi.org/10.3389/fphar.2019.00967] [PMID: 31551777]
[9]
Zheng W, Song J, Zhang Y, Chen S, Ruan H, Fan C. Metformin prevents peritendinous fibrosis by inhibiting transforming growth factor-β signaling. Oncotarget 2017; 8(60): 101784-94.
[http://dx.doi.org/10.18632/oncotarget.21695] [PMID: 29254204]
[10]
Sarver DC, Sugg KB. Prostaglandin D(2) signaling is not involved in the recovery of rat hind limb tendons from injury. Physiol Rep 2019; 7(22): e14289.
[11]
Güleç A, Türk Y, Aydin BK. Effect of curcumin on tendon healing: An experimental study in a rat model of Achilles tendon injury. Int Orthop 2018; 42(8): 1905-10.
[12]
Cashman JD, Kennah E, Shuto A, Winternitz C, Springate CMK. Fucoidan film safely inhibits surgical adhesions in a rat model. J Surg Res 2011; 171(2): 495-503.
[http://dx.doi.org/10.1016/j.jss.2010.04.043] [PMID: 20638689]
[13]
Akhlaghi S, Ebrahimnia M, Niaki DS, Solhi M, Rabbani S, Haeri A. Recent advances in the preventative strategies for postoperative adhesions using biomaterial-based membranes and micro/nano- drug delivery systems. J Drug Deliv Sci Technol 2023; 85: 104539.
[http://dx.doi.org/10.1016/j.jddst.2023.104539]
[14]
Lin LX, Yuan F, Zhang HH, Liao NN, Luo JW, Sun YL. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model. PLoS One 2017; 12(2): e0172088.
[http://dx.doi.org/10.1371/journal.pone.0172088] [PMID: 28207824]
[15]
Briskin DP. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 2000; 124(2): 507-14.
[http://dx.doi.org/10.1104/pp.124.2.507] [PMID: 11027701]
[16]
Zhang W, Li X, Comes Franchini M, et al. Controlled release of curcumin from curcumin-loaded nanomicelles to prevent peritendinous adhesion during Achilles tendon healing in rats. Int J Nanomedicine 2016; 11: 2873-81.
[PMID: 27382278]
[17]
Liang Y, Xu K, Zhang P, et al. Quercetin reduces tendon adhesion in rat through suppression of oxidative stress. BMC Musculoskelet Disord 2020; 21(1): 608.
[http://dx.doi.org/10.1186/s12891-020-03618-2] [PMID: 32917186]
[18]
Zhou H, Jiang S, Li P, et al. Improved tendon healing by a combination of Tanshinone IIA and miR-29b inhibitor treatment through preventing tendon adhesion and enhancing tendon strength. Int J Med Sci 2020; 17(8): 1083-94.
[http://dx.doi.org/10.7150/ijms.44138] [PMID: 32410838]
[19]
Dogramaci Y, Kalac A, Atik E, et al. Effects of a single application of extractum cepae on the peritendinous adhesion: An experimental study in rabbits. Ann Plast Surg 2010; 64(3): 338-41.
[http://dx.doi.org/10.1097/SAP.0b013e3181afa428] [PMID: 20179487]
[20]
Liu B, Luo C, Ouyang L, et al. An experimental study on the effect of safflower yellow on tendon injury-repair in chickens. J Surg Res 2011; 169(2): e175-84.
[http://dx.doi.org/10.1016/j.jss.2011.03.079] [PMID: 21601885]
[21]
Fu SC, Hui CWC, Li LC, et al. Total flavones of Hippophae rhamnoides promotes early restoration of ultimate stress of healing patellar tendon in a rat model. Med Eng Phys 2005; 27(4): 313-21.
[http://dx.doi.org/10.1016/j.medengphy.2004.12.011] [PMID: 15823472]
[22]
Aiyegbusi AI, Olabiyi OO, Duru FIO, Noronha CC, Okanlawon AO. A comparative study of the effects of bromelain and fresh pineapple juice on the early phase of healing in acute crush achilles tendon injury. J Med Food 2011; 14(4): 348-52.
[http://dx.doi.org/10.1089/jmf.2010.0078] [PMID: 21254908]
[23]
Jiang D, Gao P, Lin H, Geng H. Curcumin improves tendon healing in rats: A histological, biochemical, and functional evaluation. Connect Tissue Res 2016; 57(1): 20-7.
[http://dx.doi.org/10.3109/03008207.2015.1087517] [PMID: 26540017]
[24]
Chan K, Fu S, Hui W, et al. Radix Dipsaci does not improve tendon healing in a rat model of patellar tendon donor site injury. Orthop Surg 2010; 2(3): 187-93.
[http://dx.doi.org/10.1111/j.1757-7861.2010.00085.x] [PMID: 22009947]
[25]
Aro AA, Simões GF, Esquisatto MAM, et al. Arrabidaea chica extract improves gait recovery and changes collagen content during healing of the Achilles tendon. Injury 2013; 44(7): 884-92.
[http://dx.doi.org/10.1016/j.injury.2012.08.055] [PMID: 23047299]
[26]
Chen ZY, Chen SH. Polysaccharide extracted from Bletilla striata promotes proliferation and migration of human tenocytes. Polymers 2020; 12(11): 2567.
[http://dx.doi.org/10.3390/polym12112567]
[27]
Akali A, Khan U, Khaw PT, McGrouther AD. Decrease in adhesion formation by a single application of 5-fluorouracil after flexor tendon injury. Plast Reconstr Surg 1999; 103(1): 151-8.
[http://dx.doi.org/10.1097/00006534-199901000-00024] [PMID: 9915176]
[28]
Moran SL, Ryan CK, Orlando GS, Pratt CE, Michalko KB. Effects of 5-fluorouracil on flexor tendon repair. J Hand Surg Am 2000; 25(2): 242-51.
[http://dx.doi.org/10.1053/jhsu.2000.jhsu25a0242] [PMID: 10722815]
[29]
Karaaltin MV, Ozalp B, Dadaci M, Kayıkcıoglu A, Kecik A, Oner F. The effects of 5-fluorouracil on flexor tendon healing by using a biodegradable gelatin, slow releasing system: Experimental study in a hen model. J Hand Surg Eur Vol 2013; 38(6): 651-7.
[http://dx.doi.org/10.1177/1753193412458646] [PMID: 22918883]
[30]
Duci SB, Arifi HM, Ahmeti HR, et al. Histological evaluation of the effects of 5-fluorouracil on partially divided flexor tendon injuries in rabbits. Eur J Plast Surg 2017; 40(1): 1-10.
[http://dx.doi.org/10.1007/s00238-016-1237-z]
[31]
Ragoowansi R, Khan U, Brown RA, McGrouther DA. Reduction in matrix metalloproteinase production by tendon and synovial fibroblasts after a single exposure to 5-fluorouracil. Br J Plast Surg 2001; 54(4): 283-7.
[http://dx.doi.org/10.1054/bjps.2000.3580] [PMID: 11355979]
[32]
Fatemi MJ, Shirani S, Sobhani R, et al. Prevention of peritendinous adhesion formation after the flexor tendon surgery in rabbits. Ann Plast Surg 2018; 80(2): 171-5.
[http://dx.doi.org/10.1097/SAP.0000000000001169] [PMID: 28671883]
[33]
Zhao C, Zobitz ME, Sun YL, et al. Surface treatment with 5-fluorouracil after flexor tendon repair in a canine in vivo model. J Bone Joint Surg Am 2009; 91(11): 2673-82.
[http://dx.doi.org/10.2106/JBJS.H.01695] [PMID: 19884442]
[34]
Zheng W, Qian Y, Chen S, Ruan H, Fan C. Rapamycin protects against peritendinous fibrosis through activation of autophagy. Front Pharmacol 2018; 9: 402.
[http://dx.doi.org/10.3389/fphar.2018.00402] [PMID: 29731718]
[35]
Farhat YM, Al-Maliki AA, Chen T, et al. Gene expression analysis of the pleiotropic effects of TGF-β1 in an in vitro model of flexor tendon healing. PLoS One 2012; 7(12): e51411.
[http://dx.doi.org/10.1371/journal.pone.0051411] [PMID: 23251524]
[36]
Farhat YM, Al-Maliki AA, Easa A, O’Keefe RJ, Schwarz EM, Awad HA. TGF-β1 suppresses plasmin and mmp activity in flexor tendon cells via PAI-1: Implications for scarless flexor tendon repair. J Cell Physiol 2015; 230(2): 318-26.
[http://dx.doi.org/10.1002/jcp.24707] [PMID: 24962629]
[37]
Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC. Studies in flexor tendon wound healing: Neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg 2000; 105(1): 148-55.
[http://dx.doi.org/10.1097/00006534-200001000-00025] [PMID: 10626983]
[38]
Bates SJ, Morrow E, Zhang AY, Pham H, Longaker MT, Chang J. Mannose-6-phosphate, an inhibitor of transforming growth factor- beta, improves range of motion after flexor tendon repair. J Bone Joint Surg Am 2006; 88(11): 2465-72.
[PMID: 17079405]
[39]
Xia C, Yang XY, Wang Y, Sun K, Tian S. Inhibition effect of mannose-6-phosphate on expression of transforming growth factor Beta receptor in flexor tendon cells. Orthopedics 2011; 34(1): 01477447-20101123-09.
[http://dx.doi.org/10.3928/01477447-20101123-09] [PMID: 21210624]
[40]
Xia C, Zuo J, Wang C, Wang Y. Tendon healing in vivo: Effect of mannose-6-phosphate on flexor tendon adhesion formation. Orthopedics 2012; 35(7): e1056-60.
[http://dx.doi.org/10.3928/01477447-20120621-21] [PMID: 22784900]
[41]
Wong JKF, Metcalfe AD, Wong R, et al. Reduction of tendon adhesions following administration of Adaprev, a hypertonic solution of mannose-6-phosphate: Mechanism of action studies. PLoS One 2014; 9(11): e112672.
[http://dx.doi.org/10.1371/journal.pone.0112672] [PMID: 25383548]
[42]
Jie Li Z, Bing Luo C, Liang Wang H, Sun J, Qian Yang Q, Lang Zhou Y. Metformin suppressed tendon injury-induced adhesion via hydrogel-nanoparticle sustained-release system. Int J Pharm 2023; 642: 123190.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123190] [PMID: 37391109]
[43]
Ferry ST, Dahners LE, Afshari HM, Weinhold PS. The effects of common anti-inflammatory drugs on the healing rat patellar tendon. Am J Sports Med 2007; 35(8): 1326-33.
[http://dx.doi.org/10.1177/0363546507301584] [PMID: 17452512]
[44]
Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med 2006; 34(3): 362-9.
[http://dx.doi.org/10.1177/0363546505280428] [PMID: 16210573]
[45]
Behfar M, Hobbenaghi R, Sarrafzadeh-Rezaei F. Effects of flunixin meglumine on experimental tendon wound healing: A histopathological and mechanical study in rabbits. Vet Res Forum 2013; 4(4): 233-8.
[PMID: 25568677]
[46]
Geary MB, Orner CA, Bawany F, et al. Systemic EP4 inhibition increases adhesion formation in a murine model of flexor tendon repair. PLoS One 2015; 10(8): e0136351.
[http://dx.doi.org/10.1371/journal.pone.0136351] [PMID: 26312751]
[47]
Akdemir O, Lineaweaver WC, Cavusoglu T, et al. Effect of taurine on rat Achilles tendon healing. Connect Tissue Res 2015; 56(4): 300-6.
[http://dx.doi.org/10.3109/03008207.2015.1026437] [PMID: 25749029]
[48]
Ömeroğlu S, Peker T, Türközkan N, Ömeroğlu H. High-dose vitamin C supplementation accelerates the Achilles tendon healing in healthy rats. Arch Orthop Trauma Surg 2009; 129(2): 281-6.
[http://dx.doi.org/10.1007/s00402-008-0603-0] [PMID: 18309503]
[49]
Hung LK, Fu SC, Lee YW, Mok TY, Chan KM. Local vitamin-C injection reduced tendon adhesion in a chicken model of flexor digitorum profundus tendon injury. J Bone Joint Surg Am 2013; 95(7): e41.
[http://dx.doi.org/10.2106/JBJS.K.00988] [PMID: 23553304]
[50]
Lee YW, Fu SC, Mok TY, Chan KM, Hung LK. Local administration of Trolox, a vitamin E analog, reduced tendon adhesion in a chicken model of flexor digitorum profundus tendon injury. J Orthop Translat 2017; 10: 102-7.
[http://dx.doi.org/10.1016/j.jot.2016.10.002] [PMID: 29662762]
[51]
Boz M, Çakıcı H, Pakdil M, et al. Does methylene blue reduce adhesion during the healing process after tendon repair? Eklem Hastalik Cerrahisi 2020; 31(2): 246-54.
[http://dx.doi.org/10.5606/ehc.2020.74405] [PMID: 32584721]
[52]
Dabak TK, Sertkaya O, Acar N, Donmez BO, Ustunel I. The effect of Phospholipids (Surfactant) on adhesion and biomechanical properties of tendon: A rat achilles tendon repair model. BioMed Res Int 2015; 2015: 1-6.
[http://dx.doi.org/10.1155/2015/689314] [PMID: 26101776]
[53]
Healy C, Mulhall KJ, Patrick DF, Kay EW, Bouchier-Hayes D. The effect of thermal preconditioning of the limb on Flexor tendon healing. J Hand Surg Eur Vol 2007; 32(3): 289-95.
[http://dx.doi.org/10.1016/J.JHSB.2007.01.004] [PMID: 17321648]
[54]
Tan Y, Wu QF, Wu Q, Tan XT, Chen LB, Wang X. Thermal preconditioning may prevent tendon adhesion by up-regulating HSP72 in rats. Cell Physiol Biochem 2017; 42(4): 1623-34.
[http://dx.doi.org/10.1159/000479403] [PMID: 28738356]
[55]
Tang XM, Dai J, Sun HL. Thermal pretreatment promotes the protective effect of HSP70 against tendon adhesion in tendon healing by increasing HSP70 expression. Mol Med Rep 2019; 20(1): 205-15.
[http://dx.doi.org/10.3892/mmr.2019.10240] [PMID: 31115522]
[56]
Ermutlu C, Kaleli T, Yalcinkaya U, Cetintas S, Atici T. Efficacy of single-dose radiotherapy in preventing posttraumatic tendon adhesion. Cureus 2020; 12(6): e8410.
[http://dx.doi.org/10.7759/cureus.8410] [PMID: 32626625]
[57]
Mortensen NHM, Skov O, Jensen PE. Early motion of the ankle after operative treatment of a rupture of the Achilles tendon. A prospective, randomized clinical and radiographic study. J Bone Joint Surg Am 1999; 81(7): 983-90.
[http://dx.doi.org/10.2106/00004623-199907000-00011] [PMID: 10428130]
[58]
Sölveborn SA, Moberg A. Immediate free ankle motion after surgical repair of acute Achilles tendon ruptures. Am J Sports Med 1994; 22(5): 607-10.
[http://dx.doi.org/10.1177/036354659402200507] [PMID: 7810783]
[59]
Chen Q, Hou D, Suo Y, Zhu Z. LncRNA XIST prevents tendon adhesion and promotes tendon repair through the miR-26a-5p/COX2 pathway. Mol Biotechnol 2022; 64(4): 424-33.
[http://dx.doi.org/10.1007/s12033-021-00419-3] [PMID: 34714511]
[60]
Tavakkoli M, Aali S, Khaledifar B, et al. The potential association between the risk of post-surgical adhesion and the activated local angiotensin II type 1 receptors: Need for novel treatment strategies. Gastrointest Tumors 2021; 8(3): 107-14.
[http://dx.doi.org/10.1159/000514614] [PMID: 34307308]
[61]
Waldron MG, Judge C, Farina L, O’Shaughnessy A, O’Halloran M. Barrier materials for prevention of surgical adhesions: Systematic review. BJS Open 2022; 6(3): zrac075.
[http://dx.doi.org/10.1093/bjsopen/zrac075] [PMID: 35661871]
[62]
Wiig ME, Dahlin LB, Fridén J, et al. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trial. PLoS One 2014; 9(10): e110735-5.
[http://dx.doi.org/10.1371/journal.pone.0110735] [PMID: 25340801]
[63]
Lees VC, Warwick D, Gillespie P, et al. A multicentre, randomized, double-blind trial of the safety and efficacy of mannose-6-phosphate in patients having Zone II flexor tendon repairs. J Hand Surg Eur Vol 2015; 40(7): 682-94.
[http://dx.doi.org/10.1177/1753193414553162] [PMID: 25311934]
[64]
Ozgenel GY, Etöz A. Effects of repetitive injections of hyaluronic acid on peritendinous adhesions after flexor tendon repair: A preliminary randomized, placebo-controlled clinical trial. Ulus Travma Acil Cerrahi Derg 2012; 18(1): 11-7.
[http://dx.doi.org/10.5505/tjtes.2012.95530] [PMID: 22290044]
[65]
Oh CH, Oh JH, Kim SH, Cho JH, Yoon JP, Kim JY. Effectiveness of subacromial anti-adhesive agent injection after arthroscopic rotator cuff repair: Prospective randomized comparison study. Clin Orthop Surg 2011; 3(1): 55-61.
[http://dx.doi.org/10.4055/cios.2011.3.1.55] [PMID: 21369479]
[66]
Akbari H, Rahimi A, Ghavami Y, Mousavi S, Fatemi M. Effect of heparin on post-operative adhesion in flexor tendon surgery of the hand. J Hand Microsurg 2016; 7(2): 244-9.
[http://dx.doi.org/10.1007/s12593-015-0192-4] [PMID: 26578825]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy