Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

UV-Visible Spectroscopy: A Review on its Pharmaceutical and Bio-allied Sciences Applications

Author(s): Abhinav Singhal, Urvashi Saini, Bhawna Chopra, Ashwani K. Dhingra*, Akash Jain and Jasmine Chaudhary

Volume 20, Issue 3, 2024

Published on: 09 April, 2024

Page: [161 - 177] Pages: 17

DOI: 10.2174/0115734129300562240408042614

Price: $65

conference banner
Abstract

Ultraviolet-Visible (UV-Vis) spectroscopy has emerged as a powerful analytical tool with diverse applications in pharmaceutical and bio-allied sciences. This article provides a comprehensive overview of the extensive utility of UV-Vis spectroscopy, emphasizing its pivotal role in characterizing and analyzing various compounds critical for drug development and bio-allied research. In the pharmaceutical sector, UV-Vis spectroscopy is a fundamental technique for quantifying the concentrations of active pharmaceutical ingredients (APIs) in formulations. Its non-destructive nature and high sensitivity make it an indispensable tool for quality control, ensuring the consistency and potency of pharmaceutical products. Furthermore, this technique has been employed in the study of drug-receptor interactions to elucidate the molecular mechanisms underlying therapeutic effects. In bio-allied applications, UV-Vis spectroscopy is used to analyze biomolecules like proteins, nucleic acids, and enzymes. This technique allows for the study of protein conformational changes, DNA structure, and enzymatic activity, offering crucial insights into fundamental biological processes. Additionally, UV-Vis spectroscopy aids in determining biomarker concentrations, assisting in the early diagnosis and monitoring of various diseases. This article also explores recent advancements in UV-Vis spectroscopy, including the integration of nanomaterials and computational approaches to enhance sensitivity and selectivity. Moreover, it discusses the potential of UV-Vis spectroscopy in emerging areas such as personalized medicine and point- of-care diagnostics. As technology continues to evolve, UV-Visible spectroscopy is poised to significantly contribute to the ever-expanding landscape of pharmaceutical and bio-related research.

Keywords: Ultraviolet-visible, spectroscopy, pharmaceutical, analysis, bio-allied, applications.

Next »
Graphical Abstract
[1]
Pashkova, G.V.; Revenko, A.G. A review of application of total reflection X-ray fluorescence spectrometry to water analysis. Appl. Spectrosc. Rev., 2015, 50(6), 443-472.
[http://dx.doi.org/10.1080/05704928.2015.1010205]
[2]
Pavia, D.; Lampman, G.; Krix, G. Introduction to Spectroscopy; Indiana University: Bloomington, IN, 2001, pp. 353-386.
[3]
Ríos-Reina, R.; Azcarate, S.M. How chemometrics revives the UV-Vis spectroscopy applications as an analytical sensor for spectralprint (nontargeted) analysis. Chemosensors, 2022, 11(1), 8.
[http://dx.doi.org/10.3390/chemosensors11010008]
[4]
Chow, S.C.; Liu, J.P. Design and analysis of bioavailability and bioequivalence studies; CRC Press, 1999.
[5]
Harris, D.C. Quantitative Chemical Analysis, 7th ed; 3rd printing. W. H. Freeman, 2007.
[6]
Chen, M.L.; Lesko, L.; Williams, R.L. Measures of exposure versus measures of rate and extent of absorption. Clin. Pharmacokinet., 2001, 40(8), 565-572.
[http://dx.doi.org/10.2165/00003088-200140080-00001] [PMID: 11523723]
[7]
Chavez, J.D.; Wippel, H.H.; Tang, X.; Keller, A.; Bruce, J.E. In-cell labeling and mass spectrometry for systems-level structural biology. Chem. Rev., 2022, 122(8), 7647-7689.
[http://dx.doi.org/10.1021/acs.chemrev.1c00223] [PMID: 34232610]
[8]
Kaur, H.D Instrumental method of Chemical Analysis; Pragati Prakashan, 2013, pp. 356-358.
[9]
Shankar, D.S.R. Text book of Pharmaceutical Analysis; Rx Publication: Otacamund, 2010.
[10]
Shi, Z.; Chow, C.W.K.; Fabris, R.; Liu, J.; Jin, B. Applications of online UV-Vis spectrophotometer for drinking water quality monitoring and process control: A review. Sensors, 2022, 22(8), 2987.
[http://dx.doi.org/10.3390/s22082987] [PMID: 35458971]
[11]
Antosiewicz, J.M.; Shugar, D. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: Selected applications. Biophys. Rev., 2016, 8(2), 163-177.
[http://dx.doi.org/10.1007/s12551-016-0197-7] [PMID: 28510057]
[12]
Wagner, J.G. Fundamentals Of Clinical Pharmacokinetics; Drug Intelligence Publications: Hamilton, IL, 1975.
[13]
FDA. Guidance on bioavailability and bioequivalence studies for orally administrated drug products–general considerations. , 2003. Available from: https://www.fda.gov/files/drugs/published/Bioavailability-and-Bioequivalence-Studies-Submitted-in-NDAs-or-INDs-%E2%80%94-General-Considerations.pdf
[14]
Phillips, K.F. Power of the two one-sided tests procedure in bioequivalence. J. Pharmacokinet. Biopharm., 1990, 18(2), 137-144.
[http://dx.doi.org/10.1007/BF01063556] [PMID: 2348380]
[15]
Liu, J.; Chow, S.C. Sample size determination for the two one-sided tests procedure in bioequivalence. J. Pharmacokinet. Biopharm., 1992, 20(1), 101-104.
[http://dx.doi.org/10.1007/BF01143188] [PMID: 1588502]
[16]
Schuirmann, D.J. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm., 1987, 15(6), 657-680.
[http://dx.doi.org/10.1007/BF01068419] [PMID: 3450848]
[17]
Chen, K.W.; Chow, S.C.; Li, G. A note on sample size determination for bioequivalence studies with high-order crossover designs. J. Pharmacokinet. Biopharm., 1997, 25(6), 753-765.
[http://dx.doi.org/10.1023/A:1025738019069] [PMID: 9697082]
[18]
Schmid, FX Biological macromolecules: UV-visible spectrophotometry. In: Encyclopedia of Life Sciences; Wiley, 2001.
[19]
Jacobse, J.; ten Voorde, W.; Tandon, A.; Romeijn, S.; Grievink, H.; van der Maaden, K.; van Esdonk, M.; Moes, D.J.; Loeff, F.; Bloem, K.; de Vries, A. Favourable pharmacokinetics of intradermal adalimumab over subcutaneous administration: Results of a randomized controlled trial. Authorea Preprints, 2020, 2020
[http://dx.doi.org/10.22541/au.160133498.87472738]
[20]
Carter, E.L.; Ramirez, Y.; Ragsdale, S.W. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism. J. Biol. Chem., 2017, 292(27), 11280-11299.
[http://dx.doi.org/10.1074/jbc.M117.783118] [PMID: 28500133]
[21]
Nikolaidis, A.; Andreadis, M.; Moschakis, T. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra. Food Chem., 2017, 232, 425-433.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.022] [PMID: 28490093]
[22]
Van Eps, N.; Caro, L.N.; Morizumi, T.; Kusnetzow, A.K.; Szczepek, M.; Hofmann, K.P.; Bayburt, T.H.; Sligar, S.G.; Ernst, O.P.; Hubbell, W.L. Conformational equilibria of light-activated rhodopsin in nanodiscs. Proc. Natl. Acad. Sci., 2017, 114(16), E3268-E3275.
[http://dx.doi.org/10.1073/pnas.1620405114] [PMID: 28373559]
[23]
Lucas, L.H.; Ersoy, B.A.; Kueltzo, L.A.; Joshi, S.B.; Brandau, D.T.; Thyagarajapuram, N.; Peek, L.J.; Middaugh, C.R. Probing protein structure and dynamics by second-derivative ultraviolet absorption analysis of cation–π interactions. Protein Sci., 2006, 15(10), 2228-2243.
[http://dx.doi.org/10.1110/ps.062133706] [PMID: 16963649]
[24]
Jaccoulet, E.; Schweitzer-Chaput, A.; Toussaint, B.; Prognon, P.; Caudron, E. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method. Talanta, 2018, 187, 279-286.
[http://dx.doi.org/10.1016/j.talanta.2018.05.042] [PMID: 29853048]
[25]
Seid, C.A.; Jones, K.M.; Pollet, J.; Keegan, B.; Hudspeth, E.; Hammond, M.; Wei, J.; McAtee, C.P.; Versteeg, L.; Gutierrez, A.; Liu, Z.; Zhan, B.; Respress, J.L.; Strych, U.; Bottazzi, M.E.; Hotez, P.J. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum. Vaccin. Immunother., 2017, 13(3), 621-633.
[http://dx.doi.org/10.1080/21645515.2016.1242540] [PMID: 27737611]
[26]
Biter, A.B.; Weltje, S.; Hudspeth, E.M.; Seid, C.A.; McAtee, C.P.; Chen, W.H.; Pollet, J.B.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. Characterization and stability of Trypanosomacruzi 24-C4 (Tc24-C4), a candidate antigen for a therapeutic vaccine against Chagas disease. J. Pharm. Sci., 2018, 107(5), 1468-1473.
[http://dx.doi.org/10.1016/j.xphs.2017.12.014] [PMID: 29274820]
[27]
Liu, P.F.; Avramova, L.V.; Park, C. Revisiting absorbance at 230nm as a protein unfolding probe. Anal. Biochem., 2009, 389(2), 165-170.
[http://dx.doi.org/10.1016/j.ab.2009.03.028] [PMID: 19318083]
[28]
Kalb, V.F., Jr; Bernlohr, R.W. A new spectrophotometric assay for protein in cell extracts. Anal. Biochem., 1977, 82(2), 362-371.
[http://dx.doi.org/10.1016/0003-2697(77)90173-7] [PMID: 20815]
[29]
Sayre, R.M.; Cole, C.; Billhimer, W.; Stanfield, J.; Ley, R.D. Spectral comparison of solar simulators and sunlight. Photodermatol. Photoimmunol. Photomed., 1990, 7(4), 159-165.
[PMID: 2076371]
[30]
Gies, H.P.; Roy, C.R.; McLennan, A.; Diffey, B.L.; Pailthorpe, M.; Driscoll, C.; Whillock, M.; McKinlay, A.F.; Grainger, K.; Clark, I.; Sayre, R.M. UV protection by clothing: An intercomparison of measurements and methods. Health Phys., 1997, 73(3), 456-464.
[http://dx.doi.org/10.1097/00004032-199709000-00003] [PMID: 9287086]
[31]
Wilkinson, F. Measurements of optical radiation hazards, international commission on nonionizing radiation protection. Methods, 2002, 28, 4-13.
[32]
Brown, D.B.; Peritz, A.E.; Mitchell, D.L.; Chiarello, S.; Uitto, J.; Gasparro, F.P. Common fluorescent sunlamps are an inappropriate substitute for sunlight. Photochem. Photobiol., 2000, 72(3), 340-344.
[PMID: 10989604]
[33]
Ferguson, J.; Brown, M.; Alert, D.; Bielfeldt, S.; Brown, J.; Chardon, A.; Hourseau, C.; Mazilier, C.; Cuthbert, J.; D’Arcy-Burt, K.; Jolley, J.; Murdoch, M.; Finkel, P.; Masson, P.; Merot, F.; MacLennan, A.; Poret, J.; Siladgi, S. Collaborative development of a sun protection factor test method: A proposed european standard. colipa task force ‘sun protection measurement’, Europe. Int. J. Cosmet. Sci., 1996, 18(5), 203-218.
[http://dx.doi.org/10.1111/j.1467-2494.1996.tb00151.x] [PMID: 19245449]
[34]
Ito, S.; Barchi, A.C.; Escaramboni, B.; de Neto, O.P.; Herculano, R.D.; Borges, A.F.; Miranda, R.M.C.; Núñez, F.E.G. UV/Vis spectroscopy combined with chemometrics for monitoring solid-state fermentation with Rhizopus microsporus var. oligosporus. J. Chem. Technol. Biotechnol., 2017, 92(10), 2563-2572.
[http://dx.doi.org/10.1002/jctb.5271]
[35]
Diffey, B.L. Ultraviolet radiation safety. In: Handbook of Laboratory Health and Safety Measures; Springer Netherlands: Dordrecht, 1985; pp. 349-396.
[36]
Pavia, D.; Lampman, G.; Krix, G. Introduction to spectroscopy; Indiana University Press: Bloomington, IN, 2001.
[37]
Shetty, P.R.; Patil, D.D. Applications of simultaneous equation method and derivative method for the determination of rabeprazole sodium and levosulpiride in pharmaceutical dosage form and dissolution samples. J. Assoc. Arab Univ. Basic Appl. Sci., 2014, 15(1), 53-60.
[http://dx.doi.org/10.1016/j.jaubas.2013.05.005]
[38]
Patel, D.M.; Soneji, J.A.; Patel, P.B.; Patel, C.N. Development and validation of a method for simultaneous estimation of ofloxacin and ornidazole in different dissolution media. Pharm. Methods, 2012, 3(2), 102-105.
[http://dx.doi.org/10.4103/2229-4708.103888] [PMID: 23781488]
[39]
Pant, M.; Dadare, K.; Khatri, N.C. Application of UV spectrophotometric methods for simultaneous estimation of norfloxacin and tinidazole in bulk and tablet dosage forms. Pharma Chem., 2012, 4(3), 1041-1046.
[40]
Sharma, R.; Pathodiya, G.; Mishra, G.P.; Sainy, J. Spectrophotometric methods for simultaneous estimation of paracetamol and diclofenac sodium in combined dosage form by application of hydrotropic solubilization. J. Pharm. Sci. Res., 2010, 2(12), 821.
[41]
Donovan, J. Ultraviolet deiiference spectroscopy- new techniques and application. Conform Transit., 1972, 18, 498-525.
[42]
More, D.; Wayse, S.; Zanzane, N.; Anuse, D.; Koratkar, H. A review paper on UV visiblespectroscopy & its pharmaceutical applications. IJCRT, 2023, 11(3), e830-e833.
[43]
Nikolaidis, A.; Moschakis, T. Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis. Food Chem., 2017, 215, 235-244.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.133] [PMID: 27542472]
[44]
Lakshmana, PS; Suriya, PT; Shanmugarathinam, A Development of difference spectrophotometric method for the estimation of leflunomide in tablet dosage form. CI&CEQ, 2012, 18(3), 407-410.
[http://dx.doi.org/10.2298/CICEQ110804016L]
[45]
Rajput, S.; Raj, H. Assay of tegaserod maleate by difference spectroscopy. Indian J. Pharm. Sci., 2007, 69(1), 114-115.
[http://dx.doi.org/10.4103/0250-474X.32121]
[46]
Balakrishnan, G.; Weeks, C.L.; Ibrahim, M.; Soldatova, A.V.; Spiro, T.G. Protein dynamics from time resolved UV Raman spectroscopy. Curr. Opin. Struct. Biol., 2008, 18(5), 623-629.
[http://dx.doi.org/10.1016/j.sbi.2008.06.001] [PMID: 18606227]
[47]
Tadesse Wondimkun, Z.; Jebessa, A.G.; Molloro, L.H.; Haile, T. The determination of caffeine level of wolaita zone, Ethiopia coffee using UV-visible spectrophotometer. Amer. J. Appl. Chem., 2016, 4(2), 59-63.
[http://dx.doi.org/10.11648/j.ajac.20160402.14]
[48]
Yu, J.; Wang, H.; Zhan, J.; Huang, W. Review of recent UV–Vis and infrared spectroscopy researches on wine detection and discrimination. Appl. Spectrosc. Rev., 2018, 53(1), 65-86.
[http://dx.doi.org/10.1080/05704928.2017.1352511]
[49]
Stevenson, K.; McVey, A.F.; Clark, I.B.N.; Swain, P.S.; Pilizota, T. General calibration of microbial growth in microplate readers. Sci. Rep., 2016, 6(1), 38828.
[http://dx.doi.org/10.1038/srep38828] [PMID: 27958314]
[50]
Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric analysis of phenolic compounds in grapes and wines. J. Agric. Food Chem., 2017, 65(20), 4009-4026.
[http://dx.doi.org/10.1021/acs.jafc.7b01724] [PMID: 28475326]
[51]
Shrake, N.L.; Amirtharajah, R.; Brenneman, C.; Boulton, R.; Knoesen, A. In-line measurement of color and total phenolics during red wine fermentations using a light-emitting diode sensor. Am. J. Enol. Vitic., 2014, 65(4), 463-470.
[http://dx.doi.org/10.5344/ajev.2014.14023]
[52]
Paul, A.; Carl, P.; Westad, F.; Voss, J.P.; Maiwald, M. Towards process spectroscopy in complex fermentation samples and mixtures. Chemieingenieurtechnik, 2016, 88(6), 756-763.
[http://dx.doi.org/10.1002/cite.201500118]
[53]
Samir, B.; Kalalian, C.; Roth, E.; Salghi, R.; Chakir, A. Gas-phase UV absorption spectra of pyrazine, pyrimidine and pyridazine. Chem. Phys. Lett., 2020, 751, 137469.
[http://dx.doi.org/10.1016/j.cplett.2020.137469]
[54]
Bardik, V.; Fisenko, A.I.; Magazu, S.; Malomuzh, N.P. The crucial role of water in the formation of the physiological temperature range for warm-blooded organisms. J. Mol. Liq., 2020, 306, 112818.
[http://dx.doi.org/10.1016/j.molliq.2020.112818]
[55]
Analysis of aggregates and particles in protein pharmaceuticals; Mahler, H.C.; Jiskoot, W., Eds.; John Wiley & Sons, 2011.
[56]
Dodero, VI; Messina, PV Analyzing the solution state of protein structure, interactions, and ligands by spectroscopic methods. In: Proteins in Solution and at Interfaces: Methods and Applications in Biotechnology and Materials Science; Wiley, 2013; pp. 73-98.
[http://dx.doi.org/10.1002/9781118523063.ch4]
[57]
Pinheiro, H.M.; Touraud, E.; Thomas, O. Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments, 2004, 61(2), 121-139.
[http://dx.doi.org/10.1016/j.dyepig.2003.10.009]
[58]
Kristo, E.; Hazizaj, A.; Corredig, M. Structural changes imposed on whey proteins by UV irradiation in a continuous UV light reactor. J. Agric. Food Chem., 2012, 60(24), 6204-6209.
[http://dx.doi.org/10.1021/jf300278k] [PMID: 22630133]
[59]
Lange, R.; Balny, C. UV-visible derivative spectroscopy under high pressure. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2002, 1595(1-2), 80-93.
[http://dx.doi.org/10.1016/S0167-4838(01)00336-3]
[60]
Tom, J.; Jakubec, P.J.; Andreas, H.A. Mechanisms of enhanced hemoglobin electroactivity on carbon electrodes upon exposure to a water-miscible primary alcohol. Anal. Chem., 2018, 90(9), 5764-5772.
[http://dx.doi.org/10.1021/acs.analchem.8b00117] [PMID: 29659245]
[61]
Patel, M.U.M.; Demir-Cakan, R.; Morcrette, M.; Tarascon, J.M.; Gaberscek, M.; Dominko, R. Li-S battery analyzed by UV/Vis in operando mode. ChemSusChem, 2013, 6(7), 1177-1181.
[http://dx.doi.org/10.1002/cssc.201300142] [PMID: 23749434]
[62]
Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem., 2018, 48(6), 503-516.
[http://dx.doi.org/10.1080/10408347.2018.1451299] [PMID: 29601210]
[63]
Behzadi, S.; Ghasemi, F.; Ghalkhani, M.; Ashkarran, A.A.; Akbari, S.M.; Pakpour, S.; Nezhad, H.M.R.; Jamshidi, Z.; Mirsadeghi, S.; Dinarvand, R.; Atyabi, F.; Mahmoudi, M. Determination of nanoparticles using UV-Vis spectra. Nanoscale, 2015, 7(12), 5134-5139.
[http://dx.doi.org/10.1039/C4NR00580E] [PMID: 25719813]
[64]
Vyas, A.J.; Patel, B.H.; Patel, A.B.; Patel, A.I.; Patel, N.K. A brief review on Q-absorption ratio method in UV-Spectrophotometry. Asian J Pharma Anal., 2022, 12(4), 281-285.
[http://dx.doi.org/10.52711/2231-5675.2022.00046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy