Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis

Author(s): Yunxi Zhou, Fangshun Tan, Zhuowei Wang, Gang Zhou* and Chengfu Yuan*

Volume 24, Issue 18, 2024

Published on: 08 April, 2024

Page: [1685 - 1700] Pages: 16

DOI: 10.2174/0113895575284780240327103039

Price: $65

conference banner
Abstract

More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis.

We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis.

Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles.

SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- AS1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.

Keywords: SLC16A1, Long non-coding RNA, SLC16A1-AS1, cancer, therapeutic target, molecular mechanism, biomarker, prognosis.

Graphical Abstract
[1]
Zaimy, M.A.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.K.; Paschepari, S.R.; Azizi, H.; Torkamandi, S.; Bazzaz, T.J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther., 2017, 24(6), 233-243.
[http://dx.doi.org/10.1038/cgt.2017.16] [PMID: 28574057]
[2]
Cronin, K.A.; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.M.; Howlader, N.; Henley, S.J.; Anderson, R.N.; Firth, A.U.; Ma, J.; Kohler, B.A.; Jemal, A. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 2018, 124(13), 2785-2800.
[http://dx.doi.org/10.1002/cncr.31551] [PMID: 29786848]
[3]
Kocianova, E.; Piatrikova, V.; Golias, T. Revisiting the warburg effect with focus on lactate. Cancers, 2022, 14(24), 6028.
[http://dx.doi.org/10.3390/cancers14246028] [PMID: 36551514]
[4]
Payen, V.L.; Mina, E.; Hée, V.V.F.; Porporato, P.E.; Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab., 2020, 33, 48-66.
[http://dx.doi.org/10.1016/j.molmet.2019.07.006] [PMID: 31395464]
[5]
Wang, Z.; Jensen, M.A.; Zenklusen, J.C. A practical guide to the cancer genome atlas (TCGA). Methods Mol. Biol., 2016, 1418, 111-141.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_6] [PMID: 27008012]
[6]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[7]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[8]
Vega, S.F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; Chakravarty, D.; Daian, F.; Gao, Q.; Bailey, M.H.; Liang, W.W.; Foltz, S.M.; Shmulevich, I.; Ding, L.; Heins, Z.; Ochoa, A.; Gross, B.; Gao, J.; Zhang, H.; Kundra, R.; Kandoth, C.; Bahceci, I.; Dervishi, L.; Dogrusoz, U.; Zhou, W.; Shen, H.; Laird, P.W.; Way, G.P.; Greene, C.S.; Liang, H.; Xiao, Y.; Wang, C.; Iavarone, A.; Berger, A.H.; Bivona, T.G.; Lazar, A.J.; Hammer, G.D.; Giordano, T.; Kwong, L.N.; McArthur, G.; Huang, C.; Tward, A.D.; Frederick, M.J.; McCormick, F.; Meyerson, M.; Allen, V.E.M.; Cherniack, A.D.; Ciriello, G.; Sander, C.; Schultz, N.; Johnson, C.S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Vega, S.F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Berg, V.D.D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Foster, G.J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Filho, L.A.; Reis, R.M.; Neto, S.C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Sloan, B.J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Meir, V.E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; Kessel, V.K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; Rienzo, D.A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Bang, V.N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Bernstam, M.F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Ahmadie, A.H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Roqueplo, G.A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Huspenina, S.J.; Rahman, A.M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; McCune, S.K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Mende, H.C.; Jungk, C.; Unterberg, A.; Deimling, V.A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Masson, M.A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Aguilo, Q.M.; Carlotti, C.G., Jr; Santos, D.J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Campbell, F.J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Tine, V.B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Oncogenic signaling pathways in the cancer genome atlas. Cell, 2018, 173(2), 321-337.e10.
[http://dx.doi.org/10.1016/j.cell.2018.03.035] [PMID: 29625050]
[9]
Yuan, C.; Wang, B.; Chen, J.; Lin, C.; Liu, R.; Wang, L. MCM3AP-AS1: A lncrna participating in the tumorigenesis of cancer through multiple pathways. Mini Rev. Med. Chem., 2022, 22(16), 2138-2145.
[http://dx.doi.org/10.2174/1389557522666220214100718] [PMID: 35156580]
[10]
Hu, C. LncRNA DSCAM-AS1: A pivotal therapeutic target in cancer. Mini Rev. Med. Chem., 2023, 23(5), 530-536.
[http://dx.doi.org/10.2174/1389557522666220822121935] [PMID: 35996247]
[11]
Wang, B.; Chen, J. AGAP2-AS1: An indispensable lncRNA in tumors. Mini Rev. Med. Chem., 2023, 23(3), 336-342.
[http://dx.doi.org/10.2174/1389557522666220615154227] [PMID: 35708074]
[12]
Lv, X.; Zhang, M.; Xu, W. The value of emerging prostate cancer-associated lncRNA PCGEM1 in various tumors. Mini Rev. Med. Chem., 2023, 23(22), 2090-2096.
[http://dx.doi.org/10.2174/1389557523666230313144742] [PMID: 36915991]
[13]
Chen, X.; Liu, K.; Xu, W.; Zhou, G.; Yuan, C. Tumor-related molecular regulatory mechanisms of long non-coding RNA RMST: Recent evidence. Mini Rev. Med. Chem., 2022, 22(10), 1374-1379.
[http://dx.doi.org/10.2174/1389557521666211202150646] [PMID: 34856896]
[14]
Jin, Y.; Qin, X. Comprehensive analysis of transcriptome data for identifying biomarkers and therapeutic targets in head and neck squamous cell carcinoma. Ann. Transl. Med., 2020, 8(6), 282.
[http://dx.doi.org/10.21037/atm.2020.03.30] [PMID: 32355726]
[15]
Fox, S.A.; Vacher, M.; Farah, C.S. Transcriptomic biomarker signatures for discrimination of oral cancer surgical margins. Biomolecules, 2022, 12(3), 464.
[http://dx.doi.org/10.3390/biom12030464] [PMID: 35327656]
[16]
Romaszko, A.; Doboszyńska, A. Multiple primary lung cancer: A literature review. Adv. Clin. Exp. Med., 2018, 27(5), 725-730.
[http://dx.doi.org/10.17219/acem/68631] [PMID: 29790681]
[17]
Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
[http://dx.doi.org/10.1002/cbf.1149] [PMID: 15386533]
[18]
Yang, P.; Ebbert, J.O.; Sun, Z.; Weinshilboum, R.M. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: A review. J. Clin. Oncol., 2006, 24(11), 1761-1769.
[http://dx.doi.org/10.1200/JCO.2005.02.7110] [PMID: 16603718]
[19]
Doherty, J.R.; Yang, C.; Scott, K.E.N.; Cameron, M.D.; Fallahi, M.; Li, W.; Hall, M.A.; Amelio, A.L.; Mishra, J.K.; Li, F.; Tortosa, M.; Genau, H.M.; Rounbehler, R.J.; Lu, Y.; Dang, C.V.; Kumar, K.G.; Butler, A.A.; Bannister, T.D.; Hooper, A.T.; Kacmaz, U.K.; Roush, W.R.; Cleveland, J.L. Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res., 2014, 74(3), 908-920.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2034] [PMID: 24285728]
[20]
Dai, J.; Li, Z.; Amos, C.I.; Hung, R.J.; Tardon, A.; Andrew, A.S.; Chen, C.; Christiani, D.C.; Albanes, D.; Heijden, V.D.E.H.F.M.; Duell, E.J.; Rennert, G.; Mckay, J.D.; Yuan, J.M.; Field, J.K.; Manjer, J.; Grankvist, K.; Marchand, L.L.; Teare, M.D.; Schabath, M.B.; Aldrich, M.C.; Tsao, M.S.; Lazarus, P.; Lam, S.; Bojesen, S.E.; Arnold, S.; Wu, X.; Haugen, A.; Janout, V.; Johansson, M.; Brhane, Y.; Somoano, F.A.; Kiemeney, L.A.; Davies, M.P.A.; Zienolddiny, S.; Hu, Z.; Shen, H. Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci. Carcinogenesis, 2019, 40(3), 432-440.
[http://dx.doi.org/10.1093/carcin/bgy187] [PMID: 30590402]
[21]
Denisenko, T.V.; Budkevich, I.N.; Zhivotovsky, B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis., 2018, 9(2), 117.
[http://dx.doi.org/10.1038/s41419-017-0063-y] [PMID: 29371589]
[22]
Wei, X.; Li, X.; Hu, S.; Cheng, J.; Cai, R. Regulation of ferroptosis in lung adenocarcinoma. Int. J. Mol. Sci., 2023, 24(19), 14614.
[http://dx.doi.org/10.3390/ijms241914614] [PMID: 37834062]
[23]
Zhu, H.; Liu, Y.; Wu, Q.; Li, J.; Jia, W.; Zhai, X.; Yu, J. Comprehensive analysis and validation of competing endogenous RNA network and tumor-infiltrating immune cells in lung adenocarcinoma. Comb. Chem. High Throughput Screen., 2022, 25(13), 2240-2254.
[http://dx.doi.org/10.2174/1386207325666220324092231] [PMID: 35331104]
[24]
Stewart, P.A.; Parapatics, K.; Welsh, E.A.; Müller, A.C.; Cao, H.; Fang, B.; Koomen, J.M.; Eschrich, S.A.; Bennett, K.L.; Haura, E.B. A pilot proteogenomic study with data integration identifies mct1 and glut1 as prognostic markers in lung adenocarcinoma. PLoS One, 2015, 10(11), e0142162.
[http://dx.doi.org/10.1371/journal.pone.0142162] [PMID: 26539827]
[25]
Park, J-H.; Lee, J-Y.; Shin, D-H.; Jang, K-S.; Kim, H-J.; Kong, G. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1α mediated by the PTEN/PI3K/Akt pathway. Oncogene, 2011, 30(45), 4578-4589.
[http://dx.doi.org/10.1038/onc.2011.174] [PMID: 21602890]
[26]
Abraham, A.G.; O’Neill, E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem. Soc. Trans., 2014, 42(4), 798-803.
[http://dx.doi.org/10.1042/BST20140070] [PMID: 25109960]
[27]
Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128.
[http://dx.doi.org/10.1016/j.gene.2019.02.076] [PMID: 30849534]
[28]
Kim, S.Y.; Kim, D.; Kim, J.; Ko, H.Y.; Kim, W.J.; Park, Y.; Lee, H.W.; Han, D.H.; Kim, K.S.; Park, S.; Lee, M.; Yun, M. Extracellular citrate treatment induces hif1α degradation and inhibits the growth of low-glycolytic hepatocellular carcinoma under hypoxia. Cancers, 2022, 14(14), 3355.
[http://dx.doi.org/10.3390/cancers14143355]
[29]
Schug, Z.T.; Vande Voorde, J.; Gottlieb, E. The metabolic fate of acetate in cancer. Nat. Rev. Cancer, 2016, 16(11), 708-717.
[http://dx.doi.org/10.1038/nrc.2016.87] [PMID: 27562461]
[30]
Gusyatiner, O.; Hegi, M.E. Glioma epigenetics: From subclassification to novel treatment options. Semin. Cancer Biol., 2018, 51, 50-58.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.010] [PMID: 29170066]
[31]
Sturm, D.; Filbin, M. Gliomas in children. Semin. Neurol., 2018, 38(1), 121-130.
[http://dx.doi.org/10.1055/s-0038-1635106] [PMID: 29548059]
[32]
Lin, H.H.; Tsai, W.C.; Tsai, C.K.; Chen, S.H.; Huang, L.C.; Hueng, D.Y.; Hung, K.C. Overexpression of cell-surface marker slc16a1 shortened survival in human high-grade gliomas. J. Mol. Neurosci., 2021, 71(8), 1614-1621.
[http://dx.doi.org/10.1007/s12031-021-01806-w] [PMID: 33641091]
[33]
Li, K.K.W.; Pang, J.C.; Ching, A.K.; Wong, C.K.; Kong, X.; Wang, Y.; Zhou, L.; Chen, Z.; Ng, H. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum. Pathol., 2009, 40(9), 1234-1243.
[http://dx.doi.org/10.1016/j.humpath.2009.02.003] [PMID: 19427019]
[34]
Longhitano, L.; Vicario, N.; Tibullo, D.; Giallongo, C.; Broggi, G.; Caltabiano, R.; Barbagallo, G.M.V.; Altieri, R.; Baghini, M.; Rosa, D.M.; Parenti, R.; Giordano, A.; Mione, M.C.; Volti, L.G. Lactate induces the expressions of mct1 and hcar1 to promote tumor growth and progression in glioblastoma. Front. Oncol., 2022, 12, 871798.
[http://dx.doi.org/10.3389/fonc.2022.871798] [PMID: 35574309]
[35]
Ghosh, D.; Ulasov, I.V.; Chen, L.; Harkins, L.E.; Wallenborg, K.; Hothi, P.; Rostad, S.; Hood, L.; Cobbs, C.S. TGFβ-Responsive hmox1 expression is associated with stemness and invasion in glioblastoma multiforme. Stem Cells, 2016, 34(9), 2276-2289.
[http://dx.doi.org/10.1002/stem.2411] [PMID: 27354342]
[36]
Ghosh, D.; Funk, C.C.; Caballero, J.; Shah, N.; Rouleau, K.; Earls, J.C.; Soroceanu, L.; Foltz, G.; Cobbs, C.S.; Price, N.D.; Hood, L. A cell-surface membrane protein signature for glioblastoma. Cell Syst., 2017, 4(5), 516-529.e7.
[http://dx.doi.org/10.1016/j.cels.2017.03.004] [PMID: 28365151]
[37]
Fang, J.; Quinones, Q.J.; Holman, T.L.; Morowitz, M.J.; Wang, Q.; Zhao, H.; Sivo, F.; Maris, J.M.; Wahl, M.L. The H+-linked monocarboxylate transporter (MCT1/SLC16A1): A potential therapeutic target for high-risk neuroblastoma. Mol. Pharmacol., 2006, 70(6), 2108-2115.
[http://dx.doi.org/10.1124/mol.106.026245] [PMID: 17000864]
[38]
Khan, A.; Valli, E.; Lam, H.; Scott, D.A.; Murray, J.; Hanssen, K.M.; Eden, G.; Gamble, L.D.; Pandher, R.; Flemming, C.L.; Allan, S.; Osterman, A.L.; Haber, M.; Norris, M.D.; Fletcher, J.I.; Yu, D.M.T. Targeting metabolic activity in high-risk neuroblastoma through monocarboxylate transporter 1 (mct1) inhibition. Oncogene, 2020, 39(17), 3555-3570.
[http://dx.doi.org/10.1038/s41388-020-1235-2] [PMID: 32123312]
[39]
Xie, J.; Zhu, Z.; Cao, Y.; Ruan, S.; Wang, M.; Shi, J. Solute carrier transporter superfamily member SLC16A1 is a potential prognostic biomarker and associated with immune infiltration in skin cutaneous melanoma. Channels, 2021, 15(1), 483-495.
[http://dx.doi.org/10.1080/19336950.2021.1953322] [PMID: 34254872]
[40]
Avitabile, M.; Succoio, M.; Testori, A.; Cardinale, A.; Vaksman, Z.; Lasorsa, V.A.; Cantalupo, S.; Esposito, M.; Cimmino, F.; Montella, A.; Formicola, D.; Koster, J.; Andreotti, V.; Ghiorzo, P.; Romano, M.F.; Staibano, S.; Scalvenzi, M.; Ayala, F.; Hakonarson, H.; Corrias, M.V.; Devoto, M.; Law, M.H.; Iles, M.M.; Brown, K.; Diskin, S.; Zambrano, N.; Iolascon, A.; Capasso, M. Neural crest-derived tumor neuroblastoma and melanoma share 1p13.2 as susceptibility locus that shows a long-range interaction with the SLC16A1 gene. Carcinogenesis, 2020, 41(3), 284-295.
[http://dx.doi.org/10.1093/carcin/bgz153] [PMID: 31605138]
[41]
Yu, S.; Wu, Y.; Li, C.; Qu, Z.; Lou, G.; Guo, X.; Ji, J.; Li, N.; Guo, M.; Zhang, M.; Lei, L.; Tai, S. Comprehensive analysis of the SLC16A gene family in pancreatic cancer via integrated bioinformatics. Sci. Rep., 2020, 10(1), 7315.
[http://dx.doi.org/10.1038/s41598-020-64356-y] [PMID: 32355273]
[42]
Zhang, L.; Song, Z.S.; Wang, Z.S.; Guo, Y.L.; Xu, C.G.; Shen, H. High expression of slc16a1 as a biomarker to predict poor prognosis of urological cancers. Front. Oncol., 2021, 11, 706883.
[http://dx.doi.org/10.3389/fonc.2021.706883] [PMID: 34631536]
[43]
Sanchis, P.; Anselmino, N.; Vickers, L.S.; Sabater, A.; Lavignolle, R.; Labanca, E.; Shepherd, P.D.A.; Bizzotto, J.; Toro, A.; Mitrofanova, A.; Valacco, M.P.; Navone, N.; Vazquez, E.; Cotignola, J.; Gueron, G. Bone progenitors pull the strings on the early metabolic rewiring occurring in prostate cancer cells. Cancers, 2022, 14(9), 2083.
[http://dx.doi.org/10.3390/cancers14092083] [PMID: 35565211]
[44]
Sathe, A.; Nawroth, R. Targeting the pi3k/akt/mtor pathway in bladder cancer. Methods Mol. Biol., 2018, 1655, 335-350.
[http://dx.doi.org/10.1007/978-1-4939-7234-0_23] [PMID: 28889395]
[45]
Mustanjid, A.M.; Mahmud, S.M.H.; Royel, M.R.I.; Rahman, M.H.; Islam, T.; Rahman, M.R.; Moni, M.A. Detection of molecular signatures and pathways shared in inflammatory bowel disease and colorectal cancer: A bioinformatics and systems biology approach. Genomics, 2020, 112(5), 3416-3426.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.001] [PMID: 32535071]
[46]
Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. [Colorectal cancer - review]. Laeknabladid, 2014, 100(2), 75-82.
[PMID: 24639430]
[47]
Tanio, S.S.; Habowski, A.N.; Pate, K.T.; McQuade, M.M.; Wang, K.; Edwards, R.A.; Grun, F.; Lyou, Y.; Waterman, M.L. Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab., 2016, 4(1), 20.
[http://dx.doi.org/10.1186/s40170-016-0159-3] [PMID: 27729975]
[48]
Chen, X.; Chen, X.; Liu, F.; Yuan, Q.; Zhang, K.; Zhou, W.; Guan, S.; Wang, Y.; Mi, S.; Cheng, Y. Monocarboxylate transporter 1 is an independent prognostic factor in esophageal squamous cell carcinoma. Oncol. Rep., 2019, 41(4), 2529-2539.
[http://dx.doi.org/10.3892/or.2019.6992] [PMID: 30720131]
[49]
Rozhin, J.; Sameni, M.; Ziegler, G.; Sloane, B.F. Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res., 1994, 54(24), 6517-6525.
[PMID: 7987851]
[50]
Shi, Q.; Le, X.; Wang, B.; Abbruzzese, J.L.; Xiong, Q.; He, Y.; Xie, K. Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene, 2001, 20(28), 3751-3756.
[http://dx.doi.org/10.1038/sj.onc.1204500] [PMID: 11439338]
[51]
Swietach, P.; Jones, V.R.D.; Harris, A.L. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev., 2007, 26(2), 299-310.
[http://dx.doi.org/10.1007/s10555-007-9064-0] [PMID: 17415526]
[52]
Xu, L.; Fidler, I.J. Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res., 2000, 60(16), 4610-4616.
[PMID: 10969814]
[53]
Hou, L.; Zhao, Y.; Song, G.; Ma, Y.; Jin, X.; Jin, S.; Fang, Y.; Chen, Y. Interfering cellular lactate homeostasis overcomes taxol resistance of breast cancer cells through the microrna-124-mediated lactate transporter (MCT1) inhibition. Cancer Cell Int., 2019, 19(1), 193.
[http://dx.doi.org/10.1186/s12935-019-0904-0] [PMID: 31367191]
[54]
Andersen, A.P.; Flinck, M.; Oernbo, E.K.; Pedersen, N.B.; Viuff, B.M.; Pedersen, S.F. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol. Cancer, 2016, 15(1), 45.
[http://dx.doi.org/10.1186/s12943-016-0528-0] [PMID: 27266704]
[55]
Cordoba, R.S.L.; Cuevas, R.S.; Pina, B.V.; Aziz, M.A.; D’Ippolito, E.; Cosentino, G.; Baroni, S.; Iorio, M.V.; Miranda, H.A. Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci. Rep., 2018, 8(1), 12252.
[http://dx.doi.org/10.1038/s41598-018-29708-9] [PMID: 30115973]
[56]
Dobruch, J.; Oszczudłowski, M. Bladder cancer: Current challenges and future directions. Medicina , 2021, 57(8), 749.
[http://dx.doi.org/10.3390/medicina57080749] [PMID: 34440955]
[57]
Wu, K.; Zeng, J.; Zhou, J.; Fan, J.; Chen, Y.; Wang, Z.; Zhang, T.; Wang, X.; He, D. Slug contributes to cadherin switch and malignant progression in muscle-invasive bladder cancer development. Urol. Oncol., 2013, 31(8), 1751-1760.
[http://dx.doi.org/10.1016/j.urolonc.2012.02.001] [PMID: 22421353]
[58]
Chiang, C.Y.; Pan, C.C.; Chang, H.Y.; Lai, M.D.; Tzai, T.S.; Tsai, Y.S.; Ling, P.; Liu, H.S.; Lee, B.F.; Cheng, H.L.; Ho, C.L.; Chen, S.H.; Chow, N.H. SH3BGRL3 protein as a potential prognostic biomarker for urothelial carcinoma: A novel binding partner of epidermal growth factor receptor. Clin. Cancer Res., 2015, 21(24), 5601-5611.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3308] [PMID: 26286913]
[59]
Logotheti, S.; Marquardt, S.; Gupta, S.K.; Richter, C.; Edelhäuser, B.A.H.; Engelmann, D.; Brenmoehl, J.; Söhnchen, C.; Murr, N.; Alpers, M.; Singh, K.P.; Wolkenhauer, O.; Heckl, D.; Spitschak, A.; Pützer, B.M. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during bladder cancer progression as target and co-activator of E2F1. Theranostics, 2020, 10(21), 9620-9643.
[http://dx.doi.org/10.7150/thno.44176] [PMID: 32863950]
[60]
Liu, H.Y.; Lu, S.R.; Guo, Z.H.; Zhang, Z.S.; Ye, X.; Du, Q.; Li, H.; Wu, Q.; Yu, B.; Zhai, Q.; Liu, J.L. lncRNA SLC16A1-AS1 as a novel prognostic biomarker in non-small cell lung cancer. J. Investig. Med., 2020, 68(1), 52-59.
[http://dx.doi.org/10.1136/jim-2019-001080] [PMID: 31371390]
[61]
Zhang, H.; Jin, S.; Ji, A.; Ma, Y.; Zhang, C.; Wang, A.; Wang, R. LncRNA SLC16A1-AS1 suppresses cell proliferation in cervical squamous cell carcinoma (cscc) through the miR-194/SOCS2 axis. Cancer Manag. Res., 2021, 13, 1299-1306.
[http://dx.doi.org/10.2147/CMAR.S276629] [PMID: 33603475]
[62]
Fakhry, C.; Westra, W.H.; Wang, S.J.; van Zante, A.; Zhang, Y.; Rettig, E.; Yin, L.X.; Ryan, W.R.; Ha, P.K.; Wentz, A.; Koch, W.; Richmon, J.D.; Eisele, D.W.; D’Souza, G. The prognostic role of sex, race, and human papillomavirus in oropharyngeal and nonoropharyngeal head and neck squamous cell cancer. Cancer, 2017, 123(9), 1566-1575.
[http://dx.doi.org/10.1002/cncr.30353] [PMID: 28241096]
[63]
Speight, P.M.; Epstein, J.; Kujan, O.; Lingen, M.W.; Nagao, T.; Ranganathan, K.; Vargas, P. Screening for oral cancer-A perspective from the global oral cancer forum. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2017, 123(6), 680-687.
[http://dx.doi.org/10.1016/j.oooo.2016.08.021] [PMID: 27727113]
[64]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Tieulent, L.J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[65]
Li, T.; Wang, D.; Yang, S. Analysis of the subcellular location of lncRNA SLC16A1-AS1 and its interaction with premature miR-5088-5p in oral squamous cell carcinoma. Odontology, 2023, 111(1), 41-48.
[PMID: 35829849]
[66]
Feng, H.; Zhang, X.; Lai, W.; Wang, J. Long non-coding RNA SLC16A1-AS1: Its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle, 2020, 19(13), 1641-1653.
[http://dx.doi.org/10.1080/15384101.2020.1762048] [PMID: 32450050]
[67]
Pei, S.; Chen, Z.; Tan, H.; Fan, L.; Zhang, B.; Zhao, C. SLC16A1-AS1 enhances radiosensitivity and represses cell proliferation and invasion by regulating the miR-301b-3p/CHD5 axis in hepatocellular carcinoma. Environ. Sci. Pollut. Res. Int., 2020, 27(34), 42778-42790.
[http://dx.doi.org/10.1007/s11356-020-09998-1] [PMID: 32748357]
[68]
Song, M.; Zhong, A.; Yang, J.; He, J.; Cheng, S.; Zeng, J.; Huang, Y.; Pan, Q.; Zhao, J.; Zhou, Z.; Zhu, Q.; Tang, Y.; Chen, H.; Yang, C.; Liu, Y.; Mo, X.; Weng, D.; Xia, J.C. Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging, 2019, 11(22), 10422-10453.
[http://dx.doi.org/10.18632/aging.102468] [PMID: 31761783]
[69]
Tian, J.; Hu, D. LncRNA SLC16A1-AS1 is upregulated in hepatocellular carcinoma and predicts poor survival. Clin. Res. Hepatol. Gastroenterol., 2021, 45(2), 101490.
[http://dx.doi.org/10.1016/j.clinre.2020.07.001] [PMID: 33744723]
[70]
Rothzerg, E.; Ho, X.D.; Xu, J.; Wood, D.; Märtson, A.; Kõks, S. Upregulation of 15 antisense long non-coding rnas in osteosarcoma. Genes, 2021, 12(8), 1132.
[http://dx.doi.org/10.3390/genes12081132] [PMID: 34440306]
[71]
Duan, C. LncRNA SLC16A1‐AS1 contributes to the progression of hepatocellular carcinoma cells by modulating miR‐411/MITD1 axis. J. Clin. Lab. Anal., 2022, 36(4), e24344.
[http://dx.doi.org/10.1002/jcla.24344] [PMID: 35293026]
[72]
Cancela, G.I.; Caja, L. The TGF-β family in glioblastoma. Int. J. Mol. Sci., 2024, 25(2), 1067.
[http://dx.doi.org/10.3390/ijms25021067] [PMID: 38256140]
[73]
Zhang, Y.; Cruickshanks, N.; Pahuski, M.; Yuan, F.; Dutta, A.; Schiff, D.; Purow, B.; Abounader, R. Noncoding RNAs in Glioblastoma. Glioblastoma [Internet]; Brisbane (AU): Codon Publications, 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch6]
[74]
Bai, X.; Wang, Q.; Rui, X.; Li, X.; Wang, X. Upregulation of miR-1269 contributes to the progression of esophageal squamous cell cancer cells and is associated with poor prognosis. Technol. Cancer Res. Treat., 2021, 20, 1533033820985858.
[http://dx.doi.org/10.1177/1533033820985858] [PMID: 33416035]
[75]
Yu, S.N.; Miao, Y.Y.; Zhang, B.T.; Dai, Y.M.; Liu, L.; Gao, Z.L.; Liu, G.F. MicroRNA-1269a promotes the occurrence and progression of osteosarcoma by inhibiting TGF-β1 expression. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(7), 2824.
[PMID: 33877675]
[76]
Liu, W.L.; Wang, H.; Shi, C.; Shi, F.; Zhao, L.; Zhao, W.; Wang, G. MicroRNA-1269 promotes cell proliferation via the AKT signaling pathway by targeting RASSF9 in human gastric cancer. Cancer Cell Int., 2019, 19(1), 308.
[http://dx.doi.org/10.1186/s12935-019-1026-4] [PMID: 31768130]
[77]
Jin, Z.; Li, H.; Long, Y.; Liu, R.; Ni, X. MicroRNA-1269 is downregulated in glioblastoma and its maturation is regulated by long non-coding RNA SLC16A1 Antisense RNA 1. Bioengineered, 2022, 13(5), 12749-12759.
[http://dx.doi.org/10.1080/21655979.2022.2070581] [PMID: 35609320]
[78]
González, S.I.; Bobien, A.; Molnar, C.; Schmid, S.; Strotbek, M.; Boerries, M.; Busch, H.; Olayioye, M.A. miR-149 suppresses breast cancer metastasis by blocking paracrine interactions with macrophages. Cancer Res., 2020, 80(6), 1330-1341.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1934] [PMID: 31911555]
[79]
Long, Y.; Li, H.; Jin, Z.; Zhang, X. LncRNA slc16a1-as1 is upregulated in glioblastoma and promotes cancer cell proliferation by regulating mir-149 methylation. Cancer Manag. Res., 2021, 13, 1215-1223.
[http://dx.doi.org/10.2147/CMAR.S264613] [PMID: 33603467]
[80]
Tari, D.U. Breast cancer: A multi-disciplinary approach from imaging to therapy. Curr. Oncol., 2024, 31(1), 598-602.
[http://dx.doi.org/10.3390/curroncol31010043] [PMID: 38275836]
[81]
Jiang, B.; Xia, J.; Zhou, X. Overexpression of lncrna slc16a1-as1 suppresses the growth and metastasis of breast cancer via the miR-552-5p/WIF1 signaling pathway. Front. Oncol., 2022, 12, 712475.
[http://dx.doi.org/10.3389/fonc.2022.712475] [PMID: 35372039]
[82]
Seok, H.J.; Choi, J.Y.; Yi, J.M.; Bae, I.H. Targeting miR-5088-5p attenuates radioresistance by suppressing slug. Noncoding RNA Res., 2023, 8(2), 164-173.
[http://dx.doi.org/10.1016/j.ncrna.2022.12.005] [PMID: 36632615]
[83]
Seok, H.J.; Choi, Y.E.; Choi, J.Y.; Yi, J.M.; Kim, E.J.; Choi, M.Y.; Lee, S.J.; Bae, I.H. Novel miR-5088-5p promotes malignancy of breast cancer by inhibiting DBC2. Mol. Ther. Nucleic Acids, 2021, 25, 127-142.
[http://dx.doi.org/10.1016/j.omtn.2021.05.004] [PMID: 34457998]
[84]
Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in tNBC. Cancers , 2020, 12(4), 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[85]
Jiang, B.; Liu, Q.; Gai, J.; Guan, J.; Li, Q. LncRNA SLC16A1-AS1 regulates the miR-182/PDCD4 axis and inhibits the triple-negative breast cancer cell cycle. Immunopharmacol. Immunotoxicol., 2022, 44(4), 534-540.
[http://dx.doi.org/10.1080/08923973.2022.2056482] [PMID: 35316129]
[86]
Bohosova, J.; Kasik, M.; Kubickova, A.; Trachtova, K.; Stanik, M.; Poprach, A.; Slaby, O. LncRNA PVT1 is increased in renal cell carcinoma and affects viability and migration in vitro. J. Clin. Lab. Anal., 2022, 36(6), e24442.
[http://dx.doi.org/10.1002/jcla.24442] [PMID: 35441392]
[87]
Liu, S.; Yu, Y.; Wang, Y.; Zhu, B.; Han, B. COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks. Eur. J. Med. Res., 2022, 27(1), 122.
[http://dx.doi.org/10.1186/s40001-022-00745-5] [PMID: 35842702]
[88]
Li, Y.; Zhu, H.C.; Du, Y.; Zhao, H.; Wang, L. Silencing lncrna slc16a1-as1 induced ferroptosis in renal cell carcinoma through mir-143-3p/slc7a11 signaling. Technol. Cancer Res. Treat., 2022, 21, 15330338221077803.
[http://dx.doi.org/10.1177/15330338221077803] [PMID: 35167383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy