Mini-Review Article

The Recent Advances in the Function and Mechanism of Caveolin-1 in Retinal Neovascularization

Author(s): Rui Zhang and Yalong Dang*

Volume 25, Issue 7, 2024

Published on: 05 April, 2024

Page: [465 - 472] Pages: 8

DOI: 10.2174/0113894501310201240403065930

Price: $65

conference banner
Abstract

Retinal neovascularization diseases have relatively high rates of evitable blindness. Abnormal retinal neovascularization is their main hallmark, which can damage the structure and function of the eye and lead to impaired vision. Caveolin-1 is a membrane protein that is expressed in many types of retinal cells and is involved in retinal neovascularization. This review presents a comprehensive analysis of global research on specific functions of caveolin-1 in retinal neovascularization. We believe that the mechanism of action of caveolin-1 might be related to the regulation of relevant signal pathways and looked ahead the application prospects of modulating caveolin- 1 in retinal neovascularization diseases.

Keywords: Neovascularization, caveolin, retina, retinal neovascular diseases, plasma membrane, caveolin.

Graphical Abstract
[1]
Smith TL, Oubaha M, Cagnone G, et al. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity. Cell Mol Life Sci 2022; 79(1): 37-40.
[http://dx.doi.org/10.1007/s00018-021-04042-y] [PMID: 34971428]
[2]
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252: 117670.
[http://dx.doi.org/10.1016/j.lfs.2020.117670] [PMID: 32298741]
[3]
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146(6): 873-87.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[4]
Lee H, Carnino JM, Jin Y. Caveolin-1 regulates extracellular vesicle-miRNA packaging. Aging 2019; 11(20): 8733-5.
[http://dx.doi.org/10.18632/aging.102370] [PMID: 31652419]
[5]
Quest AF, Lobos-González L, Nuñez S, et al. The caveolin-1 connection to cell death and survival. Curr Mol Med 2013; 13(2): 266-81.
[http://dx.doi.org/10.2174/156652413804810745] [PMID: 23228128]
[6]
Gurley JM, Elliott MH. The role of caveolin-1 in retinal inflammation. Adv Exp Med Biol 2019; 1185(5): 169-73.
[http://dx.doi.org/10.1007/978-3-030-27378-1_28] [PMID: 31884607]
[7]
Tang Y, Fang W, Xiao Z, et al. Nicotinamide ameliorates energy deficiency and improves retinal function in Cav-1 -/- mice. J Neurochem 2021; 157(3): 550-60.
[http://dx.doi.org/10.1111/jnc.15266] [PMID: 33305362]
[8]
Li X, McClellan ME, Tanito M, et al. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 2012; 287(20): 16424-34.
[http://dx.doi.org/10.1074/jbc.M112.353763] [PMID: 22451674]
[9]
Gu X, Reagan AM, McClellan ME, Elliott MH. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2017; 56: 84-106.
[http://dx.doi.org/10.1016/j.preteyeres.2016.09.005] [PMID: 27664379]
[10]
Williams TM, Lisanti MP. The Caveolin genes: From cell biology to medicine. Ann Med 2004; 36(8): 584-95.
[http://dx.doi.org/10.1080/07853890410018899] [PMID: 15768830]
[11]
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8(3): 185-94.
[http://dx.doi.org/10.1038/nrm2122] [PMID: 17318224]
[12]
Luchetti F, Crinelli R, Nasoni MG, et al. LDL receptors, caveolae and cholesterol in endothelial dysfunction: OxLDLs accomplices or victims? Br J Pharmacol 2021; 178(16): 3104-14.
[http://dx.doi.org/10.1111/bph.15272] [PMID: 32986849]
[13]
Mathew R. Critical role of caveolin-1 Loss/dysfunction in pulmonary hypertension. Med Sci 2021; 9(4): 58-60.
[http://dx.doi.org/10.3390/medsci9040058] [PMID: 34698188]
[14]
Salanueva IJ, Cerezo A, Guadamillas MC, Del Pozo MA. Integrin regulation of caveolin function. J Cell Mol Med 2007; 11(5): 969-80.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00109.x] [PMID: 17979878]
[15]
Wicher SA, Prakash YS, Pabelick CM. Caveolae, caveolin-1 and lung diseases of aging. Expert Rev Respir Med 2019; 13(3): 291-300.
[http://dx.doi.org/10.1080/17476348.2019.1575733] [PMID: 30686114]
[16]
Park H, Shin JA, Lim J, et al. Increased caveolin-2 expression in brain endothelial cells promotes age-related neuroinflammation. Mol Cells 2022; 45(12): 950-62.
[http://dx.doi.org/10.14348/molcells.2022.0045] [PMID: 36572563]
[17]
Pradhan BS, Prószyński TJ. A role for caveolin-3 in the pathogenesis of muscular dystrophies. Int J Mol Sci 2020; 21(22): 8736.
[http://dx.doi.org/10.3390/ijms21228736] [PMID: 33228026]
[18]
Parton RG, Hanzal-Bayer M, Hancock JF. Biogenesis of caveolae: A structural model for caveolin-induced domain formation. J Cell Sci 2006; 119(5): 787-96.
[http://dx.doi.org/10.1242/jcs.02853] [PMID: 16495479]
[19]
Rangel L, Bernabé-Rubio M, Fernández-Barrera J, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep 2019; 9(1): 1116.
[http://dx.doi.org/10.1038/s41598-018-38020-5] [PMID: 30718762]
[20]
Perrot N, Dessaux D, Rignani A, et al. Caveolin-1β promotes the production of active human microsomal glutathione S-transferase in induced intracellular vesicles in Spodoptera frugiperda insect cells. Biochim Biophys Acta Biomembr 2022; 1864(8): 183922.
[http://dx.doi.org/10.1016/j.bbamem.2022.183922] [PMID: 35367202]
[21]
Kim H, Lee T, Lee J, et al. Immunohistochemical study of caveolin-1 and -2 in the rat retina. J Vet Sci 2006; 7(2): 101-4.
[http://dx.doi.org/10.4142/jvs.2006.7.2.101] [PMID: 16645331]
[22]
Gu X, Reagan A, Yen A, Bhatti F, Cohen AW, Elliott MH. Spatial and temporal localization of caveolin-1 protein in the developing retina. Adv Exp Med Biol 2014; 801(5): 15-21.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_3] [PMID: 24664676]
[23]
Cao M, Zhang L, Wang JH, et al. Identifying circRNA-associated-ceRNA networks in retinal neovascularization in mice. Int J Med Sci 2019; 16(10): 1356-65.
[http://dx.doi.org/10.7150/ijms.35149] [PMID: 31692917]
[24]
Lin MI, Yu J, Murata T, Sessa WC. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 2007; 67(6): 2849-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4082] [PMID: 17363608]
[25]
Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res 2018; 63: 1-19.
[http://dx.doi.org/10.1016/j.preteyeres.2017.11.001] [PMID: 29129724]
[26]
YANG B Y. Fundamental and Clinical Research on Retinal Neovascular Diseases and Ocular Surface Immune-related Disorders. GUANGDONG:Sun Yat-sen University 2021.
[27]
Puddu A, Sanguineti R, Maggi D. Caveolin-1 down-regulation reduces VEGF-A secretion induced by IGF-1 in ARPE-19 cells. Life 2021; 12(1): 44.
[http://dx.doi.org/10.3390/life12010044] [PMID: 35054437]
[28]
Chow BW, Gu C. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 2017; 93(6): 1325-1333.e3.
[http://dx.doi.org/10.1016/j.neuron.2017.02.043] [PMID: 28334606]
[29]
Grossi M, Rippe C, Sathanoori R, et al. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014; 34(6): e00153.
[http://dx.doi.org/10.1042/BSR20140140] [PMID: 25301005]
[30]
Grande-García A, Echarri A, de Rooij J, et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007; 177(4): 683-94.
[http://dx.doi.org/10.1083/jcb.200701006] [PMID: 17517963]
[31]
Grande-García A, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol 2008; 87(8-9): 641-7.
[http://dx.doi.org/10.1016/j.ejcb.2008.02.001] [PMID: 18375013]
[32]
Zhang ZB, Shi Z, Yang LF, Gao HB. Caveolin-1 knockdown decreases SMMC7721 human hepatocellular carcinoma cell invasiveness by inhibiting vascular endothelial growth factor-induced angiogenesis. Can J Gastroenterol Hepatol 2020; 2020(5): 1-11.
[http://dx.doi.org/10.1155/2020/8880888] [PMID: 32676485]
[33]
Zhao J, Yu Z, Zhang Y, et al. Caveolin-1 promoted collateral vessel formation in patients with moyamoya disease. Front Neurol 2022; 13(13): 796339.
[http://dx.doi.org/10.3389/fneur.2022.796339] [PMID: 35557625]
[34]
Tian XF, Xia XB, Xu HZ, Xiong SQ, Jiang J. Caveolin-1 expression regulates blood–retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin Exp Ophthalmol 2012; 40(1): e58-66.
[http://dx.doi.org/10.1111/j.1442-9071.2011.02656.x] [PMID: 21794046]
[35]
Loo JH, Lee YS, Woon CY, et al. Loss of caveolin-1 impairs light flicker-induced neurovascular coupling at the optic nerve head. Front Neurosci 2021; 15(15): 764898.
[http://dx.doi.org/10.3389/fnins.2021.764898] [PMID: 34819834]
[36]
Ito A, Shiroto T, Godo S, et al. Important roles of endothelial caveolin-1 in endothelium-dependent hyperpolarization and ischemic angiogenesis in mice. Am J Physiol Heart Circ Physiol 2019; 316(4): H900-10.
[http://dx.doi.org/10.1152/ajpheart.00589.2018] [PMID: 30707613]
[37]
Gurley JM, Gmyrek GB, McClellan ME, et al. Neuroretinal-derived caveolin-1 promotes endotoxin-induced inflammation in the murine retina. Invest Ophthalmol Vis Sci 2020; 61(12): 19-22.
[http://dx.doi.org/10.1167/iovs.61.12.19] [PMID: 33079993]
[38]
Abbasi M, Gupta VK, Chitranshi N, et al. Caveolin-1 ablation imparts partial protection against inner retinal injury in experimental glaucoma and reduces apoptotic activation. Mol Neurobiol 2020; 57(9): 3759-84.
[http://dx.doi.org/10.1007/s12035-020-01948-9] [PMID: 32578008]
[39]
Li W, Wang Q, Qi X, et al. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020; 39(23): 4603-18.
[http://dx.doi.org/10.1038/s41388-020-1317-1] [PMID: 32393833]
[40]
Gu X, Fliesler SJ, Zhao YY, Stallcup WB, Cohen AW, Elliott MH. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. Am J Pathol 2014; 184(2): 541-55.
[http://dx.doi.org/10.1016/j.ajpath.2013.10.022] [PMID: 24326256]
[41]
Jiang Y, Lin X, Tang Z, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci USA 2017; 114(40): 10737-42.
[http://dx.doi.org/10.1073/pnas.1706394114] [PMID: 28923916]
[42]
Shimizu H, Yamada K, Suzumura A, et al. Caveolin-1 promotes cellular senescence in exchange for blocking subretinal fibrosis in age-related macular degeneration. Invest Ophthalmol Vis Sci 2020; 61(11): 21-3.
[http://dx.doi.org/10.1167/iovs.61.11.21] [PMID: 32926104]
[43]
Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 2002; 277(12): 10661-8.
[http://dx.doi.org/10.1074/jbc.M110354200] [PMID: 11748236]
[44]
Terao R, Kaneko H. Lipid signaling in ocular neovascularization. Int J Mol Sci 2020; 21(13): 4758-60.
[http://dx.doi.org/10.3390/ijms21134758] [PMID: 32635437]
[45]
Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: A signalling hypothesis. Trends Cell Biol 1994; 4(7): 231-5.
[http://dx.doi.org/10.1016/0962-8924(94)90114-7] [PMID: 14731661]
[46]
Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev 2004; 84(4): 1341-79.
[http://dx.doi.org/10.1152/physrev.00046.2003] [PMID: 15383654]
[47]
Kwak JH, Park WK, Kim RY, Kim M, Park YG, Park YH. Unaffected fellow eye neovascularization in patients with type 3 neovascularization: Incidence and risk factors. PLoS One 2021; 16(7): e0254186.
[http://dx.doi.org/10.1371/journal.pone.0254186] [PMID: 34280215]
[48]
Tahir SA, Yang G, Goltsov AA, et al. Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Res 2008; 68(3): 731-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2668] [PMID: 18245473]
[49]
Saito H, Godo S, Sato S, et al. Important role of endothelial caveolin-1 in the protective role of endothelium-dependent hyperpolarization against nitric oxide-mediated nitrative stress in microcirculation in mice. J Cardiovasc Pharmacol 2018; 71(2): 113-26.
[http://dx.doi.org/10.1097/FJC.0000000000000552] [PMID: 29419573]
[50]
Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB. VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 1999; 256(1): 192-7.
[http://dx.doi.org/10.1006/bbrc.1998.9790] [PMID: 10066445]
[51]
Courtaut F, Scagliarini A, Aires V, et al. VEGF-R2/Caveolin-1 pathway of undifferentiated ARPE-19 retina cells: A potential target as Anti-VEGF-A therapy in wet AMD by resvega, an Omega-3/Polyphenol combination. Int J Mol Sci 2021; 22(12): 6590.
[http://dx.doi.org/10.3390/ijms22126590] [PMID: 34205419]
[52]
Tahir SA, Park S, Thompson TC. Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 2009; 8(23): 2284-94.
[http://dx.doi.org/10.4161/cbt.8.23.10138] [PMID: 19923922]
[53]
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of angiogenesis and its biomarkers in development of targeted tumor therapies. Stem Cells Int 2024; 2024: 1-23.
[http://dx.doi.org/10.1155/2024/9077926] [PMID: 38213742]
[54]
Anakha J, Dobariya P, Sharma SS, Pande AH. Recombinant human endostatin as a potential anti-angiogenic agent: Therapeutic perspective and current status. Med Oncol 2023; 41(1): 24.
[http://dx.doi.org/10.1007/s12032-023-02245-w] [PMID: 38123873]
[55]
Yamagishi S, Nakamura K, Matsui T, et al. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem 2006; 281(29): 20213-20.
[http://dx.doi.org/10.1074/jbc.M602110200] [PMID: 16707486]
[56]
Matsui T, Higashimoto Y, Taira J, Yamagishi S. Pigment epithelium-derived factor (PEDF) binds to caveolin-1 and inhibits the pro-inflammatory effects of caveolin-1 in endothelial cells. Biochem Biophys Res Commun 2013; 441(2): 405-10.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.074] [PMID: 24161393]
[57]
Wickström SA, Alitalo K, Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 2002; 62(19): 5580-9.
[PMID: 12359771]
[58]
Bocci G, Fioravanti A, Orlandi P, et al. Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia 2012; 14(9): 833-45.
[http://dx.doi.org/10.1593/neo.12772] [PMID: 23019415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy