Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia

Author(s): Xin Wang, Qi Zhang, Yi Ren, Chao Liu* and Huijie Gao*

Volume 25, Issue 7, 2024

Published on: 29 March, 2024

Page: [527 - 538] Pages: 12

DOI: 10.2174/0113892037284176240302052521

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental “shallow implantation” caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.

Keywords: Preeclampsia, extracellular matrix, trophoblast, placenta, proteoglycans, matrix metalloproteinases.

Graphical Abstract
[1]
Van Rijn, B. B.; Bruinse, H. W.; Veerbeek, J. H.; Post Uiterweer, E. D.; Koenen, S. V.; Van der Bom, J. G.; Rijkers, G. T.; Roest, M.; Franx, A. Postpartum circulating markers of inflammation and the systemic acute-phase response after early-onset preeclampsia. Hypertension, 2016, 67(2), 402-414.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06455]
[2]
Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ. Res., 2019, 124(7), 1094-1112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[3]
Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet, 2021, 398(10297), 341-354.
[http://dx.doi.org/10.1016/S0140-6736(20)32335-7] [PMID: 34051884]
[4]
Liu, M.; Yin, Y.; Yu, H.; Zhou, R. Laminins regulate placentation and pre-eclampsia: Focus on trophoblasts and endothelial cells. Front. Cell Dev. Biol., 2020, 8, 754.
[http://dx.doi.org/10.3389/fcell.2020.00754] [PMID: 32850857]
[5]
Stevens, D. U.; Al-Nasiry, S.; Bulten, J.; Spaanderman, M. E. Decidual vasculopathy in preeclampsia: Lesion characteristics relate to disease severity and perinatal outcome. Placenta, 2013, 34(9), 805-809.
[http://dx.doi.org/10.1016/j.placenta.2013.05.008]
[6]
Kalkunte, S.; Lai, Z.; Tewari, N.; Chichester, C.; Romero, R.; Padbury, J.; Sharma, S. In vitro and in vivo evidence for lack of endovascular remodeling by third trimester trophoblasts. Placenta, 2008, 29(10), 871-878.
[http://dx.doi.org/10.1016/j.placenta.2008.07.009] [PMID: 18775564]
[7]
Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet, 2005, 365(9461), 785-799.
[http://dx.doi.org/10.1016/S0140-6736(05)17987-2] [PMID: 15733721]
[8]
Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ, 2019, 366, l2381.
[http://dx.doi.org/10.1136/bmj.l2381] [PMID: 31307997]
[9]
Velicky, P.; Meinhardt, G.; Plessl, K.; Vondra, S.; Weiss, T.; Haslinger, P.; Lendl, T.; Aumayr, K.; Mairhofer, M.; Zhu, X.; Schütz, B.; Hannibal, R.L.; Lindau, R.; Weil, B.; Ernerudh, J.; Neesen, J.; Egger, G.; Mikula, M.; Röhrl, C.; Urban, A.E.; Baker, J.; Knöfler, M.; Pollheimer, J. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet., 2018, 14(10), e1007698.
[http://dx.doi.org/10.1371/journal.pgen.1007698] [PMID: 30312291]
[10]
Goldman-Wohl, D, Y. S. Regulation of trophoblast invasion from normal implantation to pre-eclampsia. Mol. Cell. Endocrinol., 2002, 187(1-2), 233-238.
[http://dx.doi.org/10.1016/S0303-7207(01)00687-6]
[11]
Farrell, A.; Alahari, S.; Ermini, L.; Tagliaferro, A.; Litvack, M.; Post, M.; Caniggia, I. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCI Insight, 2019, 4(8), e127009.
[http://dx.doi.org/10.1172/jci.insight.127009] [PMID: 30996134]
[12]
Shi, Z.; She, K.; Li, H.; Yuan, X.; Han, X.; Wang, Y. MicroRNA-454 contributes to sustaining the proliferation and invasion of trophoblast cells through inhibiting Nodal/ALK7 signaling in pre-eclampsia. Chem. Biol. Interact., 2019, 298, 8-14.
[http://dx.doi.org/10.1016/j.cbi.2018.10.012] [PMID: 30367833]
[13]
Liu, S.; Sun, Y.; Tang, Y.; Hu, R.; Zhou, Q.; Li, X. IL-25 promotes trophoblast proliferation and invasion via binding with IL-17RB and associated with PE. Hypertens Pregnancy., 2021, 40(3), 209-217.
[14]
Armant, D.R. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev. Biol., 2005, 280(2), 260-280.
[http://dx.doi.org/10.1016/j.ydbio.2005.02.009] [PMID: 15882572]
[15]
Abbas, Y.; Carnicer-Lombarte, A.; Gardner, L.; Thomas, J.; Brosens, J.J.; Moffett, A.; Sharkey, A.M.; Franze, K.; Burton, G.J.; Oyen, M.L. Tissue stiffness at the human maternal-fetal interface. Hum. Reprod., 2019, 34(10), 1999-2008.
[http://dx.doi.org/10.1093/humrep/dez139]
[16]
Kim, J.H.; Jekarl, D.W.; Kim, M.; Oh, E.J.; Kim, Y.; Park, I.Y.; Shin, J.C. Effects of ECM protein mimetics on adhesion and proliferation of chorion derived mesenchymal stem cells. Int. J. Med. Sci., 2014, 11(3), 298-308.
[http://dx.doi.org/10.7150/ijms.6672] [PMID: 24516355]
[17]
Schaefer, L.; Schaefer, R.M. Proteoglycans: From structural compounds to signaling molecules. Cell Tissue Res., 2010, 339(1), 237-246.
[http://dx.doi.org/10.1007/s00441-009-0821-y] [PMID: 19513755]
[18]
Iozzo, R. V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol, 2015, 42, 11-55.
[http://dx.doi.org/10.1016/j.matbio.2015.02.003]
[19]
Perrimon, N.; Bernfield, M. Cellular functions of proteoglycans—an overview. Semin. Cell Dev. Biol., 2001, 12(2), 65-67.
[http://dx.doi.org/10.1006/scdb.2000.0237] [PMID: 11292371]
[20]
Oravecz, O.; Balogh, A.; Romero, R.; Xu, Y.; Juhasz, K.; Gelencser, Z.; Xu, Z.; Bhatti, G.; Pique-Regi, R.; Peterfia, B.; Hupuczi, P.; Kovalszky, I.; Murthi, P.; Tarca, A.L.; Papp, Z.; Matko, J.; Than, N.G. Proteoglycans: Systems-level insight into their expression in healthy and diseased placentas. Int. J. Mol. Sci., 2022, 23(10), 5798.
[http://dx.doi.org/10.3390/ijms23105798] [PMID: 35628608]
[21]
Chui, A.; Murthi, P.; Brennecke, S.P.; Ignjatovic, V.; Monagle, P.T.; Said, J.M. The expression of placental proteoglycans in pre-eclampsia. Gynecol. Obstet. Invest., 2012, 73(4), 277-284.
[http://dx.doi.org/10.1159/000333262] [PMID: 22516801]
[22]
Merline, R.; Schaefer, R.M.; Schaefer, L. The matricellular functions of small leucine-rich proteoglycans (SLRPs). J. Cell Commun. Signal., 2009, 3(3-4), 323-335.
[http://dx.doi.org/10.1007/s12079-009-0066-2] [PMID: 19809894]
[23]
Low, S.W.Y.; Connor, T.B.; Kassem, I.S.; Costakos, D.M.; Chaurasia, S.S. Small leucine-rich proteoglycans (SLRPs) in the retina. Int. J. Mol. Sci., 2021, 22(14), 7293.
[http://dx.doi.org/10.3390/ijms22147293] [PMID: 34298915]
[24]
Pang, X.; Dong, N.; Zheng, Z. Small leucine-rich proteoglycans in skin wound healing. Front. Pharmacol., 2020, 10, 1649.
[http://dx.doi.org/10.3389/fphar.2019.01649] [PMID: 32063855]
[25]
Naito, Z. Role of the small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth. J. Nippon Med. Sch., 2005, 72(3), 137-145.
[http://dx.doi.org/10.1272/jnms.72.137] [PMID: 16046829]
[26]
Schaefer, L.; Iozzo, R.V. Biological functions of the small leucine-rich proteoglycans: From genetics to signal transduction. J. Biol. Chem., 2008, 283(31), 21305-21309.
[http://dx.doi.org/10.1074/jbc.R800020200] [PMID: 18463092]
[27]
Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin: A guardian from the matrix. Am. J. Pathol., 2012, 181(2), 380-387.
[http://dx.doi.org/10.1016/j.ajpath.2012.04.029] [PMID: 22735579]
[28]
Iacob, D.; Cai, J.; Tsonis, M.; Babwah, A.; Chakraborty, C.; Bhattacharjee, R.N.; Lala, P.K. Decorin-mediated inhibition of proliferation and migration of the human trophoblast via different tyrosine kinase receptors. Endocrinology, 2008, 149(12), 6187-6197.
[http://dx.doi.org/10.1210/en.2008-0780] [PMID: 18703624]
[29]
Nandi, P.; Siddiqui, M.F.; Lala, P.K. Restraint of trophoblast invasion of the uterus by decorin: Role in pre-eclampsia. Am. J. Reprod. Immunol., 2016, 75(3), 351-360.
[http://dx.doi.org/10.1111/aji.12449] [PMID: 26554635]
[30]
Lala, P.K.; Nandi, P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adhes. Migr., 2016, 10(1-2), 111-125.
[http://dx.doi.org/10.1080/19336918.2015.1106669] [PMID: 26745663]
[31]
Zou, Y.; Yu, X.; Lu, J.; Jiang, Z.; Zuo, Q.; Fan, M.; Huang, S.; Sun, L. Decorin-mediated inhibition of human trophoblast cells proliferation, migration, and invasion and promotion of apoptosis in vitro. BioMed. Res. Int., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/201629] [PMID: 26357650]
[32]
Chakravarti, S. Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22. Genomics, 1995, 27(3), 481-488.
[http://dx.doi.org/10.1006/geno.1995.1080]
[33]
Chakravarti, S.; Petroll, W.M.; Hassell, J.R.; Jester, J.V.; Lass, J.H.; Paul, J.; Birk, D.E. Corneal opacity in lumican-null mice: Defects in collagen fibril structure and packing in the posterior stroma. Invest. Ophthalmol. Vis. Sci., 2000, 41(11), 3365-3373.
[PMID: 11006226]
[34]
Cornuet, P.K.B.; Blochberger, T.C.; Hassell, J.R. Molecular polymorphism of lumican during corneal development. Invest. Ophthalmol. Vis. Sci., 1994, 35(3), 870-877.
[PMID: 8125750]
[35]
Chen, L.; Zhang, Y.; Zuo, Y.; Ma, F.; Song, H. Lumican expression in gastric cancer and its association with biological behavior and prognosis. Oncol. Lett., 2017, 14(5), 5235-5240.
[http://dx.doi.org/10.3892/ol.2017.6842] [PMID: 29098025]
[36]
Liu, C.; Hu, Y.; Wang, Z.; Pan, H.; Ren, Y.; Li, X.; Liu, Z.; Gao, H. The downregulation of placental lumican promotes the progression of preeclampsia. Reprod. Sci., 2021, 28(11), 3147-3154.
[http://dx.doi.org/10.1007/s43032-021-00660-w] [PMID: 34231169]
[37]
Nastase, M.V.; Young, M.F.; Schaefer, L. Biglycan: A multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem., 2012, 60(12), 963-975.
[http://dx.doi.org/10.1369/0022155412456380] [PMID: 22821552]
[38]
Appunni, S.; Rubens, M.; Ramamoorthy, V.; Anand, V.; Khandelwal, M.; Sharma, A. Biglycan: An emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol. Cell. Biochem., 2021, 476(11), 3935-3950.
[http://dx.doi.org/10.1007/s11010-021-04216-z] [PMID: 34181183]
[39]
Gogiel, T.; Galewska, Z.; Romanowicz, L.; Jaworski, S.; Bańkowski, E. Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 134(1), 51-56.
[http://dx.doi.org/10.1016/j.ejogrb.2006.10.003] [PMID: 17097211]
[40]
Roedig, H.; Nastase, M.V.; Frey, H.; Moreth, K.; Zeng-Brouwers, J.; Poluzzi, C.; Hsieh, L.T.H.; Brandts, C.; Fulda, S.; Wygrecka, M.; Schaefer, L. Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol., 2019, 77, 4-22.
[http://dx.doi.org/10.1016/j.matbio.2018.05.006] [PMID: 29777767]
[41]
Schaefer, L.; Babelova, A.; Kiss, E.; Hausser, H.J.; Baliova, M.; Krzyzankova, M.; Marsche, G.; Young, M.F.; Mihalik, D.; Götte, M.; Malle, E.; Schaefer, R.M.; Gröne, H.J. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest., 2005, 115(8), 2223-2233.
[http://dx.doi.org/10.1172/JCI23755] [PMID: 16025156]
[42]
Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans – key regulators of cell signaling and biological functions. FEBS J., 2017, 284(1), 27-41.
[http://dx.doi.org/10.1111/febs.13940] [PMID: 27790852]
[43]
Shriver, Z.; Capila, I.; Venkataraman, G.; Sasisekharan, R. Heparin and heparan sulfate: Analyzing structure and microheterogeneity. Handb. Exp. Pharmacol., 2012, 207(207), 159-176.
[http://dx.doi.org/10.1007/978-3-642-23056-1_8] [PMID: 22566225]
[44]
Czarnowski, D. Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat. Res. Commun., 2021, 27, 100312.
[http://dx.doi.org/10.1016/j.ctarc.2021.100312]
[45]
Jokimaa, V.I.S.; Kujari, H.P.; Ekholm, E.M.K.; Inki, P.L.K.; Anttila, L. Placental expression of syndecan 1 is diminished in preeclampsia. Am. J. Obstet. Gynecol., 2000, 183(6), 1495-1498.
[http://dx.doi.org/10.1067/mob.2000.107320] [PMID: 11120517]
[46]
Yoneda, A.; Couchman, J.R. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol., 2003, 22(1), 25-33.
[http://dx.doi.org/10.1016/S0945-053X(03)00010-6] [PMID: 12714039]
[47]
Heyer-Chauhan, N.; Ovbude, I.J.; Hills, A.A.; Sullivan, M.H.; Hills, F.A. Placental syndecan-1 and sulphated glycosaminoglycans are decreased in preeclampsia. J. Perinat. Med., 2014, 42(3), 329-338.
[http://dx.doi.org/10.1515/jpm-2013-0097] [PMID: 24222257]
[48]
Novotny, W.F.; Palmier, M.; Wun, T.C.; Broze, G.J.J., Jr; Miletich, J.P. Purification and properties of heparin-releasable lipoprotein- associated coagulation inhibitor. Blood, 1991, 78(2), 394-400.
[http://dx.doi.org/10.1182/blood.V78.2.394.394] [PMID: 2070077]
[49]
Elenius, K.; Määttä, A.; Salmivirta, M.; Jalkanen, M. Growth factors induce 3T3 cells to express bFGF-binding syndecan. J. Biol. Chem., 1992, 267(9), 6435-6441.
[http://dx.doi.org/10.1016/S0021-9258(18)42715-9] [PMID: 1556147]
[50]
Filmus, J.; Capurro, M.; Rast, J. Glypicans. Genome Biol., 2008, 9(5), 224.
[http://dx.doi.org/10.1186/gb-2008-9-5-224] [PMID: 18505598]
[51]
Khan, S.; Blackburn, M.; Mao, D.L.; Huber, R.; Schlessinger, D.; Fant, M. Glypican-3 (GPC3) expression in human placenta: Localization to the differentiated syncytiotrophoblast. Histol. Histopathol., 2001, 16(1), 71-78.
[http://dx.doi.org/10.14670/HH-16.71] [PMID: 11193214]
[52]
Neaud, V.; Duplantier, J.G.; Mazzocco, C.; Kisiel, W.; Rosenbaum, J. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis through a cyclooxygenase-2-dependent, epidermal growth factor receptor-independent mechanism. J. Biol. Chem., 2004, 279(7), 5200-5206.
[http://dx.doi.org/10.1074/jbc.M306679200] [PMID: 14623891]
[53]
Hohenester, E. Structural biology of laminins. Essays Biochem., 2019, 63(3), 285-295.
[http://dx.doi.org/10.1042/EBC20180075] [PMID: 31092689]
[54]
Hohenester, E.; Yurchenco, P.D. Laminins in basement membrane assembly. Cell Adhes. Migr., 2013, 7(1), 56-63.
[http://dx.doi.org/10.4161/cam.21831] [PMID: 23076216]
[55]
Savino, W.; Mendes-da-Cruz, D.A.; Golbert, D.C.F.; Riederer, I.; Cotta-de-Almeida, V. Laminin-mediated interactions in thymocyte migration and development. Front. Immunol., 2015, 6, 579.
[http://dx.doi.org/10.3389/fimmu.2015.00579] [PMID: 26635793]
[56]
Givant-Horwitz, V.; Davidson, B.; Reich, R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res., 2004, 64(10), 3572-3579.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3424] [PMID: 15150114]
[57]
Ma, K.; Jin, H.; Hu, R.; Xiong, Y.; Zhou, S.; Ting, P.; Cheng, Y.; Yang, Y.; Yang, P.; Li, X. A proteomic analysis of placental trophoblastic cells in preeclampsia-eclampsia. Cell Biochem. Biophys., 2014, 69(2), 247-258.
[http://dx.doi.org/10.1007/s12013-013-9792-4] [PMID: 24343450]
[58]
Miner, J.H.; Cunningham, J.; Sanes, J.R. Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J. Cell Biol., 1998, 143(6), 1713-1723.
[http://dx.doi.org/10.1083/jcb.143.6.1713] [PMID: 9852162]
[59]
Zhang, X.M.; Xiong, X.; Tong, C.; Li, Q.; Huang, S.; Li, Q.S.; Liu, Y.M.; Li, H.Y.; Baker, P.; Shan, N.; Qi, H.B. Down-regulation of laminin (LN)- α5 is associated with preeclampsia and impairs trophoblast cell viability and invasiveness through PI3K signaling pathway. Cell. Physiol. Biochem., 2018, 51(5), 2030-2040.
[http://dx.doi.org/10.1159/000495822] [PMID: 30522103]
[60]
Ji, Y.; Zhou, L.; Wang, G.; Qiao, Y.; Tian, Y.; Feng, Y. Role of LAMA4 gene in regulating extravillous trophoblasts in pathogenesis of preeclampsia. Med. Sci. Monit., 2019, 25, 9630-9636.
[http://dx.doi.org/10.12659/MSM.917402] [PMID: 31842202]
[61]
Hynes, R. Interactions of Fibronectins; Springer-Verlag: New York, 1990, 28, pp. (11)1561-1567.
[http://dx.doi.org/10.17219/acem/104531]
[62]
Speziale, P.; Arciola, C.R.; Pietrocola, G. Fibronectin and its role in human infective diseases. Cells, 2019, 8(12), 1516.
[http://dx.doi.org/10.3390/cells8121516] [PMID: 31779172]
[63]
Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling. Cells, 2021, 10(9), 2443.
[http://dx.doi.org/10.3390/cells10092443] [PMID: 34572092]
[64]
Wu, H.; Liu, K.; Zhang, J. Excess fibronectin 1 participates in pathogenesis of pre-eclampsia by promoting apoptosis and autophagy in vascular endothelial cells. Mol. Hum. Reprod., 2021, 27(6), gaab030.
[http://dx.doi.org/10.1093/molehr/gaab030] [PMID: 33881516]
[65]
Jiang, R.; Wang, T.; Zhou, F.; Yao, Y.; He, J.; Xu, D. Bioinformatics-based identification of miRNA-, lncRNA-, and mRNA-associated ceRNA networks and potential biomarkers for preeclampsia. Medicine, 2020, 99(45), e22985.
[http://dx.doi.org/10.1097/MD.0000000000022985] [PMID: 33157942]
[66]
Tjoa, M.L.; Oudejans, C.B.M.; Van Vugt, J.M.G.; Blankenstein, M.A.; van Wijk, I.J. Markers for presymptomatic prediction of preeclampsia and intrauterine growth restriction. Hypertens. Pregnancy, 2004, 23(2), 171-189.
[http://dx.doi.org/10.1081/PRG-120028292] [PMID: 15369650]
[67]
Shi, J.W.; Lai, Z.Z.; Yang, H.L.; Yang, S.L.; Wang, C.J.; Ao, D.; Ruan, L.Y.; Shen, H.H.; Zhou, W.J.; Mei, J.; Fu, Q.; Li, M.Q. Collagen at the maternal-fetal interface in human pregnancy. Int. J. Biol. Sci., 2020, 16(12), 2220-2234.
[http://dx.doi.org/10.7150/ijbs.45586] [PMID: 32549767]
[68]
Heino, J. The collagen family members as cell adhesion proteins. BioEssays, 2007, 29(10), 1001-1010.
[http://dx.doi.org/10.1002/bies.20636] [PMID: 17876790]
[69]
Xu, P.; W, Y.; Piao, Y.; Bai, S.; Xiao, Z.; Jia, Y.; Luo, S; Zhuang, L. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol. Reprod., 2001, 65(1), 240-246.
[70]
Xu, X.H.; Jia, Y.; Zhou, X.; Xie, D.; Huang, X.; Jia, L.; Zhou, Q.; Zheng, Q.; Zhou, X.; Wang, K.; Jin, L.P. Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen pathway in preeclampsia. Exp. Mol. Med., 2019, 51(2), 1-12.
[http://dx.doi.org/10.1038/s12276-019-0211-9] [PMID: 30804321]
[71]
Feng, Y.; Chen, X.; Wang, H.; Chen, X.; Lan, Z.; Li, P.; Cao, Y.; Liu, M.; Lv, J.; Chen, Y.; Wang, Y.; Sheng, C.; Huang, Y.; Zhong, M.; Wang, Z.; Yue, X.; Huang, L.; Collagen, I. Collagen I induces preeclampsia-like symptoms by suppressing proliferation and invasion of trophoblasts. Front. Endocrinol., 2021, 12, 664766.
[http://dx.doi.org/10.3389/fendo.2021.664766] [PMID: 34421817]
[72]
Mousa, A.A.; Cappello, R.E.; Estrada-Gutierrez, G.; Shukla, J.; Romero, R.; Strauss, J.F., III; Walsh, S.W. Preeclampsia is associated with alterations in DNA methylation of genes involved in collagen metabolism. Am. J. Pathol., 2012, 181(4), 1455-1463.
[http://dx.doi.org/10.1016/j.ajpath.2012.06.019] [PMID: 22863954]
[73]
Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining its role. Cells, 2020, 9(7), 1743.
[http://dx.doi.org/10.3390/cells9071743] [PMID: 32708202]
[74]
Heldin, P.; Basu, K.; Olofsson, B.; Porsch, H.; Kozlova, I.; Kahata, K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J. Biochem., 2013, 154(5), 395-408.
[http://dx.doi.org/10.1093/jb/mvt085] [PMID: 24092768]
[75]
Castellucci, M.; Kosanke, G.; Verdenelli, F.; Huppertz, B.; Kaufmann, P. Villous sprouting: Fundamental mechanisms of human placental development. Hum. Reprod. Update, 2000, 6(5), 485-494.
[http://dx.doi.org/10.1093/humupd/6.5.485] [PMID: 11045879]
[76]
San Martin, S.; Soto-Suazo, M.; Zorn, T.M.T. Distribution of versican and hyaluronan in the mouse uterus during decidualization. Braz. J. Med. Biol. Res., 2003, 36(8), 1067-1071.
[http://dx.doi.org/10.1590/S0100-879X2003000800013] [PMID: 12886461]
[77]
Uzun, H.; Konukoglu, D.; Albayrak, M.; Benian, A.; Madazli, R.; Aydin, S.; Gelisgen, R.; Uludag, S. Increased maternal serum and cord blood fibronectin concentrations in preeclampsia are associated with higher placental hyaluronic acid and hydroxyproline content. Hypertens. Pregnancy, 2010, 29(2), 153-162.
[http://dx.doi.org/10.3109/10641950902968619] [PMID: 20367505]
[78]
Liang, J.; Jiang, D.; Griffith, J.; Yu, S.; Fan, J.; Zhao, X.; Bucala, R.; Noble, P.W. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J. Immunol., 2007, 178(4), 2469-2475.
[http://dx.doi.org/10.4049/jimmunol.178.4.2469] [PMID: 17277154]
[79]
Stefańska, K.; Zieliński, M.; Jankowiak, M.; Zamkowska, D.; Sakowska, J.; Adamski, P.; Jassem-Bobowicz, J.; Piekarska, K.; Leszczyńska, K.; Świątkowska-Stodulska, R.; Kwiatkowski, S.; Preis, K.; Trzonkowski, P.; Marek-Trzonkowska, N. Cytokine imprint in preeclampsia. Front. Immunol., 2021, 12, 667841.
[http://dx.doi.org/10.3389/fimmu.2021.667841] [PMID: 34248946]
[80]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[81]
Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[82]
Newby, A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev., 2005, 85(1), 1-31.
[http://dx.doi.org/10.1152/physrev.00048.2003] [PMID: 15618476]
[83]
Sahay, A.S.; Jadhav, A.T.; Sundrani, D.P.; Wagh, G.N.; Mehendale, S.S.; Joshi, S.R. Matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) are differentially expressed in different regions of normal and preeclampsia placentae. J. Cell. Biochem., 2018, 119(8), 6657-6664.
[http://dx.doi.org/10.1002/jcb.26849] [PMID: 29665148]
[84]
Suo, M.; Sun, Y.; Yang, H.; Ji, J.; He, Y.; Dong, L.; Wang, Y.; Zhang, Y.; Zhang, Y.; Hao, M. miR-183-5p suppressed the invasion and migration of HTR-8/SVneo trophoblast cells partly via targeting MMP-9 in preeclampsia. Biosci. Rep., 2020, 40(6), BSR20192575.
[http://dx.doi.org/10.1042/BSR20192575] [PMID: 32342983]
[85]
Timokhina, E.; Strizhakov, A.; Ibragimova, S.; Gitel, E.; Ignatko, I.; Belousova, V.; Zafiridi, N. Matrix metalloproteinases MMP-2 and MMP-9 occupy a new role in severe preeclampsia. J. Pregnancy, 2020, 2020(1-2), 1-7.
[http://dx.doi.org/10.1155/2020/8369645] [PMID: 33381317]
[86]
Ng, E.K.O.; Leung, T.N.; Tsui, N.B.Y.; Lau, T.K.; Panesar, N.S.; Chiu, R.W.K.; Lo, Y.M.D. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem., 2003, 49(5), 727-731.
[http://dx.doi.org/10.1373/49.5.727] [PMID: 12709362]
[87]
Nishikawa, S.; Miyamoto, A.; Yamamoto, H.; Ohshika, H.; Kudo, R. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci., 2000, 67(12), 1447-1454.
[http://dx.doi.org/10.1016/S0024-3205(00)00736-0] [PMID: 10983841]
[88]
Cohen, M.; Ribaux, P.; Epiney, M.; Irion, O. Expression of metalloproteinases 1, 2, 7, 9, and 12 in human cytotrophoblastic cells from normal and preeclamptic placentas. Neuroendocrinol. Lett., 2012, 33(4), 406-411.
[PMID: 22936257]
[89]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[90]
Khan, G.A.; Girish, G.V.; Lala, N.; Di Guglielmo, G.M.; Lala, P.K. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast. Mol. Endocrinol., 2011, 25(8), 1431-1443.
[http://dx.doi.org/10.1210/me.2010-0426] [PMID: 21659473]
[91]
Siddiqui, M. F.; Nandi, P.; Girish, G. V.; Nygard, K.; Eastabrook, G.; de Vrijer, B.; Han, V. K.; Lala, P. K. Decorin over-expression by decidual cells in preeclampsia: A potential blood biomarker. Am J Obstet Gynecol, 2016, 215(3), 361 e1-361 e6.
[http://dx.doi.org/10.1016/j.ajog.2016.03.020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy