Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Machine-learning-guided Directed Evolution for AAV Capsid Engineering

Author(s): Xianrong Fu, Hairui Suo*, Jiachen Zhang and Dongmei Chen

Volume 30, Issue 11, 2024

Published on: 05 March, 2024

Page: [811 - 824] Pages: 14

DOI: 10.2174/0113816128286593240226060318

Price: $65

conference banner
Abstract

Target gene delivery is crucial to gene therapy. Adeno-associated virus (AAV) has emerged as a primary gene therapy vector due to its broad host range, long-term expression, and low pathogenicity. However, AAV vectors have some limitations, such as immunogenicity and insufficient targeting. Designing or modifying capsids is a potential method of improving the efficacy of gene delivery, but hindered by weak biological basis of AAV, complexity of the capsids, and limitations of current screening methods. Artificial intelligence (AI), especially machine learning (ML), has great potential to accelerate and improve the optimization of capsid properties as well as decrease their development time and manufacturing costs. This review introduces the traditional methods of designing AAV capsids and the general steps of building a sequence-function ML model, highlights the applications of ML in the development workflow, and summarizes its advantages and challenges.

Keywords: Gene therapy, vector, adeno-associated virus, capsid, directed evolution, machine learning.

[1]
Labbé RP, Vessillier S, Rafiq QA. Lentiviral vectors for T cell engineering: Clinical applications, bioprocessing and future perspectives. Viruses 2021; 13(8): 1528.
[http://dx.doi.org/10.3390/v13081528] [PMID: 34452392]
[2]
Korneyenkov MA, Zamyatnin AA Jr. Next step in gene delivery: Modern approaches and further perspectives of AAV tropism modification. Pharmaceutics 2021; 13(5): 750.
[http://dx.doi.org/10.3390/pharmaceutics13050750] [PMID: 34069541]
[3]
Wang Z, Cheng F, Engelhardt JF, Yan Z, Qiu J. Development of a novel recombinant adeno-associated virus production system using human bocavirus 1 helper genes. Mol Ther Methods Clin Dev 2018; 11: 40-51.
[http://dx.doi.org/10.1016/j.omtm.2018.09.005] [PMID: 30397626]
[4]
Tang Q, Keeler AM, Zhang S, et al. Two-plasmid packaging system for recombinant adeno-associated virus. Biores Open Access 2020; 9(1): 219-28.
[http://dx.doi.org/10.1089/biores.2020.0031]
[5]
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021; 18(1): 85.
[http://dx.doi.org/10.1186/s12985-021-01555-7] [PMID: 33892762]
[6]
Shirley JL, Herzog RW. AAV immunogenicity: New answers create new questions. Mol Ther 2018; 26(11): 2538-9.
[http://dx.doi.org/10.1016/j.ymthe.2018.10.004] [PMID: 30366819]
[7]
Mingozzi F. AAV immunogenicity: A matter of sensitivity. Mol Ther 2018; 26(10): 2335-6.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.001] [PMID: 30241741]
[8]
Smith RH, Hallwirth CV, Westerman M, et al. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Sci Rep 2016; 6(1): 28965.
[http://dx.doi.org/10.1038/srep28965] [PMID: 27377618]
[9]
Marsic D, Govindasamy L, Currlin S, et al. Vector design Tour de Force: Integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther 2014; 22(11): 1900-9.
[http://dx.doi.org/10.1038/mt.2014.139] [PMID: 25048217]
[10]
Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol 2012; 807: 47-92.
[http://dx.doi.org/10.1007/978-1-61779-370-7_3] [PMID: 22034026]
[11]
Ambrosi CM, Sadananda G, Han JL, Entcheva E. Adeno-associated virus mediated gene delivery: Implications for scalable in vitro and in vivo cardiac optogenetic models. Front Physiol 2019; 10: 168.
[http://dx.doi.org/10.3389/fphys.2019.00168] [PMID: 30890951]
[12]
Huang LY, Patel A, Ng R, et al. Characterization of the adeno-associated virus 1 and 6 sialic acid binding site. J Virol 2016; 90(11): 5219-30.
[http://dx.doi.org/10.1128/JVI.00161-16] [PMID: 26962225]
[13]
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106: 39-84.
[http://dx.doi.org/10.1016/bs.aivir.2020.01.002] [PMID: 32327148]
[14]
Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4): 255-72.
[http://dx.doi.org/10.1038/s41576-019-0205-4] [PMID: 32042148]
[15]
Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno-associated viral vectors. Gene Ther 2005; 12(11): 873-80.
[http://dx.doi.org/10.1038/sj.gt.3302527] [PMID: 15829993]
[16]
Bolt MW, Brady JT, Whiteley LO, Khan KN. Development challenges associated with rAAV-based gene therapies. J Toxicol Sci 2021; 46(2): 57-68.
[http://dx.doi.org/10.2131/jts.46.57] [PMID: 33536390]
[17]
Abulimiti A, Lai MSL, Chang RCC. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech Ageing Dev 2021; 199: 111549.
[http://dx.doi.org/10.1016/j.mad.2021.111549] [PMID: 34352323]
[18]
Weng S, Zhao Y, Yu C, et al. Construction of a rAAV-SaCas9 system expressing eGFP and its application to improve muscle mass. Biotechnol Lett 2021; 43(11): 2111-29.
[http://dx.doi.org/10.1007/s10529-021-03183-1] [PMID: 34590222]
[19]
Blanc F, Mondain M, Bemelmans AP, Affortit C, Puel JL, Wang J. rAVV-mediated cochlear gene therapy: Prospects and challenges for clinical application. J Clin Med 2020; 9(2): 589.
[http://dx.doi.org/10.3390/jcm9020589] [PMID: 32098144]
[20]
Ma H, Lu Y, Lowe K, et al. Regulated haat expression from a novel rAAV vector and its application in the prevention of type 1 diabetes. J Clin Med 2019; 8(9): 1321.
[http://dx.doi.org/10.3390/jcm8091321] [PMID: 31466263]
[21]
Xiao PJ, Lentz TB, Samulski RJ. Recombinant adeno-associated virus: Clinical application and development as a gene-therapy vector. Ther Deliv 2012; 3(7): 835-56.
[http://dx.doi.org/10.4155/tde.12.63] [PMID: 22900466]
[22]
Gao G, Vandenberghe LH, Alvira MR, et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78(12): 6381-8.
[http://dx.doi.org/10.1128/JVI.78.12.6381-6388.2004] [PMID: 15163731]
[23]
Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNA viruses found in various adenovirus preparations: Physical, biological, and immunological characteristics. Proc Natl Acad Sci 1966; 55(6): 1467-74.
[http://dx.doi.org/10.1073/pnas.55.6.1467] [PMID: 5227666]
[24]
Bantel-Schaal U, Zur Hausen H. Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 1984; 134(1): 52-63.
[http://dx.doi.org/10.1016/0042-6822(84)90271-X] [PMID: 6324476]
[25]
Bello A, Tran K, Chand A, et al. Isolation and evaluation of novel adeno-associated virus sequences from porcine tissues. Gene Ther 2009; 16(11): 1320-8.
[http://dx.doi.org/10.1038/gt.2009.82] [PMID: 19626054]
[26]
Lochrie MA, Tatsuno GP, Arbetman AE, et al. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology 2006; 353(1): 68-82.
[http://dx.doi.org/10.1016/j.virol.2006.05.023] [PMID: 16806384]
[27]
Wang D, Li S, Gessler DJ, et al. A rationally engineered capsid variant of AAV9 for systemic CNS-directed and peripheral tissue-detargeted gene delivery in neonates. Mol Ther Methods Clin Dev 2018; 9: 234-46.
[http://dx.doi.org/10.1016/j.omtm.2018.03.004] [PMID: 29766031]
[28]
Münch RC, Muth A, Muik A, et al. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun 2015; 6(1): 6246.
[http://dx.doi.org/10.1038/ncomms7246] [PMID: 25665714]
[29]
Xiong W, Liu B, Shen Y, Jing K, Savage TR. Protein engineering design from directed evolution to de novo synthesis. Biochem Eng J 2021; 174: 108096.
[http://dx.doi.org/10.1016/j.bej.2021.108096]
[30]
Davis AS, Federici T, Ray WC, et al. Rational design and engineering of a modified adeno-associated virus (AAV1)-based vector system for enhanced retrograde gene delivery. Neurosurgery 2015; 76(2): 216-25.
[http://dx.doi.org/10.1227/NEU.0000000000000589] [PMID: 25549186]
[31]
Asokan A, Conway JC, Phillips JL, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 2010; 28(1): 79-82.
[http://dx.doi.org/10.1038/nbt.1599] [PMID: 20037580]
[32]
Bowles DE, McPhee SWJ, Li C, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012; 20(2): 443-55.
[http://dx.doi.org/10.1038/mt.2011.237] [PMID: 22068425]
[33]
Vandenberghe LH, Breous E, Nam H-J, et al. Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther 2009; 16(12): 1416-28.
[http://dx.doi.org/10.1038/gt.2009.101] [PMID: 19727141]
[34]
Zinn E, Pacouret S, Khaychuk V, et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 2015; 12(6): 1056-68.
[http://dx.doi.org/10.1016/j.celrep.2015.07.019] [PMID: 26235624]
[35]
Santiago-Ortiz J, Ojala DS, Westesson O, et al. AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther 2015; 22(12): 934-46.
[http://dx.doi.org/10.1038/gt.2015.74] [PMID: 26186661]
[36]
Mnyandu N, Arbuthnot P, Maepa MB. In vivo delivery of cassettes encoding anti-HBV primary micrornas using an ancestral adeno-associated viral vector. Methods Mol Biol 2020; 2115: 171-83.
[http://dx.doi.org/10.1007/978-1-0716-0290-4_10] [PMID: 32006401]
[37]
Dyer RP, Isoda HM, Salcedo GS, et al. Reengineering the specificity of the highly selective Clostridium botulinum protease via directed evolution. Sci Rep 2022; 12(1): 9956.
[http://dx.doi.org/10.1038/s41598-022-13617-z] [PMID: 35705606]
[38]
Paulk NK, Pekrun K, Zhu E, et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol Ther 2018; 26(1): 289-303.
[http://dx.doi.org/10.1016/j.ymthe.2017.09.021] [PMID: 29055620]
[39]
Choudhury SR, Fitzpatrick Z, Harris AF, et al. In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 2016; 24(7): 1247-57.
[http://dx.doi.org/10.1038/mt.2016.84] [PMID: 27117222]
[40]
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol Ther 2006; 14(3): 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009] [PMID: 16824801]
[41]
Crosson SM, Bennett A, Fajardo D, et al. Effects of altering HSPG binding and capsid hydrophilicity on retinal transduction by AAV. J Virol 2021; 95(10): e02440-20.
[http://dx.doi.org/10.1128/JVI.02440-20] [PMID: 33658343]
[42]
Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 2016; 34(2): 204-9.
[http://dx.doi.org/10.1038/nbt.3440] [PMID: 26829320]
[43]
Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016; 23(1): 8.
[http://dx.doi.org/10.1186/s12929-016-0223-x] [PMID: 26786672]
[44]
Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 2010; 18(3): 570-8.
[http://dx.doi.org/10.1038/mt.2009.292] [PMID: 20040913]
[45]
Kienle E, Senís E, Börner K, et al. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp 2012; (62): 3819.
[PMID: 22491297]
[46]
Westhaus A, Cabanes-Creus M, Rybicki A, et al. High-throughput in vitro, ex vivo, and in vivo screen of adeno-associated virus vectors based on physical and functional transduction. Hum Gene Ther 2020; 31(9-10): 575-89.
[http://dx.doi.org/10.1089/hum.2019.264] [PMID: 32000541]
[47]
Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021; 184(19): 4919-4938.e22.
[http://dx.doi.org/10.1016/j.cell.2021.08.028] [PMID: 34506722]
[48]
You L, Arnold FH. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng Des Sel 1996; 9(1): 77-83.
[http://dx.doi.org/10.1093/protein/9.1.77] [PMID: 9053906]
[49]
Kelsic ED, Church GM. Challenges and opportunities of machine-guided capsid engineering for gene therapy. Cell Gene Ther Insights 2019; 5(4): 523-36.
[http://dx.doi.org/10.18609/cgti.2019.058]
[50]
Macarrón R, Hertzberg RP. Design and implementation of high throughput screening assays. Mol Biotechnol 2011; 47(3): 270-85.
[http://dx.doi.org/10.1007/s12033-010-9335-9] [PMID: 20865348]
[51]
Adachi K, Enoki T, Kawano Y, Veraz M, Nakai H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat Commun 2014; 5(1): 3075.
[http://dx.doi.org/10.1038/ncomms4075] [PMID: 24435020]
[52]
Davidsson M, Wang G, Aldrin-Kirk P, et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci 2019; 116(52): 27053-62.
[http://dx.doi.org/10.1073/pnas.1910061116] [PMID: 31818949]
[53]
Szumska J, Grimm D. Boosters for adeno-associated virus (AAV) vector (r) evolution. Cytotherapy 2023; 25(3): 254-60.
[http://dx.doi.org/10.1016/j.jcyt.2022.07.005] [PMID: 35999132]
[54]
Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods 2019; 16(8): 687-94.
[http://dx.doi.org/10.1038/s41592-019-0496-6] [PMID: 31308553]
[55]
Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern C 2012; 42(4): 463-84.
[http://dx.doi.org/10.1109/TSMCC.2011.2161285]
[56]
Haibo He , Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng 2009; 21(9): 1263-84.
[http://dx.doi.org/10.1109/TKDE.2008.239]
[57]
Marques AD, Kummer M, Kondratov O, Banerjee A, Moskalenko O, Zolotukhin S. Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries. Mol Ther Methods Clin Dev 2021; 20: 276-86.
[http://dx.doi.org/10.1016/j.omtm.2020.11.017] [PMID: 33511242]
[58]
Sinai S, Kelsic ED, Church GM, Nowak MA. Variational auto-encoding of protein sequences. arXiv:171203346 2017.
[59]
Mikos G, Chen W, Suh J. Machine learning identification of capsid mutations to improve AAV production fitness. bioRxiv0615447941 2021.
[http://dx.doi.org/10.1101/2021.06.15.447941]
[60]
Routray M, Vipsita S. Protein remote homology detection combining PCA and multiobjective optimization tools. Evol Intell 2023; 16(1): 67-76.
[http://dx.doi.org/10.1007/s12065-021-00642-6]
[61]
Wang S, Liu S. Protein sub-nuclear localization based on effective fusion representations and dimension reduction algorithm LDA. Int J Mol Sci 2015; 16(12): 30343-61.
[http://dx.doi.org/10.3390/ijms161226237] [PMID: 26703574]
[62]
Devrome M, Casteels C, Van der Perren A, Van Laere K, Baekelandt V, Koole M. Identifying a glucose metabolic brain pattern in an adeno-associated viral vector based rat model for Parkinson’s disease using 18F-FDG PET imaging. Sci Rep 2019; 9(1): 12368.
[http://dx.doi.org/10.1038/s41598-019-48713-0] [PMID: 31451742]
[63]
Sirihongthong T, Jitobaom K, Phakaratsakul S, Boonarkart C, Suptawiwat O, Auewarakul P. The relationship of codon usage to the replication strategy of parvoviruses. Arch Virol 2019; 164(10): 2479-91.
[http://dx.doi.org/10.1007/s00705-019-04343-5] [PMID: 31321584]
[64]
Sinai S, Jain N, Church GM, Kelsic ED. Generative AAV capsid diversification by latent interpolation. bioRxiv0416440236 2021.
[http://dx.doi.org/10.1101/2021.04.16.440236]
[65]
Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput 1996; 8(7): 1341-90.
[http://dx.doi.org/10.1162/neco.1996.8.7.1341]
[66]
Griffin JE, Brown PJ. Bayesian global-local shrinkage methods for regularisation in the high dimension linear model. Chemom Intell Lab Syst 2021; 210: 104255.
[http://dx.doi.org/10.1016/j.chemolab.2021.104255]
[67]
Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH. A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 2007; 25(9): 1051-6.
[http://dx.doi.org/10.1038/nbt1333] [PMID: 17721510]
[68]
Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 2005; 33(Web Server): W306-10.
[http://dx.doi.org/10.1093/nar/gki375] [PMID: 15980478]
[69]
Capriotti E, Fariselli P, Calabrese R, Casadio R. Predicting protein stability changes from sequences using support vector machines. Bioinformatics 2005; 21: 54-8.
[http://dx.doi.org/10.1093/bioinformatics/bti1109] [PMID: 16204125]
[70]
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 2006; 62(4): 1125-32.
[http://dx.doi.org/10.1002/prot.20810] [PMID: 16372356]
[71]
Buske FA, Their R, Gillam EMJ, Bodén M. In silico characterization of protein chimeras: Relating sequence and function within the same fold. Proteins 2009; 77(1): 111-20.
[http://dx.doi.org/10.1002/prot.22422] [PMID: 19415757]
[72]
Liu J, Kang X. Grading amino acid properties increased accuracies of single point mutation on protein stability prediction. BMC Bioinformatics 2012; 13(1): 44.
[http://dx.doi.org/10.1186/1471-2105-13-44] [PMID: 22435732]
[73]
Zaugg J, Gumulya Y, Malde AK, Bodén M. Learning epistatic interactions from sequence-activity data to predict enantioselectivity. J Comput Aided Mol Des 2017; 31(12): 1085-96.
[http://dx.doi.org/10.1007/s10822-017-0090-x] [PMID: 29234997]
[74]
Saladi SM, Javed N, Müller A, Clemons WM Jr. A statistical model for improved membrane protein expression using sequence-derived features. J Biol Chem 2018; 293(13): 4913-27.
[http://dx.doi.org/10.1074/jbc.RA117.001052] [PMID: 29378850]
[75]
Tian J, Wu N, Chu X, Fan Y. Predicting changes in protein thermostability brought about by single- or multi-site mutations. BMC Bioinformatics 2010; 11(1): 370.
[http://dx.doi.org/10.1186/1471-2105-11-370] [PMID: 20598148]
[76]
Li Y, Fang J. PROTS-RF: A robust model for predicting mutation-induced protein stability changes. PLoS One 2012; 7(10): e47247.
[http://dx.doi.org/10.1371/journal.pone.0047247] [PMID: 23077576]
[77]
Jia L, Yarlagadda R, Reed CC. Structure based thermostability prediction models for protein single point mutations with machine learning tools. PLoS One 2015; 10(9): e0138022.
[http://dx.doi.org/10.1371/journal.pone.0138022] [PMID: 26361227]
[78]
Romero PA, Krause A, Arnold FH. Navigating the protein fitness landscape with Gaussian processes. Proc Natl Acad Sci 2013; 110(3): E193-201.
[http://dx.doi.org/10.1073/pnas.1215251110] [PMID: 23277561]
[79]
Jokinen E, Heinonen M, Lähdesmäki H. mGPfusion: Predicting protein stability changes with Gaussian process kernel learning and data fusion. Bioinformatics 2018; 34(13): i274-83.
[http://dx.doi.org/10.1093/bioinformatics/bty238] [PMID: 29949987]
[80]
Pires DEV, Ascher DB, Blundell TL. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014; 30(3): 335-42.
[http://dx.doi.org/10.1093/bioinformatics/btt691] [PMID: 24281696]
[81]
Mellor J, Grigoras I, Carbonell P, Faulon JL. Semisupervised gaussian process for automated enzyme search. ACS Synth Biol 2016; 5(6): 518-28.
[http://dx.doi.org/10.1021/acssynbio.5b00294] [PMID: 27007080]
[82]
Saito Y, Oikawa M, Nakazawa H, et al. Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins. ACS Synth Biol 2018; 7(9): 2014-22.
[http://dx.doi.org/10.1021/acssynbio.8b00155] [PMID: 30103599]
[83]
Bedbrook CN, Yang KK, Rice AJ, Gradinaru V, Arnold FH. Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization. PLOS Comput Biol 2017; 13(10): e1005786.
[http://dx.doi.org/10.1371/journal.pcbi.1005786] [PMID: 29059183]
[84]
Bedbrook CN, Yang KK, Robinson JE, Mackey ED, Gradinaru V, Arnold FH. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat Methods 2019; 16(11): 1176-84.
[http://dx.doi.org/10.1038/s41592-019-0583-8] [PMID: 31611694]
[85]
Defresne M, Barbe S, Schiex T. Protein design with deep learning. Int J Mol Sci 2021; 22(21): 11741.
[http://dx.doi.org/10.3390/ijms222111741] [PMID: 34769173]
[86]
Suh D, Lee JW, Choi S, Lee Y. Recent applications of deep learning methods on evolution- and contact-based protein structure prediction. Int J Mol Sci 2021; 22(11): 6032.
[http://dx.doi.org/10.3390/ijms22116032] [PMID: 34199677]
[87]
Bryant DH, Bashir A, Sinai S, et al. Deep diversification of an AAV capsid protein by machine learning. Nat Biotechnol 2021; 39(6): 691-6.
[http://dx.doi.org/10.1038/s41587-020-00793-4] [PMID: 33574611]
[88]
Cristovão Iglesias J, Mehta V, Venereo-Sanchez A, et al. Handling massive proportion of missing labels in multivariate long-term time series forecasting. J Phys Conf Ser 2021; 2090(1): 012170.
[http://dx.doi.org/10.1088/1742-6596/2090/1/012170]
[89]
Karawdeniya BI, Bandara YMNDY, Khan AI, et al. Adeno-associated virus characterization for cargo discrimination through nanopore responsiveness. Nanoscale 2020; 12(46): 23721-31.
[http://dx.doi.org/10.1039/D0NR05605G] [PMID: 33231239]
[90]
Kim M. The generalized extreme learning machines: Tuning hyperparameters and limiting approach for the Moore–Penrose generalized inverse. Neural Netw 2021; 144: 591-602.
[http://dx.doi.org/10.1016/j.neunet.2021.09.008] [PMID: 34634606]
[91]
Lujan-Moreno GA, Howard PR, Rojas OG, Montgomery DC. Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study. Expert Syst Appl 2018; 109: 195-205.
[http://dx.doi.org/10.1016/j.eswa.2018.05.024]
[92]
Xiao M, Wu Y, Zuo G, et al. Addressing overfitting problem in deep learning-based solutions for next generation data-driven networks. Wirel Commun Mob Comput 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/8493795]
[93]
Petersen SB, Bohr H, Bohr J, et al. Training neural networks to analyse biological sequences. Trends Biotechnol 1990; 8(11): 304-8.
[http://dx.doi.org/10.1016/0167-7799(90)90206-D] [PMID: 1366766]
[94]
Günther F, Fritsch S. Neuralnet: Training of neural networks. R J 2010; 2(1): 30-8.
[http://dx.doi.org/10.32614/RJ-2010-006]
[95]
Dutta S. Cross-validation revisited. Commun Stat Simul Comput 2016; 45(2): 472-90.
[http://dx.doi.org/10.1080/03610918.2013.862275]
[96]
Maynard Smith J. Natural selection and the concept of a protein space. Nature 1970; 225(5232): 563-4.
[http://dx.doi.org/10.1038/225563a0] [PMID: 5411867]
[97]
Romero PA, Arnold FH. Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 2009; 10(12): 866-76.
[http://dx.doi.org/10.1038/nrm2805] [PMID: 19935669]
[98]
Ogden PJ, Kelsic ED, Sinai S, Church GM. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 2019; 366(6469): 1139-43.
[http://dx.doi.org/10.1126/science.aaw2900] [PMID: 31780559]
[99]
To CT, Wirsching C, Marques AD, Zolotukhin S. Using machine learning to design adeno-associated virus capsids with high likelihood of viral assembly. bioRxiv0518444607 2021.
[http://dx.doi.org/10.1101/2021.05.18.444607]
[100]
Zhu D, Brookes DH, Busia A, et al. Optimal trade-off control in machine learning–based library design, with application to adeno-associated virus (AAV) for gene therapy. Sci Adv 2024; 10(4): eadj3786.
[http://dx.doi.org/10.1126/sciadv.adj3786] [PMID: 38266077]
[101]
Fannjiang C, Bates S, Angelopoulos AN, Listgarten J, Jordan MI. Conformal prediction for the design problem. ArXiv220203613 2022.
[102]
Huang Q, Chen AT, Chan KY, et al. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier. PLoS Biol 2023; 21(7): e3002112.
[http://dx.doi.org/10.1371/journal.pbio.3002112] [PMID: 37467291]
[103]
Korpela H, Lampela J, Airaksinen J, et al. AAV2-VEGF-B gene therapy failed to induce angiogenesis in ischemic porcine myocardium due to inflammatory responses. Gene Ther 2022; 29(10-11): 643-52.
[http://dx.doi.org/10.1038/s41434-022-00322-9] [PMID: 35132204]
[104]
Prakoso D, Tate M, Blasio MJD, Ritchie RH. Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy: Current and future perspectives. Clin Sci 2021; 135(11): 1369-87.
[http://dx.doi.org/10.1042/CS20210052] [PMID: 34076247]
[105]
Parker AS, Griswold KE, Bailey-Kellogg C. Optimization of combinatorial mutagenesis. J Comput Biol 2011; 18(11): 1743-56.
[http://dx.doi.org/10.1089/cmb.2011.0152] [PMID: 21923411]
[106]
Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. Evolution of increased complexity in a molecular machine. Nature 2012; 481(7381): 360-4.
[http://dx.doi.org/10.1038/nature10724] [PMID: 22230956]
[107]
Ringnér M. What is principal component analysis? Nat Biotechnol 2008; 26(3): 303-4.
[http://dx.doi.org/10.1038/nbt0308-303] [PMID: 18327243]
[108]
Hie B, Zhong ED, Berger B, Bryson B. Learning the language of viral evolution and escape. Science 2021; 371(6526): 284-8.
[http://dx.doi.org/10.1126/science.abd7331] [PMID: 33446556]
[109]
Slanzi D, De Lucrezia D, Poli I. Querying Bayesian networks to design experiments with application to 1AGY serine esterase protein engineering. Chemom Intell Lab Syst 2015; 149: 28-38.
[http://dx.doi.org/10.1016/j.chemolab.2015.09.016]
[110]
Frisby TS, Langmead CJ. Bayesian optimization with evolutionary and structure-based regularization for directed protein evolution. Algorithms Mol Biol 2021; 16(1): 13.
[http://dx.doi.org/10.1186/s13015-021-00195-4] [PMID: 34210336]
[111]
Eid F-E, Chen AT, Chan KY, et al. Systematic multi-trait AAV capsid engineering for efficient gene delivery. bioRxiv1222521680 2022.
[http://dx.doi.org/10.1101/2022.12.22.521680]
[112]
Khan AI, Kim MJ, Dutta P. Fine-tuning-based transfer learning for characterization of adeno-associated virus. J Signal Process Syst Signal Image Video Technol 2022; 94(12): 1515-29.
[http://dx.doi.org/10.1007/s11265-022-01758-3] [PMID: 36742147]
[113]
Vandenberghe L, Wilson J. AAV as an immunogen. Curr Gene Ther 2007; 7(5): 325-33.
[http://dx.doi.org/10.2174/156652307782151416] [PMID: 17979679]
[114]
Vandamme C, Adjali O, Mingozzi F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther 2017; 28(11): 1061-74.
[http://dx.doi.org/10.1089/hum.2017.150] [PMID: 28835127]
[115]
O’Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J. MHCflurry: Open-source class I MHC binding affinity prediction. Cell Syst 2018; 7(1): 129-132.e4.
[http://dx.doi.org/10.1016/j.cels.2018.05.014] [PMID: 29960884]
[116]
Sarkizova S, Klaeger S, Le PM, et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol 2020; 38(2): 199-209.
[http://dx.doi.org/10.1038/s41587-019-0322-9] [PMID: 31844290]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy