Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Cross Talks between CNS and CVS Diseases: An Alliance to Annihilate

Author(s): Shivani Chib, Sushma Devi*, Rishabh Chalotra, Neeraj Mittal, Thakur Gurjeet Singh, Puneet Kumar and Randhir Singh*

Volume 20, Issue 3, 2024

Published on: 04 March, 2024

Article ID: e040324227603 Pages: 14

DOI: 10.2174/011573403X278550240221112636

Price: $65

conference banner
Abstract

Cardiovascular and neurological diseases cause substantial morbidity and mortality globally. Moreover, cardiovascular diseases are the leading cause of death globally. About 17.9 million people are affected by cardiovascular diseases and 6.8 million people die every year due to neurological diseases. The common neurologic manifestations of cardiovascular illness include stroke syndrome which is responsible for unconsciousness and several other morbidities significantly diminished the quality of life of patients. Therefore, it is prudent need to explore the mechanistic and molecular connection between cardiovascular disorders and neurological disorders. The present review emphasizes the association between cardiovascular and neurological diseases specifically Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease.

Keywords: Cardiovascular disorders, neurological disorders, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, oxidative stress.

Graphical Abstract
[1]
Acero N, Ortega T, Villagrasa V, et al. Phytotherapeutic alternatives for neurodegenerative dementias: Scientific review, discussion and therapeutic proposal. Phytother Res 2023; 37(3): 1176-211.
[http://dx.doi.org/10.1002/ptr.7727] [PMID: 36690605]
[2]
Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes 2014; 5(4): 444-70.
[http://dx.doi.org/10.4239/wjd.v5.i4.444] [PMID: 25126392]
[3]
Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[4]
Makkar R, Behl T, Bungau S, et al. Nutraceuticals in neurological disorders. Int J Mol Sci 2020; 21(12): 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[5]
Shoaib M, Becker LB. A walk through the progression of resuscitation medicine. Ann N Y Acad Sci 2022; 1507(1): 23-36.
[http://dx.doi.org/10.1111/nyas.14507] [PMID: 33040363]
[6]
Schnabel RB, Hasenfuß G, Buchmann S, et al. Heart and brain interactions. Herz 2021; 46(2): 138-49.
[http://dx.doi.org/10.1007/s00059-021-05022-5] [PMID: 33544152]
[7]
Liu S, Pan J, Tang K, et al. Sleep spindles, K-complexes, limb movements and sleep stage proportions may be biomarkers for amnestic mild cognitive impairment and Alzheimer’s disease. Sleep Breath 2020; 24(2): 637-51.
[http://dx.doi.org/10.1007/s11325-019-01970-9] [PMID: 31786748]
[8]
Merlo S, Spampinato SF, Caruso GI, Sortino MA. The ambiguous role of microglia in Aβ toxicity: Chances for therapeutic intervention. Curr Neuropharmacol 2020; 18(5): 446-55.
[http://dx.doi.org/10.2174/1570159X18666200131105418] [PMID: 32003695]
[9]
Behl T, Makkar R, Sehgal A, et al. Insights into the explicit protective activity of herbals in management of neurodegenerative and cerebrovascular disorders. Molecules 2022; 27(15): 4970.
[http://dx.doi.org/10.3390/molecules27154970] [PMID: 35956919]
[10]
Blagov AV, Grechko AV, Nikiforov NG, Borisov EE, Sadykhov NK, Orekhov AN. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease. Int J Mol Sci 2022; 23(13): 6954.
[http://dx.doi.org/10.3390/ijms23136954] [PMID: 35805958]
[11]
Kaur P, Khera A, Alajangi HK, et al. Role of tau in various tauopathies, treatment approaches, and emerging role of nanotechnology in neurodegenerative disorders. Mol Neurobiol 2023; 60(3): 1690-720.
[http://dx.doi.org/10.1007/s12035-022-03164-z] [PMID: 36562884]
[12]
Bohlen CJ, Friedman BA, Dejanovic B, Sheng M. Microglia in brain development, homeostasis, and neurodegeneration. Annu Rev Genet 2019; 53(1): 263-88.
[http://dx.doi.org/10.1146/annurev-genet-112618-043515] [PMID: 31518519]
[13]
Liu YZ, Wang YX, Jiang CL. Inflammation: The common pathway of stress-related diseases. Front Hum Neurosci 2017; 11: 316.
[http://dx.doi.org/10.3389/fnhum.2017.00316] [PMID: 28676747]
[14]
Stakos DA, Stamatelopoulos K, Bampatsias D, et al. The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar. J Am Coll Cardiol 2020; 75(8): 952-67.
[http://dx.doi.org/10.1016/j.jacc.2019.12.033] [PMID: 32130931]
[15]
Lyros E, Bakogiannis C, Liu Y, Fassbender K. Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer’s disease. Curr Alzheimer Res 2014; 11(1): 18-26.
[http://dx.doi.org/10.2174/1567205010666131119235254] [PMID: 24251393]
[16]
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020; 5(12): e661-71.
[http://dx.doi.org/10.1016/S2468-2667(20)30185-7] [PMID: 33271079]
[17]
Wanleenuwat P, Iwanowski P, Kozubski W. Alzheimer’s dementia: Pathogenesis and impact of cardiovascular risk factors on cognitive decline. Postgrad Med 2019; 131(7): 415-22.
[http://dx.doi.org/10.1080/00325481.2019.1657776] [PMID: 31424301]
[18]
Koutsaliaris IK, Moschonas IC, Pechlivani LM, Tsouka AN, Tselepis AD. Inflammation, oxidative stress, vascular aging and atherosclerotic ischemic stroke. Curr Med Chem 2022; 29(34): 5496-509.
[http://dx.doi.org/10.2174/0929867328666210921161711] [PMID: 34547993]
[19]
Li Z, Zhang Z, Ren Y, et al. Aging and age‐related diseases: From mechanisms to therapeutic strategies. Biogerontology 2021; 22(2): 165-87.
[http://dx.doi.org/10.1007/s10522-021-09910-5] [PMID: 33502634]
[20]
Islam MS, Lai CC, Wang LH, Lin HH. Inhibition of NMDA receptor activation in the rostral ventrolateral medulla by amyloid-β peptide in rats. Biomolecules 2023; 13(12): 1736.
[http://dx.doi.org/10.3390/biom13121736] [PMID: 38136607]
[21]
Shen Y, Hua L, Yeh CK, et al. Ultrasound with microbubbles improves memory, ameliorates pathology and modulates hippocampal proteomic changes in a triple transgenic mouse model of Alzheimer’s disease. Theranostics 2020; 10(25): 11794-819.
[http://dx.doi.org/10.7150/thno.44152] [PMID: 33052247]
[22]
Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. NeuroMolecular Med 2008; 10(4): 291-315.
[http://dx.doi.org/10.1007/s12017-008-8044-z]
[23]
Rao M, Wang X, Guo G, et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol 2021; 116(1): 55.
[http://dx.doi.org/10.1007/s00395-021-00897-1] [PMID: 34601654]
[24]
Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat Rev Neurol 2019; 15(9): 501-18.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[25]
Lanfranco MF, Ng CA, Rebeck GW. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci 2020; 21(17): 6336.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[26]
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 2006; 80(5): 241-68.
[http://dx.doi.org/10.1016/j.pneurobio.2006.09.003] [PMID: 17188795]
[27]
Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol 2009; 8(4): 382-97.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[28]
Popov Aleksandrov A, Mirkov I, Tucovic D, et al. Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol Lett 2021; 240: 106-22.
[http://dx.doi.org/10.1016/j.imlet.2021.10.003] [PMID: 34688722]
[29]
Latif S, Jahangeer M, Maknoon Razia D, et al. Dopamine in Parkinson’s disease. Clin Chim Acta 2021; 522: 114-26.
[http://dx.doi.org/10.1016/j.cca.2021.08.009] [PMID: 34389279]
[30]
Chib S, Singh S. Manganese and related neurotoxic pathways: A potential therapeutic target in neurodegenerative diseases. Neurotoxicol Teratol 2022; 94: 107124.
[http://dx.doi.org/10.1016/j.ntt.2022.107124] [PMID: 36183913]
[31]
Morris G, Puri BK, Bortolasci CC, et al. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125: 244-63.
[http://dx.doi.org/10.1016/j.neubiorev.2021.02.037] [PMID: 33657433]
[32]
Onyango IG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 2008; 33(3): 589-97.
[http://dx.doi.org/10.1007/s11064-007-9482-y] [PMID: 17940895]
[33]
Yang P, Feng J, Peng Q, Liu X, Fan Z. Advanced glycation end products: Potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxid Med Cell Longev 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/9570616] [PMID: 31885827]
[34]
Alghareeb SA, Alfhili MA, Fatima S. Molecular mechanisms and pathophysiological significance of eryptosis. Int J Mol Sci 2023; 24(6): 5079.
[http://dx.doi.org/10.3390/ijms24065079] [PMID: 36982153]
[35]
Hajam YA, Rani R, Ganie SY, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 2022; 11(3): 552.
[http://dx.doi.org/10.3390/cells11030552] [PMID: 35159361]
[36]
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018; 9: 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[37]
Mei M, Liu M, Mei Y, Zhao J, Li Y. Sphingolipid metabolism in brain insulin resistance and neurological diseases. Front Endocrinol 2023; 14: 1243132.
[http://dx.doi.org/10.3389/fendo.2023.1243132] [PMID: 37867511]
[38]
Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson’s disease. NeuroMolecular Med 2009; 218(2): 247-56.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.019]
[39]
Borovac JA, D’Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12(8): 373-408.
[http://dx.doi.org/10.4330/wjc.v12.i8.373] [PMID: 32879702]
[40]
Medina A, Mahjoub Y, Shaver L, Pringsheim T. Prevalence and incidence of huntington’s disease: An updated systematic review and meta‐analysis. Mov Disord 2022; 37(12): 2327-35.
[http://dx.doi.org/10.1002/mds.29228] [PMID: 36161673]
[41]
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial abnormalities and synaptic damage in Huntington’s disease: A focus on defective mitophagy and mitochondria-targeted therapeutics. Mol Neurobiol 2021; 58(12): 6350-77.
[http://dx.doi.org/10.1007/s12035-021-02556-x] [PMID: 34519969]
[42]
Abildtrup M, Shattock M. Cardiac dysautonomia in Huntington’s disease. J Huntingtons Dis 2013; 2(3): 251-61.
[http://dx.doi.org/10.3233/JHD-130054] [PMID: 25062674]
[43]
Pattison JS, Robbins J. Protein misfolding and cardiac disease: Establishing cause and effect. Autophagy 2008; 4(6): 821-3.
[http://dx.doi.org/10.4161/auto.6502] [PMID: 18612262]
[44]
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington’s disease pathogenesis. Ageing Res Rev 2021; 69: 101358.
[http://dx.doi.org/10.1016/j.arr.2021.101358] [PMID: 33979693]
[45]
Wu BT, Chiang MC, Tasi CY, et al. Cardiac Fas-dependent and mitochondria-dependent apoptotic pathways in a transgenic mouse model of Huntington’s disease. Cardiovasc Toxicol 2016; 16(2): 111-21.
[http://dx.doi.org/10.1007/s12012-015-9318-y] [PMID: 25800750]
[46]
Ohlmeier C, Saum KU, Galetzka W, Beier D, Gothe H. Epidemiology and health care utilization of patients suffering from Huntington’s disease in Germany: Real world evidence based on German claims data. BMC Neurol 2019; 19(1): 318.
[http://dx.doi.org/10.1186/s12883-019-1556-3] [PMID: 31823737]
[47]
Margolis RL, Ross CA. Diagnosis of Huntington disease. Clin Chem 2003; 49(10): 1726-32.
[http://dx.doi.org/10.1373/49.10.1726] [PMID: 14500613]
[48]
Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr Trends Neurol 2011; 5: 65-78.
[PMID: 22180703]
[49]
Li W, Serpell LC, Carter WJ, Rubinsztein DC, Huntington JA. Expression and characterization of full-length human huntingtin, an elongated HEAT repeat protein. J Biol Chem 2006; 281(23): 15916-22.
[http://dx.doi.org/10.1074/jbc.M511007200] [PMID: 16595690]
[50]
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 2014; 121(8): 799-817.
[http://dx.doi.org/10.1007/s00702-014-1180-8] [PMID: 24578174]
[51]
Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22(20): 9134-41.
[http://dx.doi.org/10.1523/JNEUROSCI.22-20-09134.2002]
[52]
Bridges RJ, Kavanaugh MP, Chamberlin AR. A pharmacological review of competitive inhibitors and substrates of high-affinity, sodium-dependent glutamate transport in the central nervous system. Curr Pharm Des 1999; 5(5): 363-79.
[http://dx.doi.org/10.2174/138161280505230110101259] [PMID: 10213800]
[53]
Bridges RJ, Natale NR, Patel SA. System xc− cystine/glutamate antiporter: An update on molecular pharmacology and roles within the CNS. Br J Pharmacol 2012; 165(1): 20-34.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01480.x]
[54]
Cepeda C, Levine MS. Synaptic dysfunction in Huntington’s disease: Lessons from genetic animal models. Neuroscientist 2022; 28(1): 20-40.
[http://dx.doi.org/10.1177/1073858420972662] [PMID: 33198566]
[55]
Magi S, Piccirillo S, Amoroso S, Lariccia V. Excitatory amino acid transporters (EAATs): Glutamate transport and beyond. Int J Mol Sci 2019; 20(22): 5674.
[http://dx.doi.org/10.3390/ijms20225674] [PMID: 31766111]
[56]
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16(10): 529-46.
[http://dx.doi.org/10.1038/s41582-020-0389-4] [PMID: 32796930]
[57]
Garcia M, Mulvagh SL, Bairey Merz CN, Buring JE, Manson JE. Cardiovascular disease in women: Clinical perspectives. Circ Res 2016; 118(8): 1273-93.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307547] [PMID: 27081110]
[58]
oth GA, Mulvagh GA, Johnson CO, Addolorato G. Global burden of cardiovascular diseases and risk factors. 1990-2019: Update From the GBD. Study J Am CollCardiol 2020; 76(25): 2982-3021.
[59]
Sun F, Song Y, Liu J, et al. Efficacy of losartan for improving insulin resistance and vascular remodeling in hemodialysis patients. Hemodial Int 2016; 20(1): 22-30.
[http://dx.doi.org/10.1111/hdi.12327] [PMID: 26104969]
[60]
Warriach ZI, Patel S, Khan F, Ferrer GF. Association of depression with cardiovascular diseases. Cureus 2022; 14(6): e26296.
[PMID: 35911274]
[61]
Sędzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. Int J Mol Sci 2021; 22(18): 9987.
[http://dx.doi.org/10.3390/ijms22189987] [PMID: 34576151]
[62]
Sekar S, Marks WN, Gopalakrishnan V, et al. Evidence for altered insulin signalling in the brains of genetic absence epilepsy rats from Strasbourg. Clin Exp Pharmacol Physiol 2020; 47(9): 1530-6.
[http://dx.doi.org/10.1111/1440-1681.13326] [PMID: 32304254]
[63]
Hong CT, Chen KY, Wang W, et al. Insulin resistance promotes Parkinson’s disease through aberrant expression of α-synuclein, mitochondrial dysfunction, and deregulation of the polo-like kinase 2 signaling. Cells 2020; 9(3): 740.
[http://dx.doi.org/10.3390/cells9030740] [PMID: 32192190]
[64]
Mizuki Y, Sakamoto S, Okahisa Y, et al. Mechanisms underlying the comorbidity of schizophrenia and type 2 diabetes mellitus. Int J Neuropsychopharmacol 2021; 24(5): 367-82.
[http://dx.doi.org/10.1093/ijnp/pyaa097] [PMID: 33315097]
[65]
Zamora M, Villena JA. Contribution of impaired insulin signaling to the pathogenesis of diabetic cardiomyopathy. Int J Mol Sci 2019; 20(11): 2833.
[http://dx.doi.org/10.3390/ijms20112833] [PMID: 31212580]
[66]
Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: Its implication in cardiac hypertrophy and aging. Circ Res 2014; 114(2): 368-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300536] [PMID: 24436432]
[67]
Rios-Fuller TJ, Mahe M, Walters B, et al. Translation regulation by eIF2α phosphorylation and mTORC1 signaling pathways in non-communicable diseases (NCDs). Int J Mol Sci 2020; 21(15): 5301.
[http://dx.doi.org/10.3390/ijms21155301] [PMID: 32722591]
[68]
Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE. Minimally invasive aortic banding in mice: Effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 2003; 285(3): H1261-9.
[http://dx.doi.org/10.1152/ajpheart.00108.2003] [PMID: 12738623]
[69]
Riehle C, Wende AR, Sena S, et al. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest 2013; 123(12): 5319-33.
[http://dx.doi.org/10.1172/JCI71171] [PMID: 24177427]
[70]
Abel ED. Insulin signaling in the heart. Am J Physiol Endocrinol Metab 2021; 321(1): E130-45.
[http://dx.doi.org/10.1152/ajpendo.00158.2021] [PMID: 34056923]
[71]
Zhou L, Wang T, Yu Y, et al. The etiology of poststroke-depression: A hypothesis involving HPA axis. Biomed Pharmacother 2022; 151: 113146.
[http://dx.doi.org/10.1016/j.biopha.2022.113146] [PMID: 35643064]
[72]
Kwon S, Hermayer KL, Hermayer K. Glucocorticoid-induced hyperglycemia. Am J Med Sci 2013; 345(4): 274-7.
[http://dx.doi.org/10.1097/MAJ.0b013e31828a6a01] [PMID: 23531958]
[73]
Beaupere C, Liboz A, Fève B, Blondeau B, Guillemain G. Molecular mechanisms of glucocorticoid-induced insulin resistance. Int J Mol Sci 2021; 22(2): 623.
[http://dx.doi.org/10.3390/ijms22020623] [PMID: 33435513]
[74]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[75]
Palomino DCT, Marti LC. Chemokines and immunity. Einstein 2015; 13(3): 469-73.
[http://dx.doi.org/10.1590/S1679-45082015RB3438] [PMID: 26466066]
[76]
Zernecke A, Weber C. Chemokines in atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34(4): 742-50.
[http://dx.doi.org/10.1161/ATVBAHA.113.301655] [PMID: 24436368]
[77]
Chi L. The therapeutic potential of HMGB1 inhibition in the development of systemic sclerosis-associated pulmonary arterial hypertension. University of Toronto: Goldenberg. Neil NG 2021.
[78]
Poupel L, Boissonnas A, Hermand P, et al. Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2013; 33(10): 2297-305.
[http://dx.doi.org/10.1161/ATVBAHA.112.300930] [PMID: 23887641]
[79]
Soroureddin Z, Nouri-Vaskeh M, Maleki M, et al. Targeted anti-inflammatory therapy is a new insight for reducing cardiovascular events: A review from physiology to the clinic. Life Sci 2020; 253: 117720.
[http://dx.doi.org/10.1016/j.lfs.2020.117720] [PMID: 32360620]
[80]
Amin MN, Siddiqui SA, Ibrahim M, et al. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med 2020; 8.
[http://dx.doi.org/10.1177/2050312120965752] [PMID: 33194199]
[81]
Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol 2019; 73(1): 22-7.
[http://dx.doi.org/10.1016/j.jjcc.2018.05.010] [PMID: 29907363]
[82]
Goyal A, Gopika S, Agrawal N. Basic leucine zipper protein nuclear factor erythroid 2–related factor 2 as a potential therapeutic target in brain related disorders. Protein Pept Lett 2022; 29(8): 676-91.
[http://dx.doi.org/10.2174/0929866529666220622124253] [PMID: 35733308]
[83]
Li J, Cheng XY, Yang H, et al. Matrine ameliorates cognitive deficits via inhibition of microglia mediated neuroinflammation in an Alzheimer’s disease mouse model. Pharmazie 2020; 75(7): 344-7.
[PMID: 32635978]
[84]
Zaidi AA, Khan MA, Shahreyar ZA, Ahmed H. Lauric acid: Its role in behavioral modulation, neuro-inflammatory and oxidative stress markers in haloperidol induced Parkinson’s disease. Pak J Pharm Sci 2020; 33(2): 755-63.
[PMID: 32863249]
[85]
Ying WS. Effects of andrographolide on astrocyte-mediated inflammatory response: Potential for anti-neuroinflammatory therapy. National University of Singapore 2016.
[86]
Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res Rev 2018; 48: 109-21.
[http://dx.doi.org/10.1016/j.arr.2018.10.002] [PMID: 30326283]
[87]
Iu ECY, Chan CB. Is brain-derived neurotrophic factor a metabolic hormone in peripheral tissues? Biology 2022; 11(7): 1063.
[http://dx.doi.org/10.3390/biology11071063] [PMID: 36101441]
[88]
Rothman SM, Griffioen KJ, Wan R, Mattson MP. Brain‐derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci 2012; 1264(1): 49-63.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06525.x] [PMID: 22548651]
[89]
Rêgo MLM, Cabral DAR, Costa EC, Fontes EB. Physical exercise for individuals with hypertension: It is time to emphasize its benefits on the brain and cognition. Clin Med Insights Cardiol 2019; 13.
[http://dx.doi.org/10.1177/1179546819839411] [PMID: 30967748]
[90]
Trombetta IC, DeMoura JR, Alves CR, Carbonari-Brito R, Cepeda FX, Lemos JR Jr. Serum levels of BDNF in cardiovascular protection and in response to exercise. Arq Bras Cardiol 2020; 115(2): 263-9.
[http://dx.doi.org/10.36660/abc.20190368] [PMID: 32876194]
[91]
Shibata R, Shinohara K, Ito K, Kishi T, Tsutsui H, Hirooka Y. Pressure overload-induced cardiac hypertrophy increases TRPV1 in Heart and BDNF in NTS, suggesting baroreflex disruption via the heart-to-brain axis. J Card Fail 2016; 22(9): S206.
[http://dx.doi.org/10.1016/j.cardfail.2016.07.282]
[92]
Elia A, Cannavo A, Gambino G, et al. Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. J Geriatr Cardiol 2021; 18(7): 549-59.
[PMID: 34404991]
[93]
Jiang H, Liu Y, Zhang Y, Chen ZY. Association of plasma brain-derived neurotrophic factor and cardiovascular risk factors and prognosis in angina pectoris. Biochem Biophys Res Commun 2011; 415(1): 99-103.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.020] [PMID: 22020095]
[94]
Pivac N, Sustar A, Perkovic MN, Erjavec GN, Strac DS. Association between reduced brain-derived neurotrophic factor concentration & coronary heart disease. Indian J Med Res 2019; 150(1): 43-9.
[http://dx.doi.org/10.4103/ijmr.IJMR_1566_17] [PMID: 31571628]
[95]
Ghanbarzadeh M, Taheri A, Heyat F. Molecular structure and response of the brain-derived neurotropic factor (BDNF) to exercise. Annals Mili Heal Sci Res 2016; 14(4)
[http://dx.doi.org/10.5812/amh.59774]
[96]
Hayashi Y, Lin HT, Lee CC, Tsai KJ. Effects of neural stem cell transplantation in Alzheimer’s disease models. J Biomed Sci 2020; 27(1): 29.
[http://dx.doi.org/10.1186/s12929-020-0622-x] [PMID: 31987051]
[97]
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci 2020; 21(3): 1170.
[http://dx.doi.org/10.3390/ijms21031170] [PMID: 32050617]
[98]
Berghauzen-Maciejewska K, Wardas J, Kosmowska B, Głowacka U, Kuter K, Ossowska K. Alterations of BDNF and trkB mRNA expression in the 6-hydroxydopamine-induced model of preclinical stages of Parkinson’s disease: an influence of chronic pramipexole in rats. PLoS One 2015; 10(3): e0117698.
[http://dx.doi.org/10.1371/journal.pone.0117698] [PMID: 25739024]
[99]
Récamier-Carballo S, Estrada-Camarena E, López-Rubalcava C. Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challenge. Behav Pharmacol 2017; 28(7): 545-57.
[http://dx.doi.org/10.1097/FBP.0000000000000324] [PMID: 28704274]
[100]
Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Tau pathophysiology in neurodegeneration: A tangled issue. Trends Neurosci 2009; 32(3): 150-9.
[http://dx.doi.org/10.1016/j.tins.2008.11.007] [PMID: 19162340]
[101]
Kolber MR, Scrimshaw C. Family history of cardiovascular disease. Can Fam Physician 2014; 60(11): 1016.
[PMID: 25392442]
[102]
Xie S, Karlsson H, Dalman C, et al. Family history of mental and neurological disorders and risk of autism. JAMA Netw Open 2019; 2(3): e190154.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0154] [PMID: 30821823]
[103]
Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res 2018; 123(7): 825-48.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312563] [PMID: 30355078]
[104]
Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord 2003; 2(2): 95-107.
[http://dx.doi.org/10.2174/1568007033482959] [PMID: 12769802]
[105]
Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 2017; 8(1): 33.
[http://dx.doi.org/10.1186/s13293-017-0152-8] [PMID: 29065927]
[106]
Khan R, Ali K, Khan Z. Socio-demographic risk factors of gestational diabetes mellitus. Pak J Med Sci 2013; 29(3): 843-6.
[http://dx.doi.org/10.12669/pjms.293.3629] [PMID: 24353640]
[107]
Sharma P, Hajam YA, Kumar R, Rai S. Complementary and alternative medicine for the treatment of diabetes and associated complications: A review on therapeutic role of polyphenols. Phytomedicine Plus 2022; 2(1): 100188.
[http://dx.doi.org/10.1016/j.phyplu.2021.100188]
[108]
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res 2017; 120(3): 449-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308427] [PMID: 28154097]
[109]
Effects of andrographolide on astrocyte-mediated inflammatory response: Potential for anti-neuroinflammatory therapy. Available from: https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-atherosclerosis/symptoms-causes/syc-20350569
[110]
Benowitz NL. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009; 49(1): 57-71.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094742] [PMID: 18834313]
[111]
Cardiovascular diseases, how tobacco smoke cause disease: the biology and behavioral basis for smoking-attributable disease: A report of the surgeon general, national library of medicine, bookshelf. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53012/
[112]
Banerjee N. Neurotransmitters in alcoholism: A review of neurobiological and genetic studies. Indian J Hum Genet 2014; 20(1): 20-31.
[http://dx.doi.org/10.4103/0971-6866.132750] [PMID: 24959010]
[113]
Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019; 102(1): 75-90.
[http://dx.doi.org/10.1016/j.neuron.2019.03.013] [PMID: 30946828]
[114]
Piano MR. Alcohol’s effects on the cardiovascular system. Alcohol Res 2017; 38(2): 219-41.
[PMID: 28988575]
[115]
Poitelon Y, Kopec AM, Belin S. Myelin fat facts: An overview of lipids and fatty acid metabolism. Cells 2020; 9(4): 812.
[http://dx.doi.org/10.3390/cells9040812] [PMID: 32230947]
[116]
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients 2020; 12(7): 2021.
[http://dx.doi.org/10.3390/nu12072021] [PMID: 32645995]
[117]
Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr Diab Rep 2016; 16(9): 87.
[http://dx.doi.org/10.1007/s11892-016-0775-x] [PMID: 27491830]
[118]
Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol 2018; 34(5): 575-84.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]
[119]
Sui SX, Pasco JA. Obesity and brain function: The brain–body crosstalk. Medicina 2020; 56(10): 499.
[http://dx.doi.org/10.3390/medicina56100499] [PMID: 32987813]
[120]
Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020; 126(11): 1477-500.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316101] [PMID: 32437302]
[121]
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plast 2018; 4(1): 17-52.
[http://dx.doi.org/10.3233/BPL-180069] [PMID: 30564545]
[122]
Amanat S, Ghahri S, Dianatinasab A, Fararouei M, Dianatinasab M. Exercise and type 2 diabetes. Physical Exercise for Human Health 2020; pp. 91-105.
[123]
Manolis TA, Manolis AA, Apostolopoulos EJ, Melita H, Manolis AS. Atrial fibrillation and cognitive impairment: An associated burden or burden by association? Angiology 2020; 71(6): 498-519.
[http://dx.doi.org/10.1177/0003319720910669] [PMID: 32233780]
[124]
Masarone D, Limongelli G, Rubino M, et al. Management of arrhythmias in heart failure. J Cardiovasc Dev Dis 2017; 4(1): 3.
[http://dx.doi.org/10.3390/jcdd4010003] [PMID: 29367535]
[125]
Ishitsuka K, Kamouchi M, Hata J, et al. High blood pressure after acute ischemic stroke is associated with poor clinical outcomes: Fukuoka stroke registry. Hypertension 2014; 63(1): 54-60.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02189] [PMID: 24126175]
[126]
Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol 2019; 74(20): 2529-32.
[http://dx.doi.org/10.1016/j.jacc.2019.10.009] [PMID: 31727292]
[127]
Singroha V, Dhar SS, Jeenger J, Sharma M, Mathur D. Psychiatric morbidity, cognitive dysfunction and quality of life in drug-naive patients with Parkinson’s disease: A comparative study. Ind Psychiatry J 2019; 28(1): 13-8.
[http://dx.doi.org/10.4103/ipj.ipj_64_19] [PMID: 31879441]
[128]
Luchsinger JA, Mayeux R. Cardiovascular risk factors and Alzheimer’s disease. Curr Atheroscler Rep 2004; 6(4): 261-6.
[http://dx.doi.org/10.1007/s11883-004-0056-z] [PMID: 15191699]
[129]
Kizza J, Lewington S, Mappin-Kasirer B, et al. Cardiovascular risk factors and Parkinson’s disease in 500,000 Chinese adults. Ann Clin Transl Neurol 2019; 6(4): 624-32.
[http://dx.doi.org/10.1002/acn3.732] [PMID: 31019987]
[130]
Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I. Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol 2010; 4(1): 17-23.
[http://dx.doi.org/10.1016/j.jacl.2009.11.003] [PMID: 20802793]
[131]
Park S, Luk SHC, Bains RS, et al. Targeted genetic reduction of mutant huntingtin lessens cardiac pathology in the BACHD mouse model of huntington’s disease. Front Cardiovasc Med 2021; 8: 810810.
[http://dx.doi.org/10.3389/fcvm.2021.810810] [PMID: 35004919]
[132]
Horio E, Kadomatsu T, Miyata K, et al. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression. Arterioscler Thromb Vasc Biol 2014; 34(4): 790-800.
[http://dx.doi.org/10.1161/ATVBAHA.113.303116] [PMID: 24526691]
[133]
Jay TR, Bemiller SM, Neilson LE, Cheng-Hathaway PJ, Lamb BT. Neuroinflammation and Neurodegenerative Diseases. 2016. Available from : https://academic.oup.com/book/24384/chapter-abstract/187301615?redirectedFrom=fulltext
[http://dx.doi.org/10.1093/med/9780190233563.003.0004]
[134]
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17(1): 122.
[http://dx.doi.org/10.1186/s12933-018-0762-4] [PMID: 30170598]
[135]
Aguilera-Méndez A, Boone-Villa D, Nieto-Aguilar R, Villafaña-Rauda S, Molina AS, Sobrevilla JV. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch 2022; 474(1): 117-40.
[http://dx.doi.org/10.1007/s00424-021-02619-x] [PMID: 34518916]
[136]
Tan J, Yadav MK, Devi S, Kumar M. Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons. Acta Pharm 2022; 72(1): 123-34.
[http://dx.doi.org/10.2478/acph-2022-0002] [PMID: 36651531]
[137]
Foudah AI, Devi S, Alam A, Salkini MA, Ross SA. Anticholinergic effect of resveratrol with vitamin E on scopolamine-induced Alzheimer’s disease in rats: Mechanistic approach to prevent inflammation. Front Pharmacol 2023; 14: 1115721.
[http://dx.doi.org/10.3389/fphar.2023.1115721] [PMID: 36817151]
[138]
Martinez JE, Kahana DD, Ghuman S, et al. Unhealthy lifestyle and gut dysbiosis: A better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol 2021; 12: 667066.
[http://dx.doi.org/10.3389/fendo.2021.667066] [PMID: 34168615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy