Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Emerging Role of Cell Membrane-coated Nanomaterials in Cancer Therapy

Author(s): Sankha Bhattacharya* and Paul Beninger

Volume 30, Issue 10, 2024

Published on: 01 March, 2024

Page: [727 - 741] Pages: 15

DOI: 10.2174/0113816128295414240221063434

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

This review investigates the revolutionary application of cell membrane-coated nanoparticles (CMNPs) as a promising avenue for cancer therapy within the embryonic landscape of nanotechnology. Nanoparticles, pivotal in cancer treatment, are systematically examined for their diverse physicochemical structures, categorized as organic (lipid-based, protein-based, and polymer-assisted) and inorganic (carbon-based and metal) varieties. A significant focus is placed on CMNPs, which serve as an innovative drug delivery vehicle, overcoming limitations associated with conventional nanoparticle therapies. This manuscript accurately explores the advantages and challenges of various cell membranes, including those derived from cancer cells, red blood cells, platelets, stem cells, and white blood cells. Importance is placed on their roles in enhancing drug delivery precision, immune system circumvention, and targeted recognition. Detailed insights into the crafting of CMNPs are provided, elucidating membrane extraction and fusion techniques, such as sonication, extrusion, co-extrusion, and microfluidic electroporation. Maintaining membrane integrity during extraction and the benefits of coating techniques in augmenting biocompatibility and targeted drug delivery are underscored. This comprehensive resource consolidates the latest advancements in targeted drug delivery, positioning itself at the forefront of nanotechnology and biomedicine research. Encapsulating various methodologies like membrane extrusion, electrospray, and chemical conjugation, this manuscript showcases the expanding toolbox available to researchers in this dynamic field. Focusing on the unique characteristics of CMNPs, this review explores their multifaceted applications in biomedical research, particularly in tumour therapy. It provides an indepth analysis of the biocompatibility of CMNPs, their stability, immune evasion capabilities, targeted drug delivery precision, increased payload capacity, and retained biological functionality. The manuscript outlines current applications and future prospects of CMNPs in targeted chemotherapy, photothermal and photodynamic therapy, immunotherapy, gene therapy, and innovative therapeutic methods. It concludes by highlighting the advantages of CMNPs in tumour therapy and their transformative potential in reshaping the landscape of cancer treatment.

Keywords: Cell membrane-coated nanoparticles, tumour therapy, drug delivery, biocompatibility, immune evasion, precision targeting.

Next »
[1]
Wang X, Dong Y, Zhang H, et al. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis 2024; 11(2): 847-60.
[http://dx.doi.org/10.1016/j.gendis.2023.02.038] [PMID: 37692483]
[2]
Li S, Meng X, Peng B, et al. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2023; 174: 26-48.
[3]
Naderpour H, Abbasi M, Kontoni D-PN, Mirrashid M, Ezami N, Savvides A-A. Integrating image processing and machine learning for the non-destructive assessment of RC beams damage. Buildings 2024; 14(1): 214.
[http://dx.doi.org/10.3390/buildings14010214]
[4]
Nelleke Seghers PAL, Hamaker ME, O’Hanlon S, et al. Self-reported electronic symptom monitoring in older patients with multimorbidity treated for cancer: Development of a core dataset based on expert consensus, literature review, and quality of life questionnaires. J Geriatr Oncol 2024; 15(1): 101643.
[http://dx.doi.org/10.1016/j.jgo.2023.101643] [PMID: 37979368]
[5]
Neetika M, Sharma M, Thakur P, et al. Cancer treatment and toxicity outlook of nanoparticles. Environ Res 2023; 237(Pt 1): 116870.
[http://dx.doi.org/10.1016/j.envres.2023.116870] [PMID: 37567383]
[6]
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 2019; 98: 1252-76.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[7]
Bhattacharya S. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting application. Int J Biol Macromol 2020; 151: 104-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.151] [PMID: 32070732]
[8]
Manthalkar L, Bhattacharya S, Hatware K, et al. Fabrication of D-α-tocopheryl polyethylene glycol 1000 succinates and human serum albumin conjugated chitosan nanoparticles of bosutinib for colon targeting application; in vitro-in vivo investigation. Int J Biol Macromol 2023; 253(Pt 7): 127531.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127531] [PMID: 37858658]
[9]
Bhattacharya S, Bonde S, Hatware K, Sharma S, Anjum MM, Sahu RK. Physicochemical characterization, in vitro and in vivo evaluation of chitosan/carrageenan encumbered with Imatinib mesylate-polysarcosine nanoparticles for sustained drug release and enhanced colorectal cancer targeted therapy. Int J Biol Macromol 2023; 245: 125529.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125529] [PMID: 37379942]
[10]
Xu B, Zeng F, Deng J, et al. A homologous and molecular dual- targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy. Bioact Mater 2023; 27: 337-47.
[http://dx.doi.org/10.1016/j.bioactmat.2023.04.005] [PMID: 37122898]
[11]
Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Advan Func Mat 2023; 2307074.
[12]
Bhattacharya S, Shinde P, Page A, Sharma S. 5-Fluorouracil and Anti-EGFR antibody scaffold chitosan-stabilized Pickering emulsion: Formulations, physical characterization, in-vitro studies in NCL-H226 cells, and in-vivo investigations in Wistar rats for the augmented therapeutic effects against squamous cell carcinoma. Int J Biol Macromol 2023; 253(Pt 1): 126716.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126716] [PMID: 37673158]
[13]
Khan MS, Jaswanth Gowda BH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29(1): 103819.
[http://dx.doi.org/10.1016/j.drudis.2023.103819] [PMID: 37940034]
[14]
Hasan N, Imran M, Jain D, et al. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. Environ Res 2023; 238(Pt 1): 117007.
[http://dx.doi.org/10.1016/j.envres.2023.117007] [PMID: 37689337]
[15]
Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[16]
Bhattacharya S, Pawde D, Dumpala RL. Preparation of Sorafenib tosylate self-emulsified drug delivery system and the effect on combination therapy with Bosutinib against HCT116/SW1417 cells. Results Chem 2022; 4: 100385.
[http://dx.doi.org/10.1016/j.rechem.2022.100385]
[17]
Sahu R, Shah K, Malviya R, et al. E-Cigarettes and associated health risks: An update on cancer potential. Adv Respir Med 2023; 91(6): 516-31.
[http://dx.doi.org/10.3390/arm91060038] [PMID: 37987300]
[18]
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. All Life 2022; 15(1): 843-69.
[http://dx.doi.org/10.1080/26895293.2022.2103592]
[19]
Bhattacharya S, Saindane D, Prajapati BG. Liposomal drug delivery and its potential impact on cancer research. Anticancer Agents Med Chem 2022; 22(15): 2671-83.
[http://dx.doi.org/10.2174/1871520622666220418141640] [PMID: 35440318]
[20]
Raghani NR, Chorawala MR, Mahadik M, Patel RB, Prajapati BG, Parekh PS. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies. Med Oncol 2024; 41(2): 51.
[http://dx.doi.org/10.1007/s12032-023-02280-7] [PMID: 38195781]
[21]
Bhattacharya S, Singh D, Aich J, Ajazuddin MB, Shete MB. Development and characterization of hyaluronic acid surface scaffolds Encorafenib loaded polymeric nanoparticles for colorectal cancer targeting. Mater Today Commun 2022; 31: 103757.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103757]
[22]
Mohite P, Rajput T, Pandhare R, Sangale A, Singh S, Prajapati BG. Nanoemulsion in management of colorectal cancer: Challenges and future prospects. Nanomanufacturing 2023; pp. 139-66.
[23]
Bhattacharya S, Prajapati BG, Ali N, Mohany M, Aboul-Soud MAM, Khan R. Therapeutic potential of methotrexate-loaded superparamagnetic iron oxide nanoparticles coated with poly(lactic-co-glycolic acid) and polyethylene glycol against breast cancer: Development, characterization, and comprehensive in vitro investigation. ACS Omega 2023; 8(30): 27634-49.
[http://dx.doi.org/10.1021/acsomega.3c03430] [PMID: 37546601]
[24]
Sahu R, Shah K, Malviya R, et al. Recent advancement in pyrrolidine moiety for the management of cancer: A review. Results Chem 2024; 7: 101301.
[http://dx.doi.org/10.1016/j.rechem.2023.101301]
[25]
Saikia S, Ahmed F, Prajapati BG, et al. Reprogramming of lipid metabolism in cancer: New insight into pathogenesis and therapeutic strategies. Curr Pharm Biotechnol 2023; 24(15): 1847-58.
[http://dx.doi.org/10.2174/1389201024666230413084603] [PMID: 37069718]
[26]
Sakore P, Bhattacharya S, Belemkar S, Prajapati BG, Elossaily GM. The theranostic potential of green nanotechnology-enabled gold nanoparticles in cancer: A paradigm shift on diagnosis and treatment approaches. Results in Chemistry 2024; 7: 101264.
[http://dx.doi.org/10.1016/j.rechem.2023.101264]
[27]
kapoor D, Garg R, Gaur M, et al. Polymeric nanoparticles approach and identification and characterization of novel biomarkers for colon cancer. Results in Chemistry 2023; 6: 101167.
[http://dx.doi.org/10.1016/j.rechem.2023.101167]
[28]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[29]
Banazadeh M, Behnam B, Ganjooei NA, Gowda BHJ, Kesharwani P, Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J Drug Deliv Sci Technol 2023; 89: 105040.
[http://dx.doi.org/10.1016/j.jddst.2023.105040]
[30]
Gowda BHJ, Ahmed MG, Alshehri SA, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res 2023; 237(Pt 1): 116894.
[http://dx.doi.org/10.1016/j.envres.2023.116894] [PMID: 37586450]
[31]
Khan MS, Gowda BHJ, Nasir N, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643: 123276.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123276] [PMID: 37516217]
[32]
Hani U, Osmani RAM, Yasmin S, et al. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022; 14(8): 1576.
[http://dx.doi.org/10.3390/pharmaceutics14081576] [PMID: 36015202]
[33]
Dubey SK, Parab S, Achalla VPK, et al. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts. J Biomater Sci Polym Ed 2022; 33(12): 1531-54.
[http://dx.doi.org/10.1080/09205063.2022.2065408] [PMID: 35404217]
[34]
Hani U, Jaswanth Gowda BH, Siddiqua A, et al. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390: 123037.
[http://dx.doi.org/10.1016/j.molliq.2023.123037]
[35]
Gutierrez-Romero L, Díez P, Montes-Bayón M. Bioanalytical strategies to evaluate cisplatin nanodelivery systems: From synthesis to incorporation in individual cells and biological response. J Pharm Biomed Anal 2024; 237: 115760.
[http://dx.doi.org/10.1016/j.jpba.2023.115760] [PMID: 37839264]
[36]
Narayana S, Ahmed MG, Gowda BHJ, et al. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Fut J Pharma Sci 2021; 7(1): 186.
[http://dx.doi.org/10.1186/s43094-021-00331-2]
[37]
Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253(Pt 5): 127143.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127143] [PMID: 37793512]
[38]
A S, Ahmed MG, Gowda BHJ, Surya S. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo. J Dispers Sci Technol 2024; 45(2): 224-33.
[http://dx.doi.org/10.1080/01932691.2022.2139716]
[39]
Chen Q, Liu X, Zeng J, Cheng Z, Liu Z. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials 2016; 98: 23-30.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.041] [PMID: 27177219]
[40]
Sahu P, Kashaw SK, Sau S, Iyer AK. Polylactide-co-glycolide-based Nanogel: Concept and Functions. In: Holban A-M, Grumezescu AM, Eds. Materials for Biomedical Engineering. Elsevier 2019; pp. 399-423.
[http://dx.doi.org/10.1016/B978-0-12-818433-2.00012-1]
[41]
Dhas N, García MC, Kudarha R, et al. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346: 71-97.
[http://dx.doi.org/10.1016/j.jconrel.2022.04.019] [PMID: 35439581]
[42]
Zhao L, Zhou J, Deng D. Inorganic virus-like nanoparticles for biomedical applications: A mini-review. J Future Foods 2024; 4(1): 71-82.
[http://dx.doi.org/10.1016/j.jfutfo.2023.05.006]
[43]
Thankachan D, Anbazhagan R, Tsai HC, et al. Enhanced tumor targeting with near-infrared light-activated indocyanine green encapsulated in covalent organic framework for combined photodynamic therapy (PDT) and photothermal therapy (PTT). Dyes Pigments 2024; 221: 111812.
[http://dx.doi.org/10.1016/j.dyepig.2023.111812]
[44]
Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med 2021; 11(8): 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[45]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 2014; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[46]
Li Q, Zhou R, Xie Y, Li Y, Chen Y, Cai X. Sulphur-doped carbon dots as a highly efficient nano-photodynamic agent against oral squamous cell carcinoma. Cell Prolif 2020; 53(4): e12786.
[http://dx.doi.org/10.1111/cpr.12786] [PMID: 32301195]
[47]
Verma AK, Soni RK. Laser ablation synthesis of bimetallic gold- palladium core@ shell nanoparticles for trace detection of explosives. Opt Laser Technol 2023; 163: 109429.
[http://dx.doi.org/10.1016/j.optlastec.2023.109429]
[48]
Freitas LF, Hamblin MR, Anzengruber F, et al. Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro. J Photochem Photobiol B 2017; 173: 181-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.037] [PMID: 28595072]
[49]
Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int J Mol Sci 2013; 14(11): 21266-305.
[http://dx.doi.org/10.3390/ijms141121266] [PMID: 24232575]
[50]
Mohammapdour R, Ghandehari H. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 2022; 180: 114022.
[http://dx.doi.org/10.1016/j.addr.2021.114022] [PMID: 34740764]
[51]
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 2021; 11(6): 571.
[http://dx.doi.org/10.3390/jpm11060571] [PMID: 34207137]
[52]
Masseroni A, Fossati M, Ponti J, et al. Sublethal effects induced by different plastic nano-sized particles in Daphnia magna at environmentally relevant concentrations. Environ Pollut 2024; 343: 123107.
[http://dx.doi.org/10.1016/j.envpol.2023.123107] [PMID: 38070641]
[53]
Wang S, Ma Y, Khan FU, et al. Size-dependent effects of plastic particles on antioxidant and immune responses of the thick- shelled mussel Mytilus coruscus. Sci Total Environ 2024; 914: 169961.
[http://dx.doi.org/10.1016/j.scitotenv.2024.169961] [PMID: 38211852]
[54]
Alsaleh NB, Aljarbou AM, Assal ME, et al. Synthesis, characterization, and toxicity assessment of zinc oxide-doped manganese oxide nanoparticles in a macrophage model. Pharmaceuticals 2024; 17(2): 168.
[http://dx.doi.org/10.3390/ph17020168]
[55]
Liu W, Wang L, Wang J, Du J, Jing C. New insights into microbial-mediated synthesis of Au@biolayer nanoparticles. Environ Sci Nano 2018; 5(7): 1757-63.
[56]
Chen QY, Xie JW, Zhong Q, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer. JAMA Surg 2020; 155(4): 300-11.
[http://dx.doi.org/10.1001/jamasurg.2019.6033] [PMID: 32101269]
[57]
Yu Y, Peng Y, Shen W-T, et al. Hybrid cell membrane-coated nanoparticles for biomedical applications. Small Struct 2024; 2300473.
[58]
Zeng H, Yan G, Zheng R, Wang X. Cancer cell membrane-biomimetic nanoparticles based on gelatin and mitoxantrone for synergetic chemo-photothermal therapy of metastatic breast cancer. ACS Biomater Sci Eng 2024; 10: 875-89.
[http://dx.doi.org/10.1021/acsbiomaterials.3c01325] [PMID: 38284758]
[59]
Li Y, Ke J, Jia H, et al. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf B Biointerfaces 2023; 222: 113131.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113131] [PMID: 36646005]
[60]
Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic nano-drug delivery system: An emerging platform for promoting tumor treatment. Intern J Nanomed 2024; 19: 571-608.
[61]
D’oronzo S, Lovero D, Palmirotta R, et al. Targeted RNA-seq signature of breast cancer (BC) circulating tumor cells (CTCs) correlates with the onset of bone-only metastases. Bone Rep 2021; 14: 100840.
[http://dx.doi.org/10.1016/j.bonr.2021.100840]
[62]
Peng C, Xu Y, Wu J, Wu D, Zhou L, Xia X. TME-related biomimetic strategies against cancer. Intern J Nanomed 2024; 19: 109-35.
[63]
Duan Y, Wang D, Wang S, et al. Cell membrane-coated nanoparticles and their biomedical applications. In: Yin Y, Lu Y, Xia Y, Eds. Encyclopedia of Nanomaterials. (1st ed.). Oxford: Elsevier 2023; pp. 519-42.
[http://dx.doi.org/10.1016/B978-0-12-822425-0.00020-8]
[64]
Wang D, Wang S, Zhou Z, et al. White blood cell membrane-coated nanoparticles: Recent development and medical applications. Adv Healthc Mater 2022; 11(7): 2101349.
[http://dx.doi.org/10.1002/adhm.202101349] [PMID: 34468090]
[65]
Zhou K, Yang C, Shi K, et al. Activated macrophage membrane- coated nanoparticles relieve osteoarthritis-induced synovitis and joint damage. Biomaterials 2023; 295: 122036.
[http://dx.doi.org/10.1016/j.biomaterials.2023.122036] [PMID: 36804660]
[66]
Jiang F, Wu G, Yang H, Zhang Y, Shen X, Tao L. Diethylaminoethyl-dextran and monocyte cell membrane coated 1,8-cineole delivery system for intracellular delivery and synergistic treatment of atherosclerosis. Int J Biol Macromol 2023; 253(Pt 7): 127365.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127365] [PMID: 37827418]
[67]
Bulatao BP, Nalinratana N, Jantaratana P, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Design and development of a magnetic field-enabled platform for delivering polymer-coated iron oxide nanoparticles to breast cancer cells. MethodsX 2023; 11: 102318.
[http://dx.doi.org/10.1016/j.mex.2023.102318] [PMID: 37608960]
[68]
Chen S, Wu F, Wang H, et al. N-doped graphitized carbon-coated Fe2O3 nanoparticles in highly graphitized carbon hollow fibers for advanced lithium-ion batteries anodes. Electrochim Acta 2023; 467: 143032.
[http://dx.doi.org/10.1016/j.electacta.2023.143032]
[69]
Wu Y, Xu L, Xia C, Gan L. High performance flexible and antibacterial strain sensor based on silver-carbon nanotubes coated cellulose/polyurethane nanofibrous membrane: Cellulose as reinforcing polymer blend and polydopamine as compatibilizer. Int J Biol Macromol 2022; 223(Pt A): 184-92.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.266] [PMID: 36343837]
[70]
Karami Z, Akrami M, Mehrzad J, Esfandyari-Manesh M, Haririan I, Nateghi S. An anti-inflammatory Glyburide-loaded nanoghost for atherosclerosis therapy: A red blood cell based bio-mimetic strategy. Giant 2023; 16: 100206.
[http://dx.doi.org/10.1016/j.giant.2023.100206]
[71]
Zhang P, Xiang S, Gonzales RR, et al. Wetting-and scaling-resistant superhydrophobic hollow fiber membrane with hierarchical surface structure for membrane distillation. J Membr Sci 2024; 693: 122338.
[http://dx.doi.org/10.1016/j.memsci.2023.122338]
[72]
Zuo H, Qiang J, Wang Y, et al. Design of red blood cell membrane-cloaked dihydroartemisinin nanoparticles with enhanced antimalarial efficacy. Int J Pharm 2022; 618: 121665.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121665] [PMID: 35288223]
[73]
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306: 122478.
[http://dx.doi.org/10.1016/j.biomaterials.2024.122478] [PMID: 38266348]
[74]
Huang Y, Ji W, Zhang J, et al. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 24: 1742-7061.
[http://dx.doi.org/10.1016/j.actbio.2024.01.027] [PMID: 38280553]
[75]
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates: An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67: 108213.
[http://dx.doi.org/10.1016/j.biotechadv.2023.108213] [PMID: 37453463]
[76]
Lee ES, Robinson D, Rognlien JL, et al. Microfluidic electroporation of robust 10-μm vesicles for manipulation of picoliter volumes. Bioelectrochemistry 2006; 69(1): 117-25.
[http://dx.doi.org/10.1016/j.bioelechem.2005.12.002] [PMID: 16483852]
[77]
Ge Q, Rong S, Yin C, et al. Calcium ions induced ι-carrageenan-based gel-coating deposited on zein nanoparticles for encapsulating the curcumin. Food Chem 2024; 434: 137488.
[http://dx.doi.org/10.1016/j.foodchem.2023.137488] [PMID: 37741234]
[78]
Cui S, McClements DJ, He X, et al. Interfacial properties and structure of Pickering emulsions co-stabilized by different charge emulsifiers and zein nanoparticles. Food Hydrocoll 2024; 146: 109285.
[http://dx.doi.org/10.1016/j.foodhyd.2023.109285]
[79]
Zhao Y, Xu J, Wang Q, Xie ZH, Munroe P. (TiZrNbTaMo)N nanocomposite coatings embedded with silver nanoparticles: imparting mechanical, osteogenic and antibacterial traits to dental implants. J Alloys Compd 2024; 972: 172824.
[http://dx.doi.org/10.1016/j.jallcom.2023.172824]
[80]
Cacciatore FA, Maders C, Alexandre B, Barreto Pinilla CM, Brandelli A, da Silva Malheiros P. Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108: 104116.
[http://dx.doi.org/10.1016/j.fm.2022.104116] [PMID: 36088121]
[81]
Sahin S, Ozmen I. Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. J Mol Catal, B Enzym 2016; 133: S25-33.
[http://dx.doi.org/10.1016/j.molcatb.2016.11.004]
[82]
Yang HM, Park CW, Park S, Kim JD. Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf B Biointerfaces 2018; 161: 183-91.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.049] [PMID: 29080502]
[83]
Hegde M, Kumar A, Girisa S, et al. Exosomal noncoding RNA- mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73: 114-34.
[http://dx.doi.org/10.1016/j.cytogfr.2023.06.001] [PMID: 37419767]
[84]
Bakr M, Abd-Elmawla MA, Elimam H, et al. Telomerase RNA component lncRNA as potential diagnostic biomarker promotes CRC cellular migration and apoptosis evasion via modulation of β-catenin protein level. Noncoding RNA Res 2023; 8(3): 302-14.
[http://dx.doi.org/10.1016/j.ncrna.2023.03.004] [PMID: 37032720]
[85]
Yaman S, Ramachandramoorthy H, Iyer P, et al. Targeted chemotherapy via HER2-based chimeric antigen receptor (CAR) engineered T-cell membrane coated polymeric nanoparticles. Bioact Mater 2024; 34: 422-35.
[http://dx.doi.org/10.1016/j.bioactmat.2023.12.027] [PMID: 38282968]
[86]
Firouzi Amandi A, Bahmanyar Z, Dadashpour M, et al. Fabrication of magnetic niosomal platform for delivery of resveratrol: Potential anticancer activity against human pancreatic cancer Capan-1 cell. Cancer Cell Int 2024; 24(1): 46.
[http://dx.doi.org/10.1186/s12935-024-03219-2] [PMID: 38287318]
[87]
Zhang Y, Kang X, Li J, et al. Inflammation-responsive nanoagents for activatable photoacoustic molecular imaging and tandem therapies in rheumatoid arthritis. ACS Nano 2024; 18(3): 2231-49.
[http://dx.doi.org/10.1021/acsnano.3c09870] [PMID: 38189230]
[88]
Zhao C, Zhu X, Tan J, Mei C, Cai X, Kong F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed Pharmacother 2024; 171: 116113.
[http://dx.doi.org/10.1016/j.biopha.2023.116113] [PMID: 38181717]
[89]
Lin H, Lu Q, Ge S, Cai Q, Grimes CA. Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens Actuators B Chem 2010; 147(1): 343-9.
[http://dx.doi.org/10.1016/j.snb.2010.03.011]
[90]
Chen B, Sun H, Zhang J, et al. Cell-based micro/nano-robots for biomedical applications: A review. Small 2024; 20(1): 2304607.
[http://dx.doi.org/10.1002/smll.202304607] [PMID: 37653591]
[91]
Agwa MM, Elmotasem H, Moustafa RI, Abdelsattar AS, Mohy-Eldin MS, Fouda MMG. Advent in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers to accomplish active or homologous tumor targeting for smart amalgamated chemotherapy/photo-therapy: A review. Int J Biol Macromol 2023; 253(Pt 8): 127460.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127460] [PMID: 37866559]
[92]
Weng S, Pan L, Jiang D, et al. Idarubicin and IR780 co-loaded PEG-b-PTMC nanoparticle for non-Hodgkin’s lymphoma therapy by photothermal/photodynamic strategy. Mater Des 2023; 230: 112008.
[http://dx.doi.org/10.1016/j.matdes.2023.112008]
[93]
Yao C, Zhang D, Wang H, Zhang P. Recent advances in cell membrane coated-nanoparticles as drug delivery systems for tackling urological diseases. Pharmaceutics 2023; 15(7): 1899.
[http://dx.doi.org/10.3390/pharmaceutics15071899] [PMID: 37514085]
[94]
Sousa-Junior AA, Mello-Andrade F, Rocha JVR, et al. Immunogenic cell death photothermally mediated by erythrocyte membrane-coated magnetofluorescent nanocarriers improves survival in sarcoma model. Pharmaceutics 2023; 15(3): 943.
[http://dx.doi.org/10.3390/pharmaceutics15030943] [PMID: 36986804]
[95]
Li X, Ding B, Zheng P, Ma P, Lin J. Advanced nanomaterials for enhanced immunotherapy via metabolic regulation. Coord Chem Rev 2024; 500: 215540.
[http://dx.doi.org/10.1016/j.ccr.2023.215540]
[96]
Zhang G, Ji P, Xia P, et al. Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma. Comput Biol Med 2023; 167: 107597.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107597] [PMID: 37875042]
[97]
Issaka E, Wariboko MA, Agyekum EA. Synergy and coordination between biomimetic nanoparticles and biological cells/tissues/organs/systems: Applications in nanomedicine and prospect. Biomedical Materials & Devices. Springer Science and Business Media LLC 2023.
[98]
Li J, Soradi-Zeid S, Yousefpour A, Pan D. Improved differential evolution algorithm based convolutional neural network for emotional analysis of music data. Appl Soft Comput 2024; 153: 111262.
[http://dx.doi.org/10.1016/j.asoc.2024.111262]
[99]
Wang Y, Liu Y, Zhang J, et al. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater 2024; 24: 1742-7061.
[http://dx.doi.org/10.1016/j.actbio.2024.01.008] [PMID: 38237711]
[100]
Hermida L, Agustian J. The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. Rev Chem Eng 2024; 40(1): 1-34.
[101]
Yu S, Wu G, Gu X, et al. Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids Surf B Biointerfaces 2013; 103: 15-22.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.041] [PMID: 23201714]
[102]
Anjum T, Hussain N, Hafsa HMN, et al. Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer. J Drug Deliv Sci Technol 2023; 80: 104103.
[http://dx.doi.org/10.1016/j.jddst.2022.104103]
[103]
Dheilly E, Moine V, Broyer L, et al. Selective blockade of the ubiquitous checkpoint receptor CD47 Is enabled by dual-targeting bispecific antibodies. Mol Ther 2017; 25(2): 523-33.
[104]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[105]
Hameed Y, Nabi-Afjadi M, Gu Y, Wu L. Cell membrane-coated nanoparticles for cancer therapy. Cancer Insight 2023; 2(1): 145-62.
[106]
Fondaj D, Arduino I, Lopedota AA, Denora N, Iacobazzi RM. Exploring the microfluidic production of biomimetic hybrid nanoparticles and their pharmaceutical applications. Pharmaceutics 2023; 15(7): 1953.
[http://dx.doi.org/10.3390/pharmaceutics15071953] [PMID: 37514139]
[107]
Hu T, Huang Y, Liu J, Shen C, Wu F, He Z. Biomimetic cell-derived nanoparticles: Emerging platforms for cancer immunotherapy. Pharmaceutics 2023; 15(7): 1821.
[http://dx.doi.org/10.3390/pharmaceutics15071821] [PMID: 37514008]
[108]
Tapeinos C, Torrieri G, Wang S, Martins JP, Santos HA. Evaluation of cell membrane-derived nanoparticles as therapeutic carriers for pancreatic ductal adenocarcinoma using an in vitro tumour stroma model. J Control Release 2023; 362: 225-42.
[http://dx.doi.org/10.1016/j.jconrel.2023.08.045] [PMID: 37625597]
[109]
Wang Z, Tang Y, Gao M, et al. Cell-membrane coated self-immolative poly(thiourethane) for cysteine/homocysteine-triggered intracellular H2S delivery. ACS Macro Lett 2023; 12(11): 1583-8.
[http://dx.doi.org/10.1021/acsmacrolett.3c00558] [PMID: 37937586]
[110]
Shi T, Liu K, Peng Y, et al. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2023.
[http://dx.doi.org/10.1007/s10557-023-07461-0] [PMID: 37178241]
[111]
Jia E, Zhu H, Geng H, et al. The inhibition of osteoblast viability by monosodium urate crystal-stimulated neutrophil-derived exosomes. Front Immunol 2022; 13: 809586.
[http://dx.doi.org/10.3389/fimmu.2022.809586] [PMID: 35655781]
[112]
Sharma S, Sharma H, Sharma R. A review on functionalization and potential application spectrum of magnetic nanoparticles (MNPs) based systems. Chem Inorg Mat 2024; 2: 100035.
[http://dx.doi.org/10.1016/j.cinorg.2024.100035]
[113]
Almofty S, Ravinayagam V, Alghamdi N, et al. Effect of CeO2/spherical silica and halloysite nanotubes engineered for targeted drug delivery system to treat breast cancer cells. OpenNano 2023; 13: 100169.
[http://dx.doi.org/10.1016/j.onano.2023.100169]
[114]
Agnihotri T, Prajapati SK, Gomte SS, Jain A. Chemically modified carbon nanotubes in cancer therapy. In: Aslam J, Hussain CM, Aslam R, Eds. Chemically Modified Carbon Nanotubes for Commercial Applications 2023; pp. 299-330.
[http://dx.doi.org/10.1002/9783527838790.ch13]
[115]
Ya-Ting Huang A, Kao CL, Selvaraj A, Peng L. Solid-phase dendrimer synthesis: A promising approach to transform dendrimer construction. Mater Today Chem 2023; 27: 101285.
[http://dx.doi.org/10.1016/j.mtchem.2022.101285]
[116]
Mondal J, Pillarisetti S, Junnuthula V, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353: 1127-49.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.027] [PMID: 36528193]
[117]
Setia A, Mehata AK, Vikas AK, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Deliv Sci Technol 2023; 81: 104295.
[http://dx.doi.org/10.1016/j.jddst.2023.104295]
[118]
Urbanova M, Cihova M, Buocikova V, et al. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165: 115179.
[http://dx.doi.org/10.1016/j.biopha.2023.115179] [PMID: 37481927]
[119]
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: Productive cancer theranostic tools. Biomater Sci 2024; 1-33.
[http://dx.doi.org/10.1039/D3BM01552A] [PMID: 38230669]
[120]
Xie J, Zhu X, Wang M, Liu C, Ling G, Zhang P. Dissolving microneedle-mediated transdermal delivery of flurbiprofen axetil-loaded pH-responsive liposomes for arthritis treatment. Chem Eng J 2024; 482: 148840.
[http://dx.doi.org/10.1016/j.cej.2024.148840]
[121]
Chai W, Chen X, Liu J, et al. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater 2024; 11: rbad115.
[http://dx.doi.org/10.1093/rb/rbad115] [PMID: 38313824]
[122]
Zeng S, Tang Q, Xiao M, et al. Cell membrane-coated nanomaterials for cancer therapy. Mater Today Bio 2023; 20: 100633.
[http://dx.doi.org/10.1016/j.mtbio.2023.100633] [PMID: 37128288]
[123]
Dutta B, Shelar SB, Nirmalraj A, et al. Smart magnetic nanocarriers for codelivery of nitric oxide and doxorubicin for enhanced apoptosis in cancer cells. ACS Omega 2023; 8(47): 44545-57.
[http://dx.doi.org/10.1021/acsomega.3c03734] [PMID: 38046289]
[124]
Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB. Nanomedicine facilitated cell signaling blockade: Difficulties and strategies to overcome glioblastoma. J Mater Chem B Mater Biol Med 2024; 1-29.
[http://dx.doi.org/10.1039/D3TB02485G] [PMID: 38288615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy