Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Approaches for Pyranoquinolines: A Concise Review

Author(s): Angie D. Arboleda, Leydi M. Moreno and Rodrigo Abonia*

Volume 28, Issue 8, 2024

Published on: 22 February, 2024

Page: [595 - 635] Pages: 41

DOI: 10.2174/0113852728288581240125112724

Price: $65

conference banner
Abstract

The pyranoquinoline frameworks have a wide distribution in natural products and have displayed a great amplitude of biological activities, attracting the attention of synthetic and medicinal chemists due to their usefulness in agrochemical and pharmaceutical industries. Among the twenty possible isomeric pyranoquinoline frameworks, research reports for only six of them that were found during the period of time covered in this review article (i.e. 2000 to 2023). According to the literature reports during this frame of time, the synthesis of pyranoquinoline derivatives was achieved by following three general synthetic approaches [i.e. (i) via multicomponent cyclizations (MCC), (ii) via bimolecular cyclizations (BMC) and via intramolecular cyclizations (IMC)], mediated by catalyst-free conditions or by diverse environmentally friendly catalysts, in which mechanistic proposal was discussed for several of such processes. Additionally, various obtained pyranoquinoline derivatives reported in this review were subjected to diverse biological evaluations, such as Parkinson´s and Alzheimer´s diseases, as antibacterials, antifungals, and anticancer drugs, among others, indicating the promising biological potential of this class of heterocyclic structure.

Keywords: Pyranoquinoline derivatives, synthetic methods, biological evaluations, natural products, agrochemical industry, multicomponent cyclization.

Graphical Abstract
[1]
Singh, B.; Chandra, A.; Upadhyay, S.; Singh, R.M.; Puerta, M.C.; Valerga, P. Electrophile-induced domino cyclization reaction for the synthesis of 2,2a,10,11-tetrahydrofuro[2′,4′:4,6]pyrano[2,3-b]quinolines. Tetrahedron Lett., 2008, 49(45), 6423-6425.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.079]
[2]
Puricelli, L.; Innocenti, G.; Monache, G.D.; Caniato, R.; Filippini, R.; Cappelletti, E.M. In vivo and in vitro production of alkaloids by Haplophyllum patavinum. Nat. Prod. Lett., 2002, 16(2), 95-100.
[http://dx.doi.org/10.1080/10575630290019985] [PMID: 11990434]
[3]
Marco, J.; Carreiras, M. Recent developments in the synthesis of acetylcholinesterase inhibitors. Mini Rev. Med. Chem., 2003, 3(6), 518-524.
[http://dx.doi.org/10.2174/1389557033487908] [PMID: 12871155]
[4]
Nazrullaev, S.S.; Bessonova, I.A.; Akhmedkhodzhaeva, K.S. Estrogenic activity as a function of chemical structure in haplo-phyllum quinoline alkaloids. Chem. Nat. Comp., 2001, 37, 551-555.
[5]
Faber, K.; StÚckler, H.; Kappe, T. Non‐steroidal antiinflammatory agents. 1. Synthesis of 4‐hydroxy‐2‐oxo‐1,2‐dihydroquinolin‐3‐yl alkanoic acids by the wittig reaction of quinisatines. J. Heterocycl. Chem., 1984, 21(4), 1177-1181.
[http://dx.doi.org/10.1002/jhet.5570210450]
[6]
Nesterova, I. N.; Alekseeva, L. M.; Andreeva, L. M.; Andreeva, N. I.; Golovira, S. M.; Granik, V. G. Synthesis and study the pharmacological activity of derivatives of 5-dimethylaminopyrano[3,2-c]quinolin-2-ones. Pharm. Chem. J., 1995, 29, 111-114.
[http://dx.doi.org/10.1007/BF02226521]
[7]
Takahashi, K.; Arai, Y.; Kadowaki, S.; Shono, T.; Yuki, S.; Kanayama, T.; Nishi, H.; Sugasawa, K.; Iwakura, M. General pharmacology of a new anti-allergic drug, isoamyl 5,6-dihydro-7,8-dimethyl-4,5-dioxo-4H-pyrano[3,2-c]quinoline-2-carboxylate (MY-5116), and its main active, metabolite. Pharmacometrics, 1986, 32, 233-249.
[8]
Yamada, N.; Kadowaki, S.; Takahashi, K.; Umezu, K. MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochem. Pharmacol., 1992, 44(6), 1211-1213.
[http://dx.doi.org/10.1016/0006-2952(92)90387-X] [PMID: 1358073]
[9]
Ramesh, E.; Sree Vidhya, T.K.; Raghunathan, R. Indium chloride/silica gel supported synthesis of pyrano/thiopyranoquinolines through intramolecular imino Diels-Alder reaction using microwave irradiation. Tetrahedron Lett., 2008, 49(17), 2810-2814.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.128]
[10]
Denny, W.A. Acridine derivatives as chemotherapeutic agents. Curr. Med. Chem., 2002, 9(18), 1655-1665.
[http://dx.doi.org/10.2174/0929867023369277] [PMID: 12171548]
[11]
Nelson, E.M.; Tewey, K.M.; Liu, L.F. Mechanism of antitumor drug action: Poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidide. Proc. Natl. Acad. Sci., 1984, 81(5), 1361-1365.
[http://dx.doi.org/10.1073/pnas.81.5.1361] [PMID: 6324188]
[12]
Chilin, A.; Marzaro, G.; Marzano, C.; Via, L.D.; Ferlin, M.G.; Pastorini, G.; Guiotto, A. Synthesis and antitumor activity of novel amsacrine analogs: The critical role of the acridine moiety in determining their biological activity. Bioorg. Med. Chem., 2009, 17(2), 523-529.
[http://dx.doi.org/10.1016/j.bmc.2008.11.072] [PMID: 19101158]
[13]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[14]
Povarov, L.S. αβ-Unsaturated ethers and their analogues in reactions of diene synthesis. Russ. Chem. Rev., 1967, 36(9), 656-670.
[http://dx.doi.org/10.1070/RC1967v036n09ABEH001680]
[15]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolines and related fused pyridines. Part II. Tetrahedron Lett., 1979, 20(33), 3111-3114.
[http://dx.doi.org/10.1016/S0040-4039(01)95334-1]
[16]
Insuasty, D.; Vidal, O.; Bernal, A.; Marquez, E.; Guzman, J.; Insuasty, B.; Quiroga, J.; Svetaz, L.; Zacchino, S.; Puerto, G.; Abonia, R. Antimicrobial activity of quinoline-based hydroxyimidazolium hybrids. Antibiotics, 2019, 8(4), 239.
[http://dx.doi.org/10.3390/antibiotics8040239] [PMID: 31795101]
[17]
Singh, M.K.; Chandra, A.; Singh, B.; Singh, R.M. Synthesis of diastereomeric 2,4-disubstituted pyrano[2,3-b]quinolines from 3-formyl-2-quinolones through O-C bond formation via intramolecular electrophilic cyclization. Tetrahedron Lett., 2007, 48(34), 5987-5990.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.127]
[18]
Guttman, R.; Altman, R.D.; Nielsen, N.H. Alzheimer disease: Report of the council on scientific affairs. Arch. Fam. Med., 1999, 8(4), 347-353.
[http://dx.doi.org/10.1001/archfami.8.4.347] [PMID: 10418544]
[19]
Winkler, J.; Thal, L.J.; Gage, F.H.; Fisher, L.J. Cholinergic strategies for Alzheimer’s disease. J. Mol. Med., 1998, 76(8), 555-567.
[http://dx.doi.org/10.1007/s001090050250] [PMID: 9694432]
[20]
Sramek, J.J.; Frackiewicz, E.J.; Cutler, N.R. Review of the acetylcholinesterase inhibitor galanthamine. Expert Opin. Investig. Drugs, 2000, 9(10), 2393-2402.
[http://dx.doi.org/10.1517/13543784.9.10.2393] [PMID: 11060814]
[21]
Relman, A.S. Tacrine as a treatment for Alzheimer’s dementia: Editor’s note. An interim report from the FDA. N. Engl. J. Med., 1991, 324(5), 349-352.
[http://dx.doi.org/10.1056/NEJM199101313240525] [PMID: 1986300]
[22]
Jung, M.; Tak, J.; Lee, Y.; Jung, Y. Quantitative structure–activity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable selections. Bioorg. Med. Chem. Lett., 2007, 17(4), 1082-1090.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.022] [PMID: 17158047]
[23]
Jung, M.; Kim, H.; Nam, K.Y.; No, K.T. Three-dimensional structure of Plasmodium falciparum Ca2+-ATPase(PfATP6) and docking of artemisinin derivatives to PfATP6. Bioorg. Med. Chem. Lett., 2005, 15(12), 2994-2997.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.041] [PMID: 15908211]
[24]
Broggini, G.; Chiesa, K.; De Marchi, I.; Martinelli, M.; Pilati, T.; Zecchi, G. Efficient approach to the unknown isoxazolo[3,4-d]thieno[2,3-b]pyridine system by regioselective intramolecular nitrone cycloadditions. Tetrahedron, 2005, 61(14), 3525-3531.
[http://dx.doi.org/10.1016/j.tet.2005.01.121]
[25]
Coldham, I.; Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev., 2005, 105(7), 2765-2810.
[http://dx.doi.org/10.1021/cr040004c] [PMID: 16011324]
[26]
Banwell, M.; Hockless, D. Convergent total synthesis of lamellarin K. Chem. Commun., 1997, 23(23), 2259-2260.
[http://dx.doi.org/10.1039/a705874h]
[27]
Jung, M.E.; Lam, P.Y.S.; Mansuri, M.M.; Speltz, L.M. Stereoselective synthesis of an analog of podophyllotoxin by an intramolecular Diels-Alder reaction. J. Org. Chem., 1985, 50(7), 1087-1105.
[http://dx.doi.org/10.1021/jo00207a034]
[28]
Kalita, P.K.; Baruah, B.; Bhuyan, P.J. Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Lett., 2006, 47(44), 7779-7782.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.086]
[29]
Welton, T. Ionic liquids: A brief history. Biophys. Rev., 2018, 10(3), 691-706.
[http://dx.doi.org/10.1007/s12551-018-0419-2] [PMID: 29700779]
[30]
Floris, B.; Sabuzi, F.; Galloni, P.; Conte, V. The beneficial synergy of MW irradiation and ionic liquids in catalysis of organic reactions. Catalysts, 2017, 7(9), 261.
[http://dx.doi.org/10.3390/catal7090261]
[31]
Abirami, M.; Selvi, S.T.; Nadaraj, V.; Thangadurai, T.D. Synthesis and biological screening of pyrano[2,3-b]quinoline derivatives. Asian J. Chem., 2021, 33(8), 1791-1795.
[http://dx.doi.org/10.14233/ajchem.2021.23253]
[32]
Varvounis, G. Pyrazol-3-ones. Part IV: Synthesis and applications. Adv. Heterocycl. Chem., 2009, 98, 143-224.
[http://dx.doi.org/10.1016/S0065-2725(09)09802-X]
[33]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[34]
Xiao, X.; Shao, B.; Li, J.; Yang, Z.; Lu, Y.J.; Ling, F.; Zhong, W. Enantioselective synthesis of functionalized 1,4-dihydropyrazolo-[4′,3′:5,6]pyrano[2,3- b]quinolines through ferrocenyl-phosphine-catalyzed annulation of modified MBH carbonates and pyrazolones. Chem. Commun., 2021, 57(38), 4690-4693.
[http://dx.doi.org/10.1039/D1CC00989C] [PMID: 33977995]
[35]
Vuppalapati, S.V.N.; Lee, Y.R. Iodine-catalyzed efficient synthesis of azaarene substituted 3-hydroxy-2-oxindole derivatives through sp3 C–H functionalization. Tetrahedron, 2012, 68(39), 8286-8292.
[http://dx.doi.org/10.1016/j.tet.2012.07.051]
[36]
Ghandi, M.; Momeni, T.; Nazeri, M.T.; Zarezadeh, N.; Kubicki, M. A one-pot three-component reaction providing tricyclic 1,4-benzoxazepine derivatives. Tetrahedron Lett., 2013, 54(23), 2983-2985.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.131]
[37]
Alizadeh, A.; Rostampoor, A. An efficient synthesis of novel functionalized benzo[h]pyrano[2,3-b]quinolines and pyrano[2,3-b]quinoline derivatives via one-pot multicomponent reactions. J. Indian Chem. Soc., 2022, 19(4), 1239-1249.
[http://dx.doi.org/10.1007/s13738-021-02376-9]
[38]
Cikotiene, I.; Buksnaitiene, R. Study on the reactions of acetylenic aldehydes with dimethyl phosphite in basic media: Phosphonate-phosphate rearrangement versus 5-exo-dig cyclization reactions. Adv. Synth. Catal., 2012, 354(14-15), 2719-2726.
[http://dx.doi.org/10.1002/adsc.201200276]
[39]
Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem. Rev., 2004, 104(6), 3079-3160.
[http://dx.doi.org/10.1021/cr0201068] [PMID: 15186189]
[40]
Balalaie, S.; Mirzaie, S.; Nikbakht, A.; Hamdan, F.; Rominger, F.; Navari, R.; Bijanzadeh, H.R. Indium-catalyzed intramolecular hydroamidation of alkynes: An exo-dig cyclization for the synthesis of pyranoquinolines through post-transformational reaction. Org. Lett., 2017, 19(22), 6124-6127.
[http://dx.doi.org/10.1021/acs.orglett.7b02603] [PMID: 29087201]
[41]
Vani, D.; Chahal, K.; Preethi, P.; Balasubramanian, S.; Rajender Reddy, K. Synthesis of substituted pyrano[3,4-b]quinolines by silver-catalyzed regioselective intramolecular cyclization of 3-alkynylquinoline aldehydes. Asian J. Org. Chem., 2022, 11(3), e202100740.
[http://dx.doi.org/10.1002/ajoc.202100740]
[42]
Motorina, I.A.; Grierson, D.S. An intramolecular 1-azadiene Diels-Alder approach to the preparation of synthetic equivalents of pyridine. Tetrahedron Lett., 1999, 40(40), 7211-7214.
[http://dx.doi.org/10.1016/S0040-4039(99)01463-X]
[43]
Sabitha, G.; Venkata Reddy, E.; Yadav, J.S.; Rama Krishna, K.V.S.; Ravi Sankar, A. Stereoselective synthesis of octahydro-3bH-[1,3]dioxolo[4″,5″:4′,5′]furo[2′,3′:5,6]pyrano[4,3-b]quinolines via intramolecular hetero-Diels–Alder reactions catalyzed by bismuth(III) chloride. Tetrahedron Lett., 2002, 43(22), 4029-4032.
[http://dx.doi.org/10.1016/S0040-4039(02)00704-9]
[44]
Barluenga, J.; Vázquez-Villa, H.; Merino, I.; Ballesteros, A.; González, J.M. The reaction of o-alkynylarene and heteroarene carboxaldehyde derivatives with iodonium ions and nucleophiles: A versatile and regioselective synthesis of 1H-isochromene, naphthalene, indole, benzofuran, and benzothiophene compounds. Chemistry, 2006, 12(22), 5790-5805.
[http://dx.doi.org/10.1002/chem.200501505] [PMID: 16710863]
[45]
Yue, D.; Della Cà, N.; Larock, R.C. Efficient syntheses of heterocycles and carbocycles by electrophilic cyclization of acetylenic aldehydes and ketones. Org. Lett., 2004, 6(10), 1581-1584.
[http://dx.doi.org/10.1021/ol049690s] [PMID: 15128241]
[46]
Wu, M-J.; Wei, L.L.; Wei, L-M.; Pan, W-B. Palladium-catalyzed esterification-hydroarylation reactions of 2-alkynyl-benzaldehydes with aryl iodides in methanol. Synlett, 2004, 9(9), 1497-1502.
[http://dx.doi.org/10.1055/s-2004-829056]
[47]
Godet, T.; Vaxelaire, C.; Michel, C.; Milet, A.; Belmont, P. Silver versus gold catalysis in tandem reactions of carbonyl functions onto alkynes: A versatile access to furoquinoline and pyranoquinoline cores. Chemistry, 2007, 13(19), 5632-5641.
[http://dx.doi.org/10.1002/chem.200700202] [PMID: 17361970]
[48]
Belmont, P.; Godet, T.; Bosson, J. Efficient base-catalyzed 5-exo-dig cyclization of carbonyl groups on unactivated alkynyl-quinolines: An entry to versatile oxygenated heterocycles related to the furoquinoline alkaloids family. Synlett, 2005, 2005(19), 3018.
[http://dx.doi.org/10.1055/s-2005-921903]
[49]
Michel, C.; Godet, T.; Dheu-Andries, M.L.; Belmont, P.; Milet, A. Theoretical study of the cyclization of carbonyl groups on unactivated alkynyl-quinolines in the gas phase and in methanol solution. J. Mol. Struct. THEOCHEM, 2007, 811(1-3), 175-182.
[http://dx.doi.org/10.1016/j.theochem.2007.03.009]
[50]
Aggarwal, T.; Imam, M.; Kaushik, N.K.; Chauhan, V.S.; Verma, A.K. Pyrano[4,3-b]quinolines library generation via iodocyclization and palladium-catalyzed coupling reactions. ACS Comb. Sci., 2011, 13(5), 530-536.
[http://dx.doi.org/10.1021/co200100z] [PMID: 21793575]
[51]
Verma, A.K.; Aggarwal, T.; Rustagi, V.; Larock, R.C. Iodine-catalyzed and solvent-controlled selective electrophilic cyclization and oxidative esterification of ortho-alkynyl aldehydes. Chem. Commun., 2010, 46(23), 4064-4066.
[http://dx.doi.org/10.1039/b927185f] [PMID: 20520874]
[52]
Singh, B.; Chandra, A.; Singh, S.; Singh, R.M. Base-free NIS promoted electrophilic cyclization of alkynes: An efficient synthesis of iodo substituted pyrano[4,3-b]quinolines. Tetrahedron, 2011, 67(2), 505-511.
[http://dx.doi.org/10.1016/j.tet.2010.10.081]
[53]
Patil, N.T.; Kavthe, R.D.; Shinde, V.S. Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C–C multiple bonds. Tetrahedron, 2012, 68(39), 8079-8146.
[http://dx.doi.org/10.1016/j.tet.2012.05.125]
[54]
Yang, J.; Sze, H.Y. Cyclic strength of sand under sustained shear stress. J. Geotech. Geoenviron. Eng., 2011, 137(12), 1275-1285.
[http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000541]
[55]
Asthana, M.; Singh, J.B.; Singh, R.M. FeCl3·6H2O-catalyzed facile and efficient synthesis of pyrano[4,3-b]quinolines and isochromenes. Tetrahedron Lett., 2016, 57(5), 615-618.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.102]
[56]
Sandtorv, A.H.; Bjørsvik, H.R. Fast halogenation of some N-heterocycles by means of N,N′-dihalo-5,5-dimethylhydantoin. Adv. Synth. Catal., 2013, 355(2-3), 499-507.
[http://dx.doi.org/10.1002/adsc.201200723]
[57]
Dalavai, R.; Khan, F.R.N. In water: Green chemical approach of 4-iodo-3-(trimethylsilyl)-1H-pyrano[4,3-b]quinolines through 1,3-diiodo-5,5-dimethylhydantoin (DIH) mediated regioselective electrophilic cyclisation of O-alkynyl aldehydes. Silicon, 2020, 12(9), 2141-2148.
[http://dx.doi.org/10.1007/s12633-019-00304-4]
[58]
Yang, N.; Zhang, D.; Zhou, J.; Qi, C.; Li, C.; Zhang, F. Green synthesis of poly-substituted pyrano[4,3-b]quinoline-1,9-(5H)-dione derivatives using solid acid as catalyst in water. ChemistrySelect, 2020, 5(12), 3613-3617.
[http://dx.doi.org/10.1002/slct.201904552]
[59]
Kamble, V.T.; Kadam, K.R.; Joshi, N.S.; Muley, D.B. HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal. Commun., 2007, 8(3), 498-502.
[http://dx.doi.org/10.1016/j.catcom.2006.07.010]
[60]
Khatik, G.L.; Sharma, G.; Kumar, R.; Chakraborti, A.K. Scope and limitations of HClO4-SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon-sulfur bond formation. Tetrahedron, 2007, 63(5), 1200-1210.
[http://dx.doi.org/10.1016/j.tet.2006.11.050]
[61]
Mohamed, E.A. Some new quinolones of expected pharmaceutical importance derived from 1,2-dihydro-4-hydroxy-1-methyl-2-oxoquinoline-3-carbaldehyde. Chem. Pap., 1994, 48, 261-267.
[62]
Kamble, V.T.; Davane, B.S.; Chavan, S.A.; Muley, D.B.; Atkore, S.T. Imino Diels–Alder reactions: One-pot synthesis of tetrahydroquinolines. Chin. Chem. Lett., 2010, 21(3), 265-268.
[http://dx.doi.org/10.1016/j.cclet.2009.11.016]
[63]
Yadav, J.S.; Reddy, B.V.S.; Reddy, J.S.S.; Rao, R.S. Aza-Diels-Alder reactions in ionic liquids: A facile synthesis of pyrano- and furanoquinolines. Tetrahedron, 2003, 59(9), 1599-1604.
[http://dx.doi.org/10.1016/S0040-4020(03)00027-9]
[64]
Babu, G.; Perumal, P.T. Convenient synthesis of pyrano[3,2-c]quinolines and indeno[2,1-c]quinolines by imino Diels-Alder reactions. Tetrahedron Lett., 1998, 39(20), 3225-3228.
[http://dx.doi.org/10.1016/S0040-4039(98)00397-9]
[65]
Ma, Y.; Qian, C.; Xie, M.; Sun, J. Lanthanide chloride catalyzed imino Diels−Alder reaction. One-pot synthesis of pyrano[3,2-c]- and furo[3,2-c]quinolones. J. Org. Chem., 1999, 64(17), 6462-6467.
[http://dx.doi.org/10.1021/jo982220p]
[66]
Sauer, N.N.; Williamson, T. Green chemistry: Frontiers in benign chemical syntheses and processes. J. Am. Chem. Soc., 2000, 122(22), 5419-5420.
[http://dx.doi.org/10.1021/ja995756g]
[67]
Ritter, S.K. Green chemistry: Conference explores the progress and prospects of chemical research and science policy in advancing global sustainable development. Chem. Eng. News, 2001, 79(29), 27-34.
[http://dx.doi.org/10.1021/cen-v079n029.p027]
[68]
Clark, J.H. Solid acids for green chemistry. Acc. Chem. Res., 2002, 35(9), 791-797.
[http://dx.doi.org/10.1021/ar010072a] [PMID: 12234209]
[69]
Misono, M.; Ono, I.; Koyano, G.; Aoshima, A. Heteropolyacids. Versatile green catalysts usable in a variety of reaction media. Pure Appl. Chem., 2000, 72(7), 1305-1311.
[http://dx.doi.org/10.1351/pac200072071305]
[70]
Nagaiah, K.; Sreenu, D.; Rao, R.S.; Vashishta, G.; Yadav, J.S. Phosphomolybdic acid-catalyzed efficient one-pot three-component aza-Diels–Alder reactions under solvent-free conditions: A facile synthesis of trans-fused pyrano- and furanotetrahydroquinolines. Tetrahedron Lett., 2006, 47(26), 4409-4413.
[http://dx.doi.org/10.1016/j.tetlet.2006.04.085]
[71]
Maiti, G.; Kundu, P. Imino Diels–Alder reactions: An efficient one-pot synthesis of pyrano and furanoquinoline derivatives catalyzed by SbCl3. Tetrahedron Lett., 2006, 47(32), 5733-5736.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.034]
[72]
Gharib, A.; Jahangir, M. Catalytic synthesis of pyrano- and furoquinolines using nano silica chromic acid at room temperature. Org. Chem. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/693763]
[73]
Dhanapal, R.; Perumal, P.T.; Sridhar, R. Synthesis of pyranoquinolines via imino Diels-Alder reaction: Comparison of antibacterial efficacy of chirally separated individual diastereomers. Indian J. Chem., 2014, 53B, 193-199.
[74]
Kametani, T.; Takeda, H.; Suzuki, Y.; Honda, T. Synthesis of quinoline derivatives by [4+2] cycloaddition reaction. Synth. Commun., 1985, 15(6), 499-505.
[http://dx.doi.org/10.1080/00397918508063833]
[75]
Grieco, P.A.; Bahsas, A. Role reversal in the cyclocondensation of cyclopentadiene with heterodienophiles derived from aryl amines and aldehydes: Synthesis of novel tetrahydroquinolines. Tetrahedron Lett., 1988, 29(46), 5855-5858.
[http://dx.doi.org/10.1016/S0040-4039(00)82208-X]
[76]
Boger, D.L.; Trost, B.M.; Fleming, I. [4+2] Cycloadditions: Heterodiene additions, Chapter 4.3 in Comprehen. Org. Synth., 1991, 5, 451-512.
[77]
Nagarajan, R.; Chitra, S.; Perumal, P.T. Triphenyl phosphonium perchlorate-an efficient catalyst for the imino Diels-Alder reaction of imines with electron rich dienophiles. Synthesis of pyranoquinoline, furoquinoline and phenanthridine derivatives. Tetrahedron, 2001, 57(16), 3419-3423.
[http://dx.doi.org/10.1016/S0040-4020(01)00185-5]
[78]
Magesh, C.J.; Makesh, S.V.; Perumal, P.T. Highly diastereoselective inverse electron demand (IED) Diels–Alder reaction mediated by chiral salen–AlCl complex: The first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2004, 14(9), 2035-2040.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.057] [PMID: 15080974]
[79]
Shaabani, A.; Maleki, A. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot three-component synthesis of α-amino nitriles. Appl. Catal. A Gen., 2007, 331, 149-151.
[http://dx.doi.org/10.1016/j.apcata.2007.07.021]
[80]
Shaabani, A.; Rahmati, A.; Badri, Z. Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal. Commun., 2008, 9(1), 13-16.
[http://dx.doi.org/10.1016/j.catcom.2007.05.021]
[81]
Kumar, A.; Srivastava, S.; Gupta, G. Supramolecular carbohydrate scaffold-catalyzed synthesis of tetrahydroquinolines. Tetrahedron Lett., 2010, 51(3), 517-520.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.057]
[82]
Tejedor, D.; García-Tellado, F. Chemo-differentiating ABB′ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev., 2007, 36(3), 484-491.
[http://dx.doi.org/10.1039/B608164A] [PMID: 17325787]
[83]
Yadav, J.S.; Reddy, B.V.S.; Sadasiv, K.; Reddy, P.S.R. Montmorillonite clay-catalyzed [4+2] cycloaddition reactions: A facile synthesis of pyrano- and furanoquinolines. Tetrahedron Lett., 2002, 43(21), 3853-3856.
[http://dx.doi.org/10.1016/S0040-4039(02)00679-2]
[84]
Yadav, J.S.; Reddy, B.V.S.; Rao, R.S.; Kumar, S.K.; Kunwar, A.C. InCl3-Catalyzed hetero-Diels-Alder reaction: An expeditious synthesis of pyranoquinolines. Tetrahedron, 2002, 58(39), 7891-7896.
[http://dx.doi.org/10.1016/S0040-4020(02)00907-9]
[85]
Kamal, A.; Rajendra Prasad, B.; Venkata Ramana, A.; Hari Babu, A.; Srinivasa Reddy, K. FeCl3-NaI mediated reactions of aryl azides with 3,4-dihydro-2H-pyran: A convenient synthesis of pyranoquinolines. Tetrahedron Lett., 2004, 45(17), 3507-3509.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.146]
[86]
Olah, G.A.; Narang, S.C. Iodotrimethylsilane-a versatile synthetic reagent. Tetrahedron, 1982, 38(15), 2225-2277.
[http://dx.doi.org/10.1016/0040-4020(82)87002-6]
[87]
Kamal, A.; Prasad, B.R.; Khan, M.N.A. TMSCl–NaI-mediated reaction of aryl azides with cyclic enol ethers: An efficient one-pot synthesis of 1,2,3,4-tetrahydroquinolines. J. Mol. Catal. Chem., 2007, 274(1-2), 133-136.
[http://dx.doi.org/10.1016/j.molcata.2007.04.033]
[88]
Evcim, U.; Gōzler, B.; Freyer, A.J.; Shamma, M. Haplomyrtin and (−)-haplomyrfolin: Two lignans from Haplophyllum myrtifolium. Phytochemistry, 1986, 25(8), 1949-1951.
[http://dx.doi.org/10.1016/S0031-9422(00)81181-4]
[89]
Gözler, B.; Gözler, T.; Saǧlam, H.; Hesse, M. Minor lignans from Haplophyllum cappadocicum. Phytochemistry, 1996, 42(3), 689-693.
[http://dx.doi.org/10.1016/0031-9422(96)00061-1]
[90]
Gözler, T.; Gözler, B.; Patra, A.; Leet, J.E.; Freyer, A.J.; Shamma, M. Konyanin: A new lignan from Hapuophyllum vulcaniclm. Tetrahedron, 1984, 40(7), 1145-1150.
[http://dx.doi.org/10.1016/S0040-4020(01)99319-6]
[91]
Go¨zler, B.; O¨nu¨r, M.A.; Go¨zler, T.; Kadan, G.; Hesse, M. Lignans and lignan glycosides from Haplophyllum cappadocicum. Phytochemistry, 1994, 37(6), 1693-1698.
[http://dx.doi.org/10.1016/S0031-9422(00)89594-1]
[92]
Ulubelen, A.; Mericli, A.H.; Mericli, F.; Sonmez, U.; Ilarslan, R. Alkaloids and coumarins from Haplophyllum thesioides. Nat. Prod. Lett., 1993, 1(4), 269-272.
[http://dx.doi.org/10.1080/10575639308050059]
[93]
Yuldashev, M.P.; Batirov, K.; Malikov, V.M. Flavonoids of some plants of the genus Haplophyllum. Chem. Nat. Compd., 1987, 23(3), 377-378.
[http://dx.doi.org/10.1007/BF00600852]
[94]
Sheriha, G.M.; Abouamer, K.; Elshtaiwi, B.Z.; Ashour, A.S.; Abed, F.; Alhallaq, H.H. Quinoline alkaloids and cytotoxic lignans from Haplophyllum tuberculatum. Phytochemistry, 1987, 26, 3339-3341.
[http://dx.doi.org/10.1016/S0031-9422(00)82500-5]
[95]
Ulubelen, A. Alkaloids from Haplophyllum buxbaumii. Phytochemistry, 1985, 24(2), 372-374.
[http://dx.doi.org/10.1016/S0031-9422(00)83563-3]
[96]
Rózsa, Z.; Rábik, M.; Szendrei, K.; Kálmán, A.; Argay, G.; Pelczer, I.; Aynechi, M.; Mester, L.; Reisch, J. Dihydroperfamine, an alkaloid from Haplophyllum glabrinum. Phytochemistry, 1986, 25(8), 2005-2007.
[http://dx.doi.org/10.1016/S0031-9422(00)81200-5]
[97]
Ali, M.S.; Pervez, M.K.; Saleem, M.; Tareen, R.B. Haplophytin-A and B: The alkaloidal constituents of Haplophyllum acutifolium. Phytochemistry, 2001, 57(8), 1277-1280.
[http://dx.doi.org/10.1016/S0031-9422(01)00188-1] [PMID: 11454359]
[98]
Nair, V.; Treesa, P.M.; Jayan, C.N.; Rath, N.P.; Vairamani, M.; Prabhakar, S. Diels–Alder trapping of 3-methylenequinolin-2,4-dione: A facile synthesis of pyranoquinolinones and spiroquinolinediones. Tetrahedron, 2001, 57(36), 7711-7717.
[http://dx.doi.org/10.1016/S0040-4020(01)00704-9]
[99]
Desimoni, G.; Tacconi, G. Heterodiene syntheses with α.β.-unsaturated carbonyl compounds. Chem. Rev., 1975, 75(6), 651-692.
[http://dx.doi.org/10.1021/cr60298a001] [PMID: 29442499]
[100]
Eisentein, O.; Lefour, J.M.; Anh, N.T.; Hudson, R.F. Simple prediction of cycloaddition orientation. Tetrahedron, 1977, 33(5), 523-531.
[http://dx.doi.org/10.1016/S0040-4020(77)80010-0]
[101]
Nadaraj, V.; Thamarai Selvi, S.; Pricilla Bai, H.; Mohan, S.; Daniel Thangadurai, T. Microwave solvent-free condition synthesis and pharmacological evaluation of pyrano[3,2-c]quinolines. Med. Chem. Res., 2012, 21(10), 2902-2910.
[http://dx.doi.org/10.1007/s00044-011-9810-2]
[102]
Collins, C.H.; Lyne, P.M. Microbial methods, 3rd ed.; Oxford University Press Inc, 1970.
[103]
Thangadurai, T.D.; Jeong, S.; Yun, S.; Kim, S.; Kim, C.; Lee, Y.I. Antibacterial and luminescent properties of new donor-acceptor ruthenium triphenylphosphine-bipyridinium complexes. Microchem. J., 2010, 95(2), 235-239.
[http://dx.doi.org/10.1016/j.microc.2009.12.006]
[104]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[105]
Asghari, S.; Ramezani, S.; Mohseni, M. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate. Chin. Chem. Lett., 2014, 25(3), 431-434.
[http://dx.doi.org/10.1016/j.cclet.2013.12.010]
[106]
Tenover, F.C. Antibiotic susceptibility testing; Academic Press: Oxford, 2009.
[http://dx.doi.org/10.1016/B978-012373944-5.00239-X]
[107]
Ghaemy, M.; Aghakhani, B.; Taghavi, M.; Nasab, S.M.A.; Mohseni, M. Synthesis and characterization of new imidazole and fluorene–bisphenol based polyamides: Thermal, photophysical and antibacterial properties. React. Funct. Polym., 2013, 73(3), 555-563.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2012.12.005]
[108]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano[3,2‐c]quinolone analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[109]
Kamble, V.T.; Kadam, K.R.; Waghmare, A.S.; Murade, V.D. Synthesis of silica chemisorbed bis(hydrogensulphato)benzene (SiO2–BHSB) as a new hybrid material and it’s utility as an efficient, recyclable catalyst for the green synthesis of bis(indolyl)methanes. Sustain. Chem. Pharm., 2020, 18, 100314.
[http://dx.doi.org/10.1016/j.scp.2020.100314]
[110]
Kadam, K.R.; Waghmare, A.S.; Murade, V.D.; Gurav, S.S.; Wankhede, D.S.; Kamble, V.T. Silica bonded bis(hydrogensulphato)benzene as a new, sustainable catalytic material for an efficient and aqueous based synthesis of 5-oxo-4H-pyrano[3,2-c]quinolone scaffolds. Polycycl. Aromat. Compd., 2023, 43(3), 2524-2539.
[http://dx.doi.org/10.1080/10406638.2022.2052120]
[111]
Pasinszki, T.; Krebsz, M.; Lajgut, G.G.; Kocsis, T.; Kótai, L.; Kauthale, S.; Tekale, S.; Pawar, R. Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroquinolines. New J. Chem., 2018, 42(2), 1092-1098.
[http://dx.doi.org/10.1039/C7NJ03562D]
[112]
More, Y.W.; Tekale, S.U.; Kaminwar, N.S.; Kótai, L.; Pasinszki, T.; Kendrekar, P.S.; Pawar, R.P. Synthesis of 3,4-dihydropyrano[c]chromenes using carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin as a catalyst. Curr. Org. Synth., 2019, 16(2), 288-293.
[http://dx.doi.org/10.2174/1570179415666181116104931] [PMID: 31975678]
[113]
Kaminwar, N.S.; Tekale, S.U.; Pokalwar, R.U.; Kótai, L.; Pawar, R.P. An efficient and rapid synthesis of 1,4-dihydropyrano[2,3-c]pyran and 1,4-dihydropyrano[2,3-c]quinoline derivatives using copper nanoparticles grafted on carbon microspheres. Polycycl. Aromat. Compd., 2022, 42(7), 4635-4643.
[http://dx.doi.org/10.1080/10406638.2021.1950194]
[114]
Denmark, S.E.; Sweis, R.F. Fluoride-free cross-coupling of organosilanols. J. Am. Chem. Soc., 2001, 123(26), 6439-6440.
[http://dx.doi.org/10.1021/ja016021q] [PMID: 11427080]
[115]
Mattson, A.E.; Zuhl, A.M.; Reynolds, T.E.; Scheidt, K.A. Direct nucleophilic acylation of nitroalkenes promoted by a fluoride anion/thiourea combination. J. Am. Chem. Soc., 2006, 128(15), 4932-4933.
[http://dx.doi.org/10.1021/ja056565i] [PMID: 16608309]
[116]
Yin, J.; Zarkowsky, D.S.; Thomas, D.W.; Zhao, M.M.; Huffman, M.A. Direct and convenient conversion of alcohols to fluorides. Org. Lett., 2004, 6(9), 1465-1468.
[http://dx.doi.org/10.1021/ol049672a] [PMID: 15101768]
[117]
Sun, H.; DiMagno, S.G. Anhydrous tetrabutylammonium fluoride. J. Am. Chem. Soc., 2005, 127(7), 2050-2051.
[http://dx.doi.org/10.1021/ja0440497] [PMID: 15713075]
[118]
Gao, S.; Tseng, C.; Tsai, C.H.; Yao, C.F. Fluoride ion-catalyzed conjugate addition for easy synthesis of 3-sulfanylpropionic acid from thiol and α,β-unsaturated carboxylic acid. Tetrahedron, 2008, 64(8), 1955-1961.
[http://dx.doi.org/10.1016/j.tet.2007.11.064]
[119]
Prasad, P.; Shobhashana, P.G.; Patel, M.P. An efficient synthesis of 4H-pyrano quinolinone derivatives catalysed by a versatile organocatalyst tetra-n-butylammonium fluoride and their pharmacological screening. R. Soc. Open Sci., 2017, 4(11), 170764.
[http://dx.doi.org/10.1098/rsos.170764] [PMID: 29291069]
[120]
Loupy, A. Microwaves in Organic Synthesis; Wiley, 2006.
[http://dx.doi.org/10.1002/9783527619559]
[121]
Stadler, A.; Pichler, S.; Horeis, G.; Kappe, C.O. Microwave-enhanced reactions under open and closed vessel conditions. A case study. Tetrahedron, 2002, 58(16), 3177-3183.
[http://dx.doi.org/10.1016/S0040-4020(02)00270-3]
[122]
Rivkin, A.; Adams, B. Solvent-free microwave synthesis of 4-hydroxy-3-phenylquinolin-2(1H)-ones and variants using activated arylmalonates. Tetrahedron Lett., 2006, 47(14), 2395-2398.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.148]
[123]
Kappe, T. The ‘pyrono route’ to 4-hydroxy-2-quinolones and 4-hydroxy-2-pyridones. Farmaco, 1999, 54(5), 309-315.
[http://dx.doi.org/10.1016/S0014-827X(99)00030-0]
[124]
Razzaq, T.; Kappe, C.O. Rapid preparation of pyranoquinolines using microwave dielectric heating in combination with fractional product distillation. Tetrahedron Lett., 2007, 48(14), 2513-2517.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.052]
[125]
Stadlbauer, W.; Badawey, E.S.; Hojas, G.; Roschger, P.; Kappe, T. Malonates in cyclocondensation reactions. Molecules, 2001, 6(4), 338-352.
[http://dx.doi.org/10.3390/60400338]
[126]
Dengler, W.A.; Schulte, J.; Berger, D.P.; Mertelsmann, R.; Fiebig, H.H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs, 1995, 6(4), 522-532.
[http://dx.doi.org/10.1097/00001813-199508000-00005] [PMID: 7579556]
[127]
Nemati, F.; Saeedirad, R. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Chin. Chem. Lett., 2013, 24(5), 370-372.
[http://dx.doi.org/10.1016/j.cclet.2013.02.018]
[128]
Abbaspour-Gilandeh, E.; Aghaei-Hashjin, M.; Jahanshahi, P.; Hoseininezhad-Namin, M.S. One-pot synthesis of pyrano[3,2-c]quinoline-2,5-dione derivatives by Fe3O4@SiO2-SO3H as an efficient and reusable solid acid catalyst. Monatsh. Chem., 2017, 148(4), 731-738.
[http://dx.doi.org/10.1007/s00706-016-1788-5]
[129]
Watpade, R.; Bholay, A.; Toche, R. Synthesis of new pyrano-fused quinolines as antibacterial and antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 3434-3439.
[http://dx.doi.org/10.1002/jhet.2966]
[130]
Zhu, J.; Beinayme, H. Multicomponent reactions; Weihheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[131]
Zhu, H.; Chen, Z. DDQ-mediated oxidative radical cycloisomerization of 1,5-diynols: Regioselective synthesis of benzo[b]fluorenones under metal-free conditions. Org. Lett., 2016, 18(3), 488-491.
[http://dx.doi.org/10.1021/acs.orglett.5b03533] [PMID: 26815082]
[132]
Li, Y.; Gao, L.; Zhu, H.; Li, G.; Chen, Z. Silver triflate and triflic anhydride-promoted expedient synthesis of acylated 1-aminoisoquinolines. Org. Biomol. Chem., 2014, 12(36), 6982-6985.
[http://dx.doi.org/10.1039/C4OB01301H] [PMID: 25111030]
[133]
Wang, X.; Liu, M.; Chen, Z. Brønsted-acid catalyzed cascade annulations toward the fused pyranoquinoline derivatives. Tetrahedron, 2016, 72(29), 4423-4426.
[http://dx.doi.org/10.1016/j.tet.2016.06.004]
[134]
Mansel, R.E.; Fodstad, O.; Jiang, W.G. Metastasis of breast cancer; Mansel, R.E.; Fodstad, O.; Jiang, W.G., Eds.; Springer: Dordrecht, 2007.
[http://dx.doi.org/10.1007/978-1-4020-5867-7]
[135]
González, L.; Agulló-Ortuño, M.T.; García-Martínez, J.M.; Calcabrini, A.; Gamallo, C.; Palacios, J.; Aranda, A.; Martín-Pérez, J. Role of c-Src in human MCF7 breast cancer cell tumorigenesis. J. Biol. Chem., 2006, 281(30), 20851-20864.
[http://dx.doi.org/10.1074/jbc.M601570200] [PMID: 16728403]
[136]
Ramadan, M.; A M M Elshaier, Y.; Aly, A.A.; Abdel-Aziz, M.; Fathy, H.M.; Brown, A.B.; Pridgen, J.R.; Dalby, K.N.; Kaoud, T.S. Development of 2′-aminospiro [pyrano[3,2-c]quinoline]-3′-carbonitrile derivatives as non-ATP competitive Src kinase inhibitors that suppress breast cancer cell migration and proliferation. Bioorg. Chem., 2021, 116, 105344.
[http://dx.doi.org/10.1016/j.bioorg.2021.105344] [PMID: 34598088]
[137]
Hameed, I.; Masoodi, S.R.; Mir, S.A.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes, 2015, 6(4), 598-612.
[http://dx.doi.org/10.4239/wjd.v6.i4.598] [PMID: 25987957]
[138]
Yonemoto, R.; Shimada, M.; Gunawan-Puteri, M.D.P.T.; Kato, E.; Kawabata, J. α-Amylase inhibitory triterpene from Abrus precatorius leaves. J. Agric. Food Chem., 2014, 62(33), 8411-8414.
[http://dx.doi.org/10.1021/jf502667z] [PMID: 25089582]
[139]
Toumi, A.; Boudriga, S.; Hamden, K.; Sobeh, M.; Cheurfa, M.; Askri, M.; Knorr, M.; Strohmann, C.; Brieger, L. Synthesis, antidiabetic activity and molecular docking study of rhodanine-substitued spirooxindole pyrrolidine derivatives as novel α-amylase inhibitors. Bioorg. Chem., 2021, 106, 104507.
[http://dx.doi.org/10.1016/j.bioorg.2020.104507] [PMID: 33288322]
[140]
Upadhyay, D.B.; Vala, R.M.; Patel, S.G.; Patel, P.J.; Chi, C.; Patel, H.M. Water mediated TBAB catalyzed synthesis of spiro-indoline-pyrano[3,2-c]quinolines as α-amylase inhibitor and in silico studies. J. Mol. Struct., 2023, 1273, 134305.
[http://dx.doi.org/10.1016/j.molstruc.2022.134305]
[141]
Chithanna, S.; Yang, D.Y. Intramolecular Diels–Alder cycloaddition of furan-derived β-enamino diketones: An entry to diastereoselective synthesis of polycyclic pyrano[3,2-c]quinolin-5-one derivatives. J. Org. Chem., 2022, 87(8), 5178-5187.
[http://dx.doi.org/10.1021/acs.joc.1c03163] [PMID: 35380043]
[142]
Chithanna, S.; Yang, D.Y. Multicomponent synthesis of 1,3-diketone linked N-substituted pyrrolo[1,2-a]pyrazines, pyrrolo-[1,4]diazepines, and pyrrolo[1,4]diazocines. J. Org. Chem., 2019, 84(3), 1339-1347.
[http://dx.doi.org/10.1021/acs.joc.8b02819] [PMID: 30604610]
[143]
Majumdar, K.C.; Ponra, S.; Ghosh, T.; Sadhukhan, R.; Ghosh, U. Synthesis of novel pyrano[3,2-f]quinoline, phenanthroline derivatives and studies of their interactions with proteins: An application in mammalian cell imaging. Eur. J. Med. Chem., 2014, 71, 306-315.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.067] [PMID: 24321834]
[144]
Majumdar, K.C.; Ponra, S.; Ghosh, T. Regioselective synthesis of pyrano[3,2-f]quinoline and phenanthroline derivatives using molecular iodine. Tetrahedron Lett., 2013, 54(41), 5586-5590.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.163]
[145]
El-Agrody, A.M.; Khattab, E.S.A.E.H.; Fouda, A.M.; Al-Ghamdi, A.M. Synthesis and antitumor activities of certain novel 2-amino-9-(4-halostyryl)-4H-pyrano[3,2-h]quinoline derivatives. Med. Chem. Res., 2012, 21(12), 4200-4213.
[http://dx.doi.org/10.1007/s00044-011-9965-x]
[146]
Guo, R.H.; Zhang, Q.; Ma, Y.B.; Huang, X.Y.; Luo, J.; Wang, L.J.; Geng, C.A.; Zhang, X.M.; Zhou, J.; Jiang, Z.Y.; Chen, J.J. Synthesis and biological assay of 4-aryl-6-chloro-quinoline derivatives as novel non-nucleoside anti-HBV agents. Bioorg. Med. Chem., 2011, 19(4), 1400-1408.
[http://dx.doi.org/10.1016/j.bmc.2011.01.006] [PMID: 21292495]
[147]
El-Agrody, A.M.; Abd-Rabboh, H.S.M.; Al-Ghamdi, A.M. Synthesis, antitumor activity, and structure–activity relationship of some 4H-pyrano[3,2-h]quinoline and 7H-pyrimido[4′,5′:6,5]pyrano[3,2-h]quinoline derivatives. Med. Chem. Res., 2013, 22(3), 1339-1355.
[http://dx.doi.org/10.1007/s00044-012-0142-7]
[148]
Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Multicomponent reactions, union of MCRs and beyond. Chem. Rec., 2015, 15(5), 981-996.
[http://dx.doi.org/10.1002/tcr.201500201] [PMID: 26455350]
[149]
El-Agrody, A.M.; Al-Ghamdi, A.M. Synthesis of certain novel 4H-pyrano[3,2-h]quinoline derivatives. ARKIVOC, 2011, 2011(11), 134-146.
[http://dx.doi.org/10.3998/ark.5550190.0012.b12]
[150]
Romdhane, A.; Ben Jannet, H. Synthesis of new pyran and pyranoquinoline derivatives. Arab. J. Chem., 2017, 10, S3128-S3134.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.002]
[151]
Schmitt, F.; Schobert, R.; Biersack, B. New pyranoquinoline derivatives as vascular-disrupting anticancer agents. Med. Chem. Res., 2019, 28(10), 1694-1703.
[http://dx.doi.org/10.1007/s00044-019-02406-5]
[152]
Fouda, A.M.; Youssef, A.M.S.; Afifi, T.H.; Mora, A.; El-Agrody, A.M. Cell cycle arrest and induction of apoptosis of newly synthesized pyranoquinoline derivatives under microwave irradiation. Med. Chem. Res., 2019, 28(5), 668-680.
[http://dx.doi.org/10.1007/s00044-019-02325-5]
[153]
Xiang, Z.; Chen, Y.; Liu, Q.; Lu, F. A highly recyclable dip-catalyst produced from palladium nanoparticle-embedded bacterial cellulose and plant fibers. Green Chem., 2018, 20(5), 1085-1094.
[http://dx.doi.org/10.1039/C7GC02835K]
[154]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[155]
Ghorbani-Vaghei, R.; Alavinia, S.; Merati, Z.; Izadkhah, V. MNPs@SiO2‐Pr‐AP: A new catalyst for the synthesis of 2‐amino‐4‐aryl thiazole derivatives. Appl. Organomet. Chem., 2018, 32(3), e4127.
[http://dx.doi.org/10.1002/aoc.4127]
[156]
Shabanloo, A.; Ghorbani-Vaghei, R.; Alavinia, S. One-pot synthesis of pyranoquinoline derivatives using a new nanomagnetic catalyst supported on functionalized 4-aminopyridine (AP) silica. Org. Prep. Proced. Int., 2020, 52(5), 402-409.
[http://dx.doi.org/10.1080/00304948.2020.1779566]
[157]
Chen, C.D.; Sharma, S.K.; Mudhoo, A. Handbook on applications of ultrasound: Sonochemistry for sustainability; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2012.
[158]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 2012(9), 2947-2954.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54]
[159]
Koduri, R.G.; Pagadala, R.; Boodida, S.; Varala, R. Ultrasound promoted synthesis of 2-amino-4-H-pyranoquinolines using sulphated tin oxide as a catalyst. Polycycl. Aromat. Compd., 2022, 42(10), 6908-6916.
[http://dx.doi.org/10.1080/10406638.2021.1992456]
[160]
Lee, V.J.; Hecker, S.J. Antibiotic resistance versus small molecules, the chemical evolution. Med. Res. Rev., 1999, 19(6), 521-542.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199911)19:6<521:AID-MED4>3.0.CO;2-9] [PMID: 10557368]
[161]
Rbaa, M.; Bazdi, O.; Lakhrissi, Y.; Ounine, K.; Lakhrissi, B. Synthesis, characterization and biological activity of new pyran derivatives of 8-hydroxyquinoline. Eurasian J. Anal. Chem, 2018, 13, 19-30.
[162]
Adlard, P.A.; Cherny, R.A.; Finkelstein, D.I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J.P.; Perez, K.; Laughton, K.; Li, Q.X.; Charman, S.A.; Nicolazzo, J.A.; Wilkins, S.; Deleva, K.; Lynch, T.; Kok, G.; Ritchie, C.W.; Tanzi, R.E.; Cappai, R.; Masters, C.L.; Barnham, K.J.; Bush, A.I. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron, 2008, 59(1), 43-55.
[http://dx.doi.org/10.1016/j.neuron.2008.06.018] [PMID: 18614028]
[163]
Rbaa, M.; Hichar, A.; Bazdi, O.; Lakhrissi, Y.; Ounine, K.; Lakhrissi, B. Synthesis, characterization, and in vitro antimicrobial investigation of novel pyran derivatives based on 8-hydroxyquinoline. Beni. Suef Univ. J. Basic Appl. Sci., 2019, 8(1), 8.
[http://dx.doi.org/10.1186/s43088-019-0009-9]
[164]
Akolkar, S.V.; Kharat, N.D.; Nagargoje, A.A.; Subhedar, D.D.; Shingate, B.B. Ultrasound-assisted β-cyclodextrin catalyzed one-pot cascade synthesis of pyrazolopyranopyrimidines in water. Catal. Lett., 2020, 150(2), 450-460.
[http://dx.doi.org/10.1007/s10562-019-02968-4]
[165]
Murugan, M.; Rajamohan, R.; Anitha, A.; Fatiha, M. Non-covalent bonding interaction between primaquine as guest and 2-(hydroxypropyl)-β-cyclodextrin as host. Polycycl. Aromat. Compd., 2022, 42(4), 1861-1878.
[http://dx.doi.org/10.1080/10406638.2020.1813181]
[166]
Jadhav, C.K.; Nipate, A.S.; Chate, A.V.; Gill, C.H. β‐Cyclodextrin: An efficient supramolecular catalyst for the synthesis of pyranoquinolines derivatives under ultrasonic irradiation in water. Polycycl. Aromat. Compd., 2022, 42(7), 4224-4239.
[http://dx.doi.org/10.1080/10406638.2021.1886125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy