Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Analgesic and Anti-inflammatory Potential of the New Tetrahydropyran Derivative (2s,6s)-6-ethyl-tetrahydro-2h-pyran-2-yl) Methanol

Author(s): Gustavo Nunes de Santana Castro, Raquel do Nascimento de Souza, Alba Cenélia Matos da Silva, Roberto Laureano-Melo, Wellington da Silva Côrtes, Saulo Luis Capim, Mário Luiz Araujo de Almeida Vasconcellos and Bruno Guimarães Marinho*

Volume 23, Issue 2, 2024

Published on: 21 February, 2024

Page: [105 - 117] Pages: 13

DOI: 10.2174/0118715230282982240202052127

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The development of analgesic and anti-inflammatory drugs plays a crucial role in modern medicine, aiming to alleviate pain and reduce inflammation in patients. Opioids and nonsteroidal anti-inflammatory drugs are groups of drugs conventionally used to treat pain and inflammation, but a wide range of adverse effects and ineffectiveness in some pathological conditions leads us to search for new drugs with analgesic and anti-inflammatory properties.

Objectives: In this regard, the authors intend to investigate the ((2s,6s)-6-ethyl-tetrahydro-2h-pyran- 2-yl) methanol compound (LS20) on pain and acute inflammation.

Methods: Male Swiss mice were evaluated using acetic acid-induced abdominal writhing, formalin, and tail-flick as models of nociceptive evaluation and edema paw, air pouch and cell culture as models of inflammatory evaluation besides the rotarod test for assessment of motor impairment.

Results: The compound showed an effect on the acetic acid-induced abdominal writhing, formalin and tail-flick tests. Studying the mechanism of action, reversion of the antinociceptive effect of the compound was observed from previous intraperitoneal administration of selective and non-selective opioid antagonists on the tail flick test. In addition, the compound induced an antiedematogenic effect and reduced leukocyte migration and the production of pro-inflammatory cytokines in the air pouch model. LS20 was able to maintain cell viability, in addition to reducing cell production of TNF-α and IL-6.

Conclusion: In summary, the LS20 compound presented an antinociceptive effect, demonstrating the participation of the opioid system and an anti-inflammatory effect related to the inhibition of pro-inflammatory cytokine production. The compound also demonstrated safety at the cellular level.

Keywords: Tetrahydropyran derivative, mice, antinociceptive effect, opioid system, cytokines, inflammation.

Next »
Graphical Abstract
[1]
Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S. The Revised IASP definition of pain: Concepts, challenges, and compromises. Pain, 2020, 161(9), 1976-1982.
[http://dx.doi.org/10.1097/j.pain.0000000000001939] [PMID: 32694387]
[2]
Wang, L.H.; Ding, W.Q.; Sun, Y.G. Spinal ascending pathways for somatosensory information processing. Trends Neurosci., 2022, 45(8), 594-607.
[http://dx.doi.org/10.1016/j.tins.2022.05.005] [PMID: 35701247]
[3]
Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci., 2010, 11(12), 823-836.
[http://dx.doi.org/10.1038/nrn2947] [PMID: 21068766]
[4]
Khera, T.; Rangasamy, V. Cognition and pain: A Review. Front. Psychol., 2021, 12, 673962.
[http://dx.doi.org/10.3389/fpsyg.2021.673962]
[5]
Kopf, A.; Patel, N.B. Guide to Pain Management in Low-Resource Settings. 1; International Association for the Study of Pain, 2010.
[6]
Bacchi, S.; Palumbo, P.; Sponta, A.; Coppolino, M.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11(1), 52-64.
[http://dx.doi.org/10.2174/187152312803476255] [PMID: 22934743]
[7]
McMahon, A.D. Observation and experiment with the efficacy of drugs: A warning example from a cohort of nonsteroidal anti-inflammatory and ulcer-healing drug users. Am. J. Epidemiol., 2001, 154(6), 557-562.
[http://dx.doi.org/10.1093/aje/154.6.557] [PMID: 11549561]
[8]
Viscusi, E.R.; Pappagallo, M. A review of opioids for in-hospital pain management. Hosp. Pract., 2012, 40(1), 149-159.
[http://dx.doi.org/10.3810/hp.2012.02.955]
[9]
Keïta, H.; Geachan, N.; Dahmani, S.; Couderc, E.; Armand, C.; Quazza, M.; Mantz, J.; Desmonts, J.M. Comparison between patient-controlled analgesia and subcutaneous morphine in elderly patients after total hip replacement. Br. J. Anaesth., 2003, 90(1), 53-57.
[http://dx.doi.org/10.1093/bja/aeg019] [PMID: 12488379]
[10]
Kongara, K. Pharmacogenetics of opioid analgesics in dogs. J. Vet. Pharmacol. Ther., 2018, 41(2), 195-204.
[http://dx.doi.org/10.1111/jvp.12452] [PMID: 28892154]
[11]
Trescot, A.M.; Datta, S.; Lee, M.; Hansen, H. Opioid pharmacology. Pain Physician, 2008, 2s(11), S133-S153.
[http://dx.doi.org/10.36076/ppj.2008/11/S133] [PMID: 18443637]
[12]
Evers, A.S.; Maze, M.; Kharasch, E.D. Anesthetic Pharmacology; Cambridge University Press, 2011.
[13]
Mercadante, S.; Arcuri, E.; Santoni, A. Opioid-induced tolerance and hyperalgesia. CNS Drugs, 2019, 33(10), 943-955.
[http://dx.doi.org/10.1007/s40263-019-00660-0] [PMID: 31578704]
[14]
Ghosh, A.K.; Anderson, D.D. Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors. Future Med. Chem., 2011, 3(9), 1181-1197.
[http://dx.doi.org/10.4155/fmc.11.68] [PMID: 21806380]
[15]
Fuwa, H. Contemporary strategies for the synthesis of tetrahydropyran derivatives: Application to total synthesis of neopeltolide, a marine macrolide natural product. Mar. Drugs, 2016, 14(4), 65.
[16]
Male, Y.T.; Sutapa, I.W.; Kapelle, I.B.; Lopulalan, M. QSAR Modeling and design of a new model of anti-HIV drug 1-aryl-tetrahydroisoquinoline derived using the PM3 semiempirical method. Rasayan J. Chem., 2022, 15(1), 359.
[17]
Male, Y.T.; Sutapa, I.W.; Maahury, M.F.; Jamal, M.; Malle, D. Computational study potency of eugenol and safrole derivatives as active sunscreen material., 2022, 17(1), 39-48.
[18]
Walsh, C.T.; Tang, Y. Recent advances in enzymatic complexity generation: Cyclization reactions. Biochemistry, 2018, 57(22), 3087-3104.
[http://dx.doi.org/10.1021/acs.biochem.7b01161] [PMID: 29236467]
[19]
Ye, Y.; Fu, H.; Hyster, T.K. Activation modes in biocatalytic radical cyclization reactions. J. Ind. Microbiol. Biotechnol., 2021, 48(3-4), kuab021.
[http://dx.doi.org/10.1093/jimb/kuab021] [PMID: 33674826]
[20]
Nair, V.N.; Tambar, U.K. Catalytic rearrangements of onium ylides in aromatic systems. Org. Biomol. Chem., 2022, 20(17), 3427-3439.
[http://dx.doi.org/10.1039/D2OB00218C] [PMID: 35388871]
[21]
Aher, U.P.; Srivastava, D.; Singh, G.P. S, J.B. Synthetic strategies toward 1,3-oxathiolane nucleoside analogues. Beilstein J. Org. Chem., 2021, 17, 2680-2715.
[http://dx.doi.org/10.3762/bjoc.17.182] [PMID: 34804240]
[22]
Jin, M.; Tang, C.; Li, Y.; Yang, S.; Yang, Y.T.; Peng, L. Enantioselective access to tricyclic tetrahydropyran derivatives by a remote hydrogen bonding mediated intramolecular IEDHDA reaction. Nat. Commun., 2021, 121, 7188.
[http://dx.doi.org/10.1038/s41467-021-27521-z]
[23]
Marinho, B.G.; Miranda, L.S.M.; Gomes, N.M.; Matheus, M.E.; Leitão, S.G.; Vasconcellos, M.L.A.A.; Fernandes, P.D. Antinociceptive action of (±)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. Eur. J. Pharmacol., 2006, 550(1-3), 47-53.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.067] [PMID: 17030031]
[24]
Capim, S.L.; Carneiro, P.H.P.; Castro, P.C.; Barros, M.R.M.; Marinho, B.G.; Vasconcellos, M.L.A.A. Design, Prins-cyclization reaction promoting diastereoselective synthesis of 10 new tetrahydropyran derivatives and in vivo antinociceptive evaluations. Eur. J. Med. Chem., 2012, 58, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.046] [PMID: 23085140]
[25]
Marinho, B.G.; Miranda, L.S.M. da S Costa, J.; Leitão, S.G.; Vasconcellos, M.L.A.A.; Pereira, V.L.P.; Fernandes, P.D. The antinociceptive properties of the novel compound (±)-trans-4-hydroxy-6-propyl-1-oxocyclohexan-2-one in acute pain in mice. Behav. Pharmacol., 2013, 24(1), 10-19.
[http://dx.doi.org/10.1097/FBP.0b013e32835cf420] [PMID: 23263483]
[26]
Rosas-Ballina, M.; Olofsson, P.S.; Ochani, M.; Valdés-Ferrer, S.I.; Levine, Y.A.; Reardon, C.; Tusche, M.W.; Pavlov, V.A.; Andersson, U.; Chavan, S.; Mak, T.W.; Tracey, K.J. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science, 2011, 334(6052), 98-101.
[http://dx.doi.org/10.1126/science.1209985] [PMID: 21921156]
[27]
Hess, S.; Padoani, C.; Scorteganha, L.C.; Holzmann, I.; Malheiros, A.; Yunes, R.A.; Delle Monache, F.; de Souza, M.M. Assessment of mechanisms involved in antinociception caused by myrsinoic acid B. Biol. Pharm. Bull., 2010, 33(2), 209-215.
[http://dx.doi.org/10.1248/bpb.33.209] [PMID: 20118542]
[28]
Gonçalves, G.M.; Capim, S.L.; Vasconcellos, M.L.A.A.; Marinho, B.G. Antihyperalgesic effect of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl]methanol: participation of the NO/cGMP/KATP pathway and κ-opioid receptor. Behav. Pharmacol., 2016, 27(6), 506-515.
[http://dx.doi.org/10.1097/FBP.0000000000000238] [PMID: 27035064]
[29]
Koster, R.; Anderson, M.; De Beer, E.J. Acetic acid for analgesic screening. Fed. Proc., 1959, 18, 412-417.
[30]
Hunskaar, S.; Hole, K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain, 1987, 30(1), 103-114.
[http://dx.doi.org/10.1016/0304-3959(87)90088-1] [PMID: 3614974]
[31]
Ben-Bassat, J.; Peretz, E.; Sulman, F.G. Analgesimetry and ranking of analgesic drugs by the receptacle method. Arch. Int. Pharmacodyn. Ther., 1959, 122, 434-447.
[PMID: 13798682]
[32]
Dunham, N.W.; Miya, T.S. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc., 1957, 46(3), 208-209.
[http://dx.doi.org/10.1002/jps.3030460322] [PMID: 13502156]
[33]
Ferreira, S.H.; Van Arman, C.G. Oedema and increased vascular permeability. In: Handbook of experimental pharmacology; Vane, J.R.; Van Arman, C.G., Eds.; Springer-Verlag: New York, 1979; pp. 75-91.
[34]
Vigil, S.V.G.; de Liz, R.; Medeiros, Y.S.; Fröde, T.S. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch. Transpl. Immunol., 2008, 19(1), 25-29.
[http://dx.doi.org/10.1016/j.trim.2008.01.003] [PMID: 18346634]
[35]
Ramana, K.V.; Tammali, R.; Reddy, A.B.M.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase-regulated tumor necrosis factor-α production is essential for high glucose-induced vascular smooth muscle cell growth. Endocrinology, 2007, 148(9), 4371-4384.
[http://dx.doi.org/10.1210/en.2007-0512] [PMID: 17584970]
[36]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[37]
dos Santos, G.; Gomes, G.; Gonçalves, G.; de Sousa, L.; Santiago, G.; de Carvalho, M.; Marinho, B. Essential oil from Myrcia ovata: chemical composition, antinociceptive and anti-inflammatory properties in mice. Planta Med., 2014, 80(17), 1588-1596.
[http://dx.doi.org/10.1055/s-0034-1383120] [PMID: 25295670]
[38]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[39]
Huang, Z.; Li, H.; Zhang, Q.; Tan, X.; Lu, F.; Liu, H.; Li, S. Characterization of preclinical in vitro and in vivo pharmacokinetics properties for KBP-7018, a new tyrosine kinase inhibitor candidate for treatment of idiopathic pulmonary fibrosis. Drug Des. Devel. Ther., 2015, 9(9), 4319-4328.
[PMID: 26273193]
[40]
Mohamad, A.S.; Akhtar, M.N.; Zakaria, Z.A.; Perimal, E.K.; Khalid, S.; Mohd, P.A.; Khalid, M.H.; Israf, D.A.; Lajis, N.H.; Sulaiman, M.R. Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. Eur. J. Pharmacol., 2010, 647(1-3), 103-109.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.030] [PMID: 20826146]
[41]
Shamsi Meymandi, M.; Keyhanfar, F. Assessment of the antinociceptive effects of pregabalin alone or in combination with morphine during acetic acid-induced writhing in mice. Pharmacol. Biochem. Behav., 2013, 110, 249-254.
[http://dx.doi.org/10.1016/j.pbb.2013.07.021] [PMID: 23921185]
[42]
Parveen, Z.; Deng, Y.; Saeed, M.K.; Dai, R.; Ahamad, W.; Yu, Y.H. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi, 2007, 127(8), 1275-1279.
[http://dx.doi.org/10.1248/yakushi.127.1275] [PMID: 17666881]
[43]
Alvarenga, F.Q.; Mota, B.C.F.; Leite, M.N.; Fonseca, J.M.S.; Oliveira, D.A.; de Andrade Royo, V.; e Silva, M.L.A.; Esperandim, V.; Borges, A.; Laurentiz, R.S. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine. J. Ethnopharmacol., 2013, 150(1), 280-284.
[http://dx.doi.org/10.1016/j.jep.2013.08.044] [PMID: 24021301]
[44]
Verri, W.A.; Cunha, T.M.; Parada, C.A.; Poole, S.; Cunha, F.Q.; Ferreira, S.H. Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development? Pharmacol. Ther., 2006, 112(1), 116-138.
[http://dx.doi.org/10.1016/j.pharmthera.2006.04.001] [PMID: 16730375]
[45]
Ness, T.J.; Gebhart, G.F. Visceral pain: A review of experimental studies. Pain, 1990, 41(2), 167-234.
[http://dx.doi.org/10.1016/0304-3959(90)90021-5] [PMID: 2195438]
[46]
McNamara, C.R.; Mandel-Brehm, J.; Bautista, D.M.; Siemens, J.; Deranian, K.L.; Zhao, M.; Hayward, N.J.; Chong, J.A.; Julius, D.; Moran, M.M.; Fanger, C.M. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci., 2007, 104(33), 13525-13530.
[http://dx.doi.org/10.1073/pnas.0705924104] [PMID: 17686976]
[47]
Parada, C.A.; Tambeli, C.H.; Cunha, F.Q.; Ferreira, S.H. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience, 2001, 102(4), 937-944.
[http://dx.doi.org/10.1016/S0306-4522(00)00523-6] [PMID: 11182255]
[48]
Ferreira, A.A.; Amaral, F.A.; Duarte, I.D.G.; Oliveira, P.M.; Alves, R.B.; Silveira, D.; Azevedo, A.O.; Raslan, D.S.; Castro, M.S.A. Antinociceptive effect from Ipomoea cairica extract. J. Ethnopharmacol., 2006, 105(1-2), 148-153.
[http://dx.doi.org/10.1016/j.jep.2005.10.012] [PMID: 16307856]
[49]
Tornos, M.P.; Sáenz, M.T.; García, M.D.; Fernández, M.A. Antinociceptive effects of the tubercles of Anredera leptostachys. J. Ethnopharmacol., 1999, 68(1-3), 229-234.
[http://dx.doi.org/10.1016/S0378-8741(99)00098-7] [PMID: 10624882]
[50]
Milano, J.; Oliveira, S.M.; Rossato, M.F.; Sauzem, P.D.; Machado, P.; Beck, P.; Zanatta, N.; Martins, M.A.P.; Mello, C.F.; Rubin, M.A.; Ferreira, J.; Bonacorso, H.G. Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur. J. Pharmacol., 2008, 581(1-2), 86-96.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.042] [PMID: 18190906]
[51]
Fischer, L.G.; Santos, D.; Serafin, C.; Malheiros, A.; Monache, F.D.; Monache, G.D.; Filho, V.C.; de Souza, M.M. Further antinociceptive properties of extracts and phenolic compounds from Plinia glomerata (Myrtaceae) leaves. Biol. Pharm. Bull., 2008, 31(2), 235-239.
[http://dx.doi.org/10.1248/bpb.31.235] [PMID: 18239279]
[52]
Camarata, P.J.; Yaksh, T.L. Characterization of the spinal adrenergic receptors mediating the spinal effects produced by the microinjection of morphine into the periaqueductal gray. Brain Res., 1985, 336(1), 133-142.
[http://dx.doi.org/10.1016/0006-8993(85)90424-X]
[53]
Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacol. Rev., 2001, 53(4), 597-652.
[PMID: 11734620]
[54]
Inturrisi, C.E. Clinical pharmacology of opioids for pain. Clin. J. Pain, 2002, 18(4), S3-S13.
[http://dx.doi.org/10.1097/00002508-200207001-00002] [PMID: 12479250]
[55]
Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science, 1965, 150(3699), 971-979.
[http://dx.doi.org/10.1126/science.150.3699.971] [PMID: 5320816]
[56]
Stein, C. Opioid receptors. Annu. Rev. Med., 2016, 67(1), 433-451.
[http://dx.doi.org/10.1146/annurev-med-062613-093100] [PMID: 26332001]
[57]
Ferreira, S.H. A classification of peripheral analgesics based upon their mode of action. In: Migraine: A Spectrum of Ideas; Sandler, M.; Collins, G.M., Eds.; Oxford University Press: Oxford, 1990.
[http://dx.doi.org/10.1093/acprof:oso/9780192618108.003.0006]
[58]
Amarante, L.H.; Duarte, I.D.G. The κ-opioid agonist (±)-bremazocine elicits peripheral antinociception by activation of the l-arginine/nitric oxide/cyclic GMP pathway. Eur. J. Pharmacol., 2002, 454(1), 19-23.
[http://dx.doi.org/10.1016/S0014-2999(02)02275-6] [PMID: 12409000]
[59]
Naser, P.V.; Kuner, R. Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience, 2018, 387, 135-148.
[http://dx.doi.org/10.1016/j.neuroscience.2017.08.049] [PMID: 28890048]
[60]
Bektas, N.; Nemutlu, D.; Cam, M.; Okcay, Y.; Eken, H.; Arslan, R. Review: The nicotinic modulation of pain. Pak. J. Pharm. Sci., 2020, 33(1), 229-239.
[PMID: 32122853]
[61]
Cesselin, F.; Bourgoin, S.; Artaud, F.; Gozlan, H.; Hamon, M. [The spinal enkephalinergic and serotoninergic systems in the control of transmission of nociceptive messages]. J. Pharmacol., 1985, 16, 119-137.
[PMID: 2993751]
[62]
Sommer, C. Serotonin in pain and analgesia: Actions in the periphery. Mol. Neurobiol., 2004, 30(2), 117-126.
[http://dx.doi.org/10.1385/MN:30:2:117] [PMID: 15475622]
[63]
Shiotsuki, H.; Yoshimi, K.; Shimo, Y.; Funayama, M.; Takamatsu, Y.; Ikeda, K. A rotarod test for evaluation of motor skill learning. J. Neurosci. Methods, 2010, 189(2), 180-185.
[64]
Thomazzi, S.M.; Silva, C.B.; Silveira, D.C.R.; Vasconcellos, C.L.C.; Lira, A.F.; Cambui, E.V.F.; Estevam, C.S.; Antoniolli, A.R. Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira). J. Ethnopharmacol., 2010, 127(2), 451-456.
[http://dx.doi.org/10.1016/j.jep.2009.10.014] [PMID: 19837149]
[65]
Zhu, Z.Z.; Ma, K.J.; Ran, X.; Zhang, H.; Zheng, C.J.; Han, T.; Zhang, Q.Y.; Qin, L.P. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. J. Ethnopharmacol., 2011, 133(3), 1126-1131.
[http://dx.doi.org/10.1016/j.jep.2010.11.042] [PMID: 21126565]
[66]
Dawson, J.; Sedgwick, A.D.; Edwards, J.C.; Lees, P. A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse. Int. J. Tissue React., 1991, 13(4), 171-185.
[PMID: 1726538]
[67]
Duarte, D.B.; Vasko, M.R.; Fehrenbacher, J.C. Models of inflammation: Carrageenan air pouch. Curr. Protocols Pharmacol, 2012. Chapter 5, 6.
[PMID: 22383000]
[68]
Colville-Nash, P.; Lawrence, T. Air-pouch models of inflammation and modifications for the study of granuloma-mediated cartilage degradation. Methods Mol. Biol., 2003, 225, 181-190.
[http://dx.doi.org/10.1385/1-59259-374-7:181] [PMID: 12769487]
[69]
Jain, M.; Parmar, H.S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm. Res., 2011, 60(5), 483-491.
[http://dx.doi.org/10.1007/s00011-010-0295-0] [PMID: 21181230]
[70]
Willoughby, D.A.; Sedgwick, A.D.; Giroud, J.P.; Al-Duaij, A.Y.; de Brito, F. The use of the air pouch to study experimental synovitis and cartilage breakdown. Biomed. Pharmacother., 1986, 40(2), 45-49.
[PMID: 3530345]
[71]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[72]
Hallegua, D.S.; Weisman, M.H. Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases. Ann. Rheum. Dis., 2002, 61(11), 960-967.
[http://dx.doi.org/10.1136/ard.61.11.960] [PMID: 12379516]
[73]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[74]
Thuraiaiyah, J.; Erritzøe-Jervild, M.; Al-Khazali, H.M.; Schytz, H.W.; Younis, S. The role of cytokines in migraine: A systematic review. Cephalalgia, 2022, 42(14), 1565-1588.
[http://dx.doi.org/10.1177/03331024221118924] [PMID: 35962530]
[75]
Lazarov, T.; Juarez-Carreño, S.; Cox, N.; Geissmann, F. Physiology and diseases of tissue-resident macrophages. Nature, 2023, 618(7966), 698-707.
[http://dx.doi.org/10.1038/s41586-023-06002-x] [PMID: 37344646]
[76]
Bansal, S.; Bala, M.; Suthar, S.K.; Choudhary, S.; Bhattacharya, S.; Bhardwaj, V.; Singla, S.; Joseph, A. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity. Eur. J. Med. Chem., 2014, 80(80), 167-174.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.045] [PMID: 24780593]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy