Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer

Author(s): Vaibhav Singh, Ekta Shirbhate, Rakesh Kore, Aditya Mishra, Varsha Johariya, Ravichandran Veerasamy, Amit K Tiwari and Harish Rajak*

Volume 24, Issue 15, 2024

Published on: 21 February, 2024

Page: [1409 - 1426] Pages: 18

DOI: 10.2174/0113895575283895240207065454

Price: $65

conference banner
Abstract

Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.

Keywords: Prostate cancer, dietary plant metabolite, bioactive compounds, DNA methylation, epigenetics, prostate cancer management.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Ziglioli, F.; Granelli, G.; Cavalieri, D.; Bocchialini, T.; Maestroni, U. What chance do we have to decrease prostate cancer overdiagnosis and overtreatment? A narrative review. Acta Biomed., 2019, 90(4), 423-426.
[http://dx.doi.org/10.23750/abm.v90i4.9070] [PMID: 31910165]
[4]
Chen, F.; Zhao, X. Prostate cancer: Current treatment and prevention strategies. Iran. Red Crescent Med. J., 2013, 15(4), 279-284.
[http://dx.doi.org/10.5812/ircmj.6499] [PMID: 24082997]
[5]
Karantanos, T.; Corn, P.G.; Thompson, T.C. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene, 2013, 32(49), 5501-5511.
[http://dx.doi.org/10.1038/onc.2013.206] [PMID: 23752182]
[6]
Damber, J.E.; Aus, G. Prostate cancer. Lancet, 2008, 371(9625), 1710-1721.
[http://dx.doi.org/10.1016/S0140-6736(08)60729-1] [PMID: 18486743]
[7]
Izzo, S.; Naponelli, V.; Bettuzzi, S. Flavonoids as epigenetic modulators for prostate cancer prevention. Nutrients, 2020, 12(4), 1010.
[http://dx.doi.org/10.3390/nu12041010] [PMID: 32268584]
[8]
Özyalçin, B.; Sanlier, N. The effect of diet components on cancer with epigenetic mechanisms. Trends Food Sci. Technol., 2020, 102, 138-145.
[http://dx.doi.org/10.1016/j.tifs.2020.06.004]
[9]
Adjakly, M.; Ngollo, M.; Dagdemir, A.; Judes, G.; Pajon, A.; Karsli-Ceppioglu, S.; Penault-Llorca, F.; Boiteux, J.P.; Bignon, Y.J.; Guy, L.; Bernard-Gallon, D. Prostate cancer: The main risk and protective factors: Epigenetic modifications. Ann. Endocrinol., 2015, 76(1), 25-41.
[http://dx.doi.org/10.1016/j.ando.2014.09.001] [PMID: 25592466]
[10]
Ho, E.; Beaver, L.M.; Williams, D.E.; Dashwood, R.H. Dietary factors and epigenetic regulation for prostate cancer prevention. Adv. Nutr., 2011, 2(6), 497-510.
[http://dx.doi.org/10.3945/an.111.001032] [PMID: 22332092]
[11]
W., Watson, G.; M., Beaver, L.; E., Williams, D.; H., Dashwood, R.; Ho, E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J., 2013, 951-961.
[http://dx.doi.org/10.1208/s12248-013-9504-4]
[12]
Bilir, B.; Sharma, N.V.; Lee, J.; Hammarstrom, B.; Svindland, A.; Kucuk, O.; Moreno, C.S. Effects of genistein supplementation on genome-wide DNA methylation and gene expression in patients with localized prostate cancer. Int. J. Oncol., 2017, 51(1), 223-234.
[http://dx.doi.org/10.3892/ijo.2017.4017] [PMID: 28560383]
[13]
Hardy, T.M.; Tollefsbol, T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics, 2011, 3(4), 503-518.
[http://dx.doi.org/10.2217/epi.11.71] [PMID: 22022340]
[14]
Kumar, A.; Dhar, S.; Rimando, A.M.; Lage, J.M.; Lewin, J.R.; Zhang, X.; Levenson, A.S. Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer. Ann. N. Y. Acad. Sci., 2015, 1348(1), 1-9.
[http://dx.doi.org/10.1111/nyas.12817] [PMID: 26214308]
[15]
Chatterjee, N.; Wang, W.L.W.; Conklin, T.; Chittur, S.; Tenniswood, M. Histone deacetylase inhibitors modulate miRNA and mRNA expression, block metaphase, and induce apoptosis in inflammatory breast cancer cells. Cancer Biol. Ther., 2013, 14(7), 658-671.
[http://dx.doi.org/10.4161/cbt.25088] [PMID: 23792638]
[16]
Liu, K.C.; Shih, T.Y.; Kuo, C.L.; Ma, Y.S.; Yang, J.L.; Wu, P.P.; Huang, Y.P.; Lai, K.C.; Chung, J.G. Sulforaphane induces cell death through G2/M phase arrest and triggers apoptosis in HCT 116 human colon cancer cells. Am. J. Chin. Med., 2016, 44(6), 1289-1310.
[http://dx.doi.org/10.1142/S0192415X16500725] [PMID: 27627923]
[17]
Fromont, G.; Yacoub, M.; Valeri, A.; Mangin, P.; Vallancien, G.; Cancel-Tassin, G.; Cussenot, O. Differential expression of genes related to androgen and estrogen metabolism in hereditary versus sporadic prostate cancer. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1505-1509.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2778] [PMID: 18559568]
[18]
Alberti, C. Hereditary/familial versus sporadic prostate cancer: Few indisputable genetic differences and many similar clinicopathological features. Eur. Rev. Med. Pharmacol. Sci., 2010, 14(1), 31-41.
[PMID: 20184087]
[19]
Baade, P.D.; Youlden, D.R.; Krnjacki, L.J. International epidemiology of prostate cancer: Geographical distribution and secular trends. Mol. Nutr. Food Res., 2009, 53(2), 171-184.
[http://dx.doi.org/10.1002/mnfr.200700511] [PMID: 19101947]
[20]
Kheirandish, P.; Chinegwundoh, F. Ethnic differences in prostate cancer. Br. J. Cancer, 2011, 105(4), 481-485.
[http://dx.doi.org/10.1038/bjc.2011.273] [PMID: 21829203]
[21]
Emilio, S.; Luigi, V.; Riccardo, B.; Carlo, G. Lifestyle in urology: Cancer. Urologia, 2019, 86(3), 105-114.
[http://dx.doi.org/10.1177/0391560319846012] [PMID: 31431169]
[22]
Klein, E.A.; Thompson, I.M. Chemoprevention of prostate cancer: An updated view. World J. Urol., 2012, 30(2), 189-194.
[http://dx.doi.org/10.1007/s00345-011-0822-9] [PMID: 22238120]
[23]
Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci., 2007, 81(7), 519-533.
[http://dx.doi.org/10.1016/j.lfs.2007.06.011] [PMID: 17655876]
[24]
Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(1), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S] [PMID: 15640497]
[25]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[26]
Albarracin, S.L.; Stab, B.; Casas, Z.; Sutachan, J.J.; Samudio, I.; Gonzalez, J.; Gonzalo, L.; Capani, F.; Morales, L.; Barreto, G.E. Effects of natural antioxidants in neurodegenerative disease. Nutr. Neurosci., 2012, 15(1), 1-9.
[http://dx.doi.org/10.1179/1476830511Y.0000000028] [PMID: 22305647]
[27]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[28]
Albany, C.; Alva, A.S.; Aparicio, A.M.; Singal, R.; Yellapragada, S.; Sonpavde, G.; Hahn, N.M. Epigenetics in prostate cancer. Prostate Cancer, 2011, 2011, 1-12.
[http://dx.doi.org/10.1155/2011/580318] [PMID: 22191037]
[29]
Mukherjee, N.; Kumar, A.P.; Ghosh, R. dna methylation and flavonoids in genitourinary cancers. Curr. Pharmacol. Rep., 2015, 1(2), 112-120.
[http://dx.doi.org/10.1007/s40495-014-0004-8] [PMID: 26005633]
[30]
Seligson, D.B.; Horvath, S.; Shi, T.; Yu, H.; Tze, S.; Grunstein, M.; Kurdistani, S.K. Global histone modification patterns predict risk of prostate cancer recurrence. Nature, 2005, 435(7046), 1262-1266.
[http://dx.doi.org/10.1038/nature03672] [PMID: 15988529]
[31]
Yu, J.; Cao, Q.; Mehra, R.; Laxman, B.; Yu, J.; Tomlins, S.A.; Creighton, C.J.; Dhanasekaran, S.M.; Shen, R.; Chen, G.; Morris, D.S.; Marquez, V.E.; Shah, R.B.; Ghosh, D.; Varambally, S.; Chinnaiyan, A.M. Integrative genomics analysis reveals silencing of β-adrenergic signaling by polycomb in prostate cancer. Cancer Cell, 2007, 12(5), 419-431.
[http://dx.doi.org/10.1016/j.ccr.2007.10.016] [PMID: 17996646]
[32]
Wu, Y.; Sarkissyan, M.; Vadgama, J.V. Epigenetics in breast and prostate cancer. Methods Mol. Biol., 2015, 1238, 425-466.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_23] [PMID: 25421674]
[33]
Lodygin, D.; Epanchintsev, A.; Menssen, A.; Diebold, J.; Hermeking, H. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res., 2005, 65(10), 4218-4227.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4407] [PMID: 15899813]
[34]
Li, L.C.; Carroll, P.R.; Dahiya, R. Epigenetic changes in prostate cancer: Implication for diagnosis and treatment. J. Natl. Cancer Inst., 2005, 97(2), 103-115.
[http://dx.doi.org/10.1093/jnci/dji010] [PMID: 15657340]
[35]
Alumkal, J.J.; Zhang, Z.; Humphreys, E.B.; Bennett, C.; Mangold, L.A.; Carducci, M.A.; Partin, A.W.; Garrett-Mayer, E.; DeMarzo, A.M.; Herman, J.G. Effect of DNA methylation on identification of aggressive prostate cancer. Urology, 2008, 72(6), 1234-1239.
[http://dx.doi.org/10.1016/j.urology.2007.12.060] [PMID: 18387661]
[36]
Carvalho, J.R.; Filipe, L.; Costa, V.L.; Ribeiro, F.R.; Martins, A.T.; Teixeira, M.R.; Jerónimo, C.; Henrique, R. Detailed analysis of expression and promoter methylation status of apoptosis-related genes in prostate cancer. Apoptosis, 2010, 15(8), 956-965.
[http://dx.doi.org/10.1007/s10495-010-0508-6] [PMID: 20464497]
[37]
Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem, 2011, 12(2), 206-222.
[http://dx.doi.org/10.1002/cbic.201000195] [PMID: 21243710]
[38]
Yegnasubramanian, S.; Haffner, M.C.; Zhang, Y.; Gurel, B.; Cornish, T.C.; Wu, Z.; Irizarry, R.A.; Morgan, J.; Hicks, J.; DeWeese, T.L.; Isaacs, W.B.; Bova, G.S.; De Marzo, A.M.; Nelson, W.G. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res., 2008, 68(21), 8954-8967.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6088] [PMID: 18974140]
[39]
Nowacka-Zawisza, M. Wiśnik, E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer. Oncol. Rep., 2017, 38(5), 2587-2596.
[http://dx.doi.org/10.3892/or.2017.5972] [PMID: 29048620]
[40]
Halkidou, K.; Cook, S.; Leung, H.Y.; Neal, D.E.; Robson, C.N. Nuclear accumulation of histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in hormone refractory cancer of the prostate. Eur. Urol., 2004, 45(3), 382-389.
[http://dx.doi.org/10.1016/j.eururo.2003.10.005] [PMID: 15036687]
[41]
Korkmaz, C.G.; Frønsdal, K.; Zhang, Y.; Lorenzo, P.I.; Saatcioglu, F. Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation--rescue of transcriptionally compromised mutants. J. Endocrinol., 2004, 182(3), 377-389.
[http://dx.doi.org/10.1677/joe.0.1820377] [PMID: 15350180]
[42]
Huffman, D.M.; Grizzle, W.E.; Bamman, M.M.; Kim, J.; Eltoum, I.A.; Elgavish, A.; Nagy, T.R. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res., 2007, 67(14), 6612-6618.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0085] [PMID: 17638871]
[43]
Frønsdal, K.; Saatcioglu, F. Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. Prostate, 2005, 62(3), 299-306.
[http://dx.doi.org/10.1002/pros.20140] [PMID: 15389787]
[44]
Butler, L.M.; Agus, D.B.; Scher, H.I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H.T.; Rifkind, R.A.; Marks, P.A.; Richon, V.M. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res., 2000, 60(18), 5165-5170.
[PMID: 11016644]
[45]
Miranda, T.B.; Cortez, C.C.; Yoo, C.B.; Liang, G.; Abe, M.; Kelly, T.K.; Marquez, V.E.; Jones, P.A. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther., 2009, 8(6), 1579-1588.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0013] [PMID: 19509260]
[46]
Crea, F.; Hurt, E.M.; Mathews, L.A.; Cabarcas, S.M.; Sun, L.; Marquez, V.E.; Danesi, R.; Farrar, W.L. Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol. Cancer, 2011, 10(1), 40.
[http://dx.doi.org/10.1186/1476-4598-10-40] [PMID: 21501485]
[47]
Kanwal, R.; Plaga, A.R.; Liu, X.; Shukla, G.C.; Gupta, S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett., 2017, 407, 9-20.
[http://dx.doi.org/10.1016/j.canlet.2017.08.011] [PMID: 28823964]
[48]
Walter, B.A.; Valera, V.A.; Pinto, P.A.; Merino, M.J. Comprehensive microRNA profiling of prostate cancer. J. Cancer, 2013, 4(5), 350-357.
[http://dx.doi.org/10.7150/jca.6394] [PMID: 23781281]
[49]
Josson, S.; Chung, L.W.K.; Gururajan, M. MicroRNAs and prostate cancer. Springer Nature: Basel, Switzerland. Adv. Exp. Med. Biol., 2015, 889, 105-118.
[http://dx.doi.org/10.1007/978-3-319-23730-5_7] [PMID: 26658999]
[50]
Sekhon, K.; Bucay, N.; Majid, S.; Dahiya, R.; Saini, S. MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget, 2016, 7(41), 67597-67611.
[http://dx.doi.org/10.18632/oncotarget.11708] [PMID: 27588490]
[51]
Ma, X.; Zou, L.; Li, X.; Chen, Z.; Lin, Q.; Wu, X. MicroRNA-195 regulates docetaxel resistance by targeting clusterin in prostate cancer. Biomed. Pharmacother., 2018, 99, 445-450.
[http://dx.doi.org/10.1016/j.biopha.2018.01.088] [PMID: 29665645]
[52]
Rizzi, F.; Bettuzzi, S. The clusterin paradigm in prostate and breast carcinogenesis. Endocr. Relat. Cancer, 2010, 17(1), R1-R17.
[http://dx.doi.org/10.1677/ERC-09-0140] [PMID: 19903745]
[53]
Ramnarine, V.R.; Kobelev, M.; Gibb, E.A.; Nouri, M.; Lin, D.; Wang, Y.; Buttyan, R.; Davicioni, E.; Zoubeidi, A.; Collins, C.C. The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. Eur. Urol., 2019, 76(5), 546-559.
[http://dx.doi.org/10.1016/j.eururo.2019.07.040] [PMID: 31445843]
[54]
Feng, F.Y.; Malik, B. Long noncoding RNAs in prostate cancer: Overview and clinical implications. Asian J. Androl., 2016, 18(4), 568-574.
[http://dx.doi.org/10.4103/1008-682X.177123] [PMID: 27072044]
[55]
Saghafi, T.; Taheri, R.A.; Parkkila, S.; Emameh, R.Z. Phytochemicals as modulators of long non-coding RNAs and inhibitors of cancer-related carbonic anhydrases. Int. J. Mol. Sci., 2019, 20(12), 2939.
[http://dx.doi.org/10.3390/ijms20122939] [PMID: 31208095]
[56]
Muir, C.S.; Nectoux, J.; Staszewski, J. The epidemiology of prostatic cancer. Geographical distribution and time-trends. Acta Oncol., 1991, 30(2), 133-140.
[http://dx.doi.org/10.3109/02841869109092336] [PMID: 2029395]
[57]
Shanmugam, M.K.; Arfuso, F.; Sng, J.C.; Bishayee, A.; Kumar, A.P.; Sethi, G. Epigenetic effects of curcumin in cancer prevention; Epigenetics Cancer Prevention, 2019, pp. 107-128.
[http://dx.doi.org/10.1016/B978-0-12-812494-9.00005-6]
[58]
Aggarwal, B.B. Prostate cancer and curcumin: Add spice to your life. Cancer Biol. Ther., 2008, 7(9), 1436-1440.
[http://dx.doi.org/10.4161/cbt.7.9.6659] [PMID: 18769126]
[59]
Goel, A.; Aggarwal, B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer, 2010, 62(7), 919-930.
[http://dx.doi.org/10.1080/01635581.2010.509835] [PMID: 20924967]
[60]
Kang, J.; Chen, J.; Shi, Y.; Jia, J.; Zhang, Y. Curcumin-induced histone hypoacetylation: The role of reactive oxygen species. Biochem. Pharmacol., 2005, 69(8), 1205-1213.
[http://dx.doi.org/10.1016/j.bcp.2005.01.014] [PMID: 15794941]
[61]
Zhao, W.; Zhou, X.; Qi, G.; Guo, Y. Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation. J. Biochem. Mol. Toxicol., 2018, 32(5), e22049.
[http://dx.doi.org/10.1002/jbt.22049] [PMID: 29485738]
[62]
Soflaei, S.S.; Momtazi-Borojeni, A.A.; Majeed, M.; Derosa, G.; Maffioli, P.; Sahebkar, A. Curcumin: A natural Pan-HDAC inhibitor in cancer. Curr. Pharm. Des., 2018, 24(2), 123-129.
[http://dx.doi.org/10.2174/1381612823666171114165051] [PMID: 29141538]
[63]
Khan, N.; Adhami, V.M.; Mukhtar, H. Review: Green tea polyphenols in chemoprevention of prostate cancer: Preclinical and clinical studies. Nutr. Cancer, 2009, 61(6), 836-841.
[http://dx.doi.org/10.1080/01635580903285056] [PMID: 20155624]
[64]
Gupta, S.; Gupta, K.; Gupta, S. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int. J. Oncol., 2012, 41(1), 353-361.
[http://dx.doi.org/10.3892/ijo.2012.1449] [PMID: 22552582]
[65]
Deb, G.; Shankar, E.; Thakur, V.S.; Ponsky, L.E.; Bodner, D.R.; Fu, P.; Gupta, S. Green tea–induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinase-3 suppresses prostate cancer progression through histone-modifying enzymes. Mol. Carcinog., 2019, 58(7), 1194-1207.
[http://dx.doi.org/10.1002/mc.23003] [PMID: 30854739]
[66]
Yan, L.; Spitznagel, E.L. Meta-analysis of soy food and risk of prostate cancer in men. Int. J. Cancer, 2005, 117(4), 667-669.
[http://dx.doi.org/10.1002/ijc.21266] [PMID: 15945102]
[67]
Adlercreutz, H.; Bannwart, C.; Wähälä, K.; Mäkelä, T.; Brunow, G.; Hase, T.; Arosemena, P.J.; Kellis, J.T., Jr; Vickery, L.E. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J. Steroid Biochem. Mol. Biol., 1993, 44(2), 147-153.
[http://dx.doi.org/10.1016/0960-0760(93)90022-O] [PMID: 8382517]
[68]
Lee, H.; Wang, H.W.; Su, H.Y.; Hao, N.J. The structure—activity relationships of flavonoids as inhibitors of cytochrome P-450 enzymes in rat liver microsomes and the mutagenicity of 2-amino-3-methyl-imidazo[4,5- f]quinoline. Mutagenesis, 1994, 9(2), 101-106.
[http://dx.doi.org/10.1093/mutage/9.2.101] [PMID: 8201941]
[69]
Mäkelä, S.; Poutanen, M.; Kostian, M.L.; Lehtimäki, N.; Strauss, L.; Santti, R.; Vihko, R. Inhibition of 17beta-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells. Exp. Biol. Med., 1998, 217(3), 310-316.
[http://dx.doi.org/10.3181/00379727-217-44237] [PMID: 9492340]
[70]
Wang, X.; Clubbs, E.A.; Bomser, J.A. Genistein modulates prostate epithelial cell proliferation via estrogen- and extracellular signal-regulated kinase-dependent pathways. J. Nutr. Biochem., 2006, 17(3), 204-210.
[http://dx.doi.org/10.1016/j.jnutbio.2005.07.005] [PMID: 16198100]
[71]
Ho, S.M. Estrogens and anti-estrogens: Key mediators of prostate carcinogenesis and new therapeutic candidates. J. Cell. Biochem., 2004, 91(3), 491-503.
[http://dx.doi.org/10.1002/jcb.10759] [PMID: 14755680]
[72]
Chung, W.K.; Leibel, R.L. The links between obesity, leptin, and prostate cancer. Cancer J., 2006, 12(3), 178-181.
[http://dx.doi.org/10.1097/00130404-200605000-00004] [PMID: 16803674]
[73]
Fair, W.R.; Fleshner, N.E.; Heston, W. Cancer of the prostate: A nutritional disease? Urology, 1997, 50(6), 840-848.
[http://dx.doi.org/10.1016/S0090-4295(97)00339-7] [PMID: 9426711]
[74]
Strom, S.S.; Yamamura, Y.; Forman, M.R.; Pettaway, C.A.; Barrera, S.L.; DiGiovanni, J. Saturated fat intake predicts biochemical failure after prostatectomy. Int. J. Cancer, 2008, 122(11), 2581-2585.
[http://dx.doi.org/10.1002/ijc.23414] [PMID: 18324626]
[75]
Desgrandchamps, F.; Bastien, L. [Nutrition, dietary supplements and prostate cancer]. Prog. Urol., 2010, 20(8), 560-565.
[http://dx.doi.org/10.1016/j.purol.2010.03.010] [PMID: 20832032]
[76]
Stacewicz-Sapuntzakis, M.; Borthakur, G.; Burns, J.L.; Bowen, P.E. Correlations of dietary patterns with prostate health. Mol. Nutr. Food Res., 2008, 52(1), 114-130.
[http://dx.doi.org/10.1002/mnfr.200600296] [PMID: 18080240]
[77]
Heinonen, O.P.; Koss, L.; Albanes, D.; Taylor, P.R.; Hartman, A.M.; Edwards, B.K.; Virtamo, J.; Huttunen, J.K.; Haapakoski, J.; Malila, N.; Rautalahti, M.; Ripatti, S.; Mäenpää, H.; Teerenhovi, L.; Virolainen, M. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: Incidence and mortality in a controlled trial. J. Natl. Cancer Inst., 1998, 90(6), 440-446.
[http://dx.doi.org/10.1093/jnci/90.6.440] [PMID: 9521168]
[78]
Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A., Jr Effect of selenium and vitamin e on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA, 2009, 301(1), 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[79]
Clark, L.C.; Combs, G.F., Jr; Turnbull, B.W.; Slate, E.H.; Chalker, D.K.; Chow, J.; Davis, L.S.; Glover, R.A.; Graham, G.F.; Gross, E.G.; Krongrad, A.; Lesher, J.L., Jr; Park, H.K.; Sanders, B.B., Jr; Smith, C.L.; Taylor, J.R. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. JAMA, 1996, 276(24), 1957-1963.
[http://dx.doi.org/10.1001/jama.1996.03540240035027] [PMID: 8971064]
[80]
Costello, L.C.; Franklin, R.B. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: Connecting the dots. Mol. Cancer, 2006, 5(1), 17.
[http://dx.doi.org/10.1186/1476-4598-5-17] [PMID: 16700911]
[81]
Ho, E.; Song, Y. Zinc and prostatic cancer. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(6), 640-645.
[http://dx.doi.org/10.1097/MCO.0b013e32833106ee] [PMID: 19684515]
[82]
Pogribny, I.P.; Ross, S.A.; Wise, C.; Pogribna, M.; Jones, E.A.; Tryndyak, V.P.; James, S.J.; Dragan, Y.P.; Poirier, L.A. Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat. Res., 2006, 593(1-2), 80-87.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.028] [PMID: 16144704]
[83]
Poirier, L.A. The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: An introduction. J. Nutr., 2002, 132(8)(Suppl.), 2336S-2339S.
[http://dx.doi.org/10.1093/jn/132.8.2336S] [PMID: 12163688]
[84]
Chandar, N.; Lombardi, B.; Locker, J. c-myc gene amplification during hepatocarcinogenesis by a choline-devoid diet. Proc. Natl. Acad. Sci., 1989, 86(8), 2703-2707.
[http://dx.doi.org/10.1073/pnas.86.8.2703] [PMID: 2649891]
[85]
Bhave, M.R.; Wilson, M.J.; Poirier, L.A. c-H- ras and c-K- ras gene hypomethylation in the livers and hepatomas of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis, 1988, 9(3), 343-348.
[http://dx.doi.org/10.1093/carcin/9.3.343] [PMID: 3345576]
[86]
Pogribny, I.P.; Tryndyak, V.P.; Muskhelishvili, L.; Rusyn, I.; Ross, S.A. Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J. Nutr., 2007, 137(1), 216S-222S.
[http://dx.doi.org/10.1093/jn/137.1.216S] [PMID: 17182829]
[87]
Beilby, J.; Ambrosini, G.L.; Rossi, E.; de Klerk, N.H.; Musk, A.W. Serum levels of folate, lycopene, β-carotene, retinol and vitamin E and prostate cancer risk. Eur. J. Clin. Nutr., 2010, 64(10), 1235-1238.
[http://dx.doi.org/10.1038/ejcn.2010.124] [PMID: 20683458]
[88]
Weinstein, S.J.; Hartman, T.J.; Stolzenberg-Solomon, R.; Pietinen, P.; Barrett, M.J.; Taylor, P.R.; Virtamo, J.; Albanes, D. Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine. Cancer Epidemiol. Biomarkers Prev., 2003, 12(11 Pt 1), 1271-1272.
[PMID: 14652294]
[89]
Das, D.K.; Mukherjee, S.; Ray, D. Resveratrol and red wine, healthy heart and longevity. Heart Fail. Rev., 2010, 15(5), 467-477.
[http://dx.doi.org/10.1007/s10741-010-9163-9] [PMID: 20238161]
[90]
Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys., 2009, 486(2), 95-102.
[http://dx.doi.org/10.1016/j.abb.2009.01.018] [PMID: 19514131]
[91]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[92]
Kai, L.; Samuel, S.K.; Levenson, A.S. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer, 2010, 126(7), 1538-1548.
[http://dx.doi.org/10.1002/ijc.24928] [PMID: 19810103]
[93]
Pruitt, K.; Zinn, R.L.; Ohm, J.E.; McGarvey, K.M.; Kang, S.H.L.; Watkins, D.N.; Herman, J.G.; Baylin, S.B. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet., 2006, 2(3), e40.
[http://dx.doi.org/10.1371/journal.pgen.0020040] [PMID: 16596166]
[94]
Haigis, M.C.; Guarente, L.P. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev., 2006, 20(21), 2913-2921.
[http://dx.doi.org/10.1101/gad.1467506] [PMID: 17079682]
[95]
Wang, L.G.; Beklemisheva, A.; Liu, X.M.; Ferrari, A.C.; Feng, J.; Chiao, J.W. Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol. Carcinog., 2007, 46(1), 24-31.
[http://dx.doi.org/10.1002/mc.20258] [PMID: 16921492]
[96]
Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol., 2010, 80(12), 1771-1792.
[http://dx.doi.org/10.1016/j.bcp.2010.06.036] [PMID: 20599773]
[97]
Park, J.E.; Sun, Y.; Lim, S.K.; Tam, J.P.; Dekker, M.; Chen, H.; Sze, S.K. Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers. Sci. Rep., 2017, 7(1), 40569.
[http://dx.doi.org/10.1038/srep40569] [PMID: 28079155]
[98]
Shankar, S.; Ganapathy, S.; Srivastava, R.K. Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin. Cancer Res., 2008, 14(21), 6855-6866.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0903] [PMID: 18980980]
[99]
Singh, A.V.; Xiao, D.; Lew, K.L.; Dhir, R.; Singh, S.V. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis, 2003, 25(1), 83-90.
[http://dx.doi.org/10.1093/carcin/bgg178] [PMID: 14514658]
[100]
Myzak, M.C.; Tong, P.; Dashwood, W.M.; Dashwood, R.H.; Ho, E. Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp. Biol. Med., 2007, 232(2), 227-234.
[http://dx.doi.org/10.3181/00379727-207-2320227] [PMID: 17259330]
[101]
Myzak, M.C.; Dashwood, W.M.; Orner, G.A.; Ho, E.; Dashwood, R.H. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice. FASEB J., 2006, 20(3), 506-508.
[http://dx.doi.org/10.1096/fj.05-4785fje] [PMID: 16407454]
[102]
Veeranki, O.L.; Bhattacharya, A.; Marshall, J.R.; Zhang, Y. Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: Implications for cancer prevention. Br. J. Nutr., 2013, 109(1), 25-32.
[http://dx.doi.org/10.1017/S0007114512000657] [PMID: 22464629]
[103]
Clarke, J.D.; Hsu, A.; Williams, D.E.; Dashwood, R.H.; Stevens, J.F.; Yamamoto, M.; Ho, E. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm. Res., 2011, 28(12), 3171-3179.
[http://dx.doi.org/10.1007/s11095-011-0500-z] [PMID: 21681606]
[104]
Liu, B.; Mao, Q.; Cao, M.; Xie, L. Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis. Int. J. Urol., 2012, 19(2), 134-141.
[http://dx.doi.org/10.1111/j.1442-2042.2011.02906.x] [PMID: 22121852]
[105]
Richman, E.L.; Carroll, P.R.; Chan, J.M. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int. J. Cancer, 2012, 131(1), 201-210.
[http://dx.doi.org/10.1002/ijc.26348] [PMID: 21823116]
[106]
Alumkal, J.J.; Slottke, R.; Mori, M.; Schwartzman, J.; Graff, J.N.; Beer, T.M.; Ryan, C.W.; Koop, D.R.; Cherala, G.; Munar, M.; Flamiatos, J.F.; Gao, L.; Tucker, E. Sulforaphane treatment in men with recurrent prostate cancer. J. Clin. Oncol., 2013, 31(15)(Suppl.), 5017.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.5017]
[107]
Traka, M.; Gasper, A.V.; Melchini, A.; Bacon, J.R.; Needs, P.W.; Frost, V.; Chantry, A.; Jones, A.M.E.; Ortori, C.A.; Barrett, D.A.; Ball, R.Y.; Mills, R.D.; Mithen, R.F. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One, 2008, 3(7), e2568.
[http://dx.doi.org/10.1371/journal.pone.0002568] [PMID: 18596959]
[108]
Atwell, L.L.; Beaver, L.M.; Shannon, J.; Williams, D.E.; Dashwood, R.H.; Ho, E. Epigenetic regulation by sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Curr. Pharmacol. Rep., 2015, 1(2), 102-111.
[http://dx.doi.org/10.1007/s40495-014-0002-x] [PMID: 26042194]
[109]
Powolny, A.A.; Singh, S.V. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett., 2008, 269(2), 305-314.
[http://dx.doi.org/10.1016/j.canlet.2008.05.027] [PMID: 18579286]
[110]
Druesne, N.; Pagniez, A.; Mayeur, C.; Thomas, M.; Cherbuy, C.; Duée, P.H.; Martel, P.; Chaumontet, C. Diallyl disulfide (DADS) increases histone acetylation and p21waf1/cip1 expression in human colon tumor cell lines. Carcinogenesis, 2004, 25(7), 1227-1236.
[http://dx.doi.org/10.1093/carcin/bgh123] [PMID: 14976134]
[111]
Herman-Antosiewicz, A.; Kim, Y.A.; Kim, S.H.; Xiao, D.; Singh, S.V. Diallyl trisulfide-induced G2/M phase cell cycle arrest in DU145 cells is associated with delayed nuclear translocation of cyclin-dependent kinase 1. Pharm. Res., 2010, 27(6), 1072-1079.
[http://dx.doi.org/10.1007/s11095-010-0060-7] [PMID: 20143254]
[112]
Kim, S.H.; Bommareddy, A.; Singh, S.V. Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prev. Res., 2011, 4(6), 897-906.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0323] [PMID: 21411500]
[113]
Stan, S.D.; Singh, S.V. Transcriptional repression and inhibition of nuclear translocation of androgen receptor by diallyl trisulfide in human prostate cancer cells. Clin. Cancer Res., 2009, 15(15), 4895-4903.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0512] [PMID: 19622577]
[114]
Xiao, D.; Zeng, Y.; Singh, S.V. Diallyl trisulfide-induced apoptosis in human cancer cells is linked to checkpoint kinase 1-mediated mitotic arrest. Mol. Carcinog., 2009, 48(11), 1018-1029.
[http://dx.doi.org/10.1002/mc.20553] [PMID: 19459175]
[115]
Nian, H.; Delage, B.; Ho, E.; Dashwood, R.H. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: Studies with sulforaphane and garlic organosulfur compounds. Environ. Mol. Mutagen., 2009, 50(3), 213-221.
[http://dx.doi.org/10.1002/em.20454] [PMID: 19197985]
[116]
Aggarwal, B.B.; Ichikawa, H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle, 2005, 4(9), 1201-1215.
[http://dx.doi.org/10.4161/cc.4.9.1993] [PMID: 16082211]
[117]
Sarkar, F.H.; Li, Y. Indole-3-carbinol and prostate cancer. J. Nutr., 2004, 134(12), 3493S-3498S.
[http://dx.doi.org/10.1093/jn/134.12.3493S] [PMID: 15570059]
[118]
Li, Y.; Li, X.; Guo, B. Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res., 2010, 70(2), 646-654.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1924] [PMID: 20068155]
[119]
Gündoğdu, S.; Türkeş, C.; Arslan, M.; Demir, Y.; Beydemir, Ş. New isoindole-1, 3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 2019, 4(45), 13347-13355.
[http://dx.doi.org/10.1002/slct.201903458]
[120]
Stoner, G.D.; Wang, L.S.; Sardo, C.; Zikri, N.; Hecht, S.S.; Mallery, S.R. Cancer prevention with berries: Role of anthocyanins. Bioactive compounds and cancer. In: Bioactive Compounds and Cancer. Nutrition and Health; Milner, J.A.; Romagnolo, D.F., Eds.; Humana Press: Totowa, NJ, 2010; pp. 703-723.
[http://dx.doi.org/10.1007/978-1-60761-627-6_29]
[121]
Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 2012, 28(1), 9-19.
[http://dx.doi.org/10.1016/j.nut.2011.08.009] [PMID: 22153122]
[122]
Akter, M.S.; Oh, S.; Eun, J.B.; Ahmed, M. Nutritional compositions and health promoting phytochemicals of camu-camu (myrciaria dubia) fruit: A review. Food Res. Int., 2011, 44(7), 1728-1732.
[http://dx.doi.org/10.1016/j.foodres.2011.03.045]
[123]
Surh, Y.J.; Na, H.K.; Lee, J.Y.; Keum, Y.S. Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng C.A. Meyer. J. Korean Med. Sci., 2001, 16(Suppl.), S38-S41.
[http://dx.doi.org/10.3346/jkms.2001.16.S.S38] [PMID: 11748375]
[124]
Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem., 2003, 51(1), 68-75.
[http://dx.doi.org/10.1021/jf025781x] [PMID: 12502387]
[125]
Jeong, M.H.; Ko, H.; Jeon, H.; Sung, G.J.; Park, S.Y.; Jun, W.J.; Lee, Y.H.; Lee, J.; Lee, S.; Yoon, H.G.; Choi, K.C. Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells. Oncotarget, 2016, 7(35), 56767-56780.
[http://dx.doi.org/10.18632/oncotarget.10790] [PMID: 27462923]
[126]
Ko, H.; Jeong, M.H.; Jeon, H.; Sung, G.J.; So, Y.; Kim, I.; Son, J.; Lee, S.; Yoon, H.G.; Choi, K.C. Delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis, by inducing DR5 and causing caspase-mediated HDAC3 cleavage. Oncotarget, 2015, 6(12), 9970-9984.
[http://dx.doi.org/10.18632/oncotarget.3667] [PMID: 25991668]
[127]
Desmawati, D.; Sulastri, D. Phytoestrogens and their health effect. Open Access Maced. J. Med. Sci., 2019, 7(3), 495-499.
[http://dx.doi.org/10.3889/oamjms.2019.086] [PMID: 30834024]
[128]
Paul, B.; Li, Y.; Tollefsbol, T. The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: Role in epigenetic regulation. Int. J. Mol. Sci., 2018, 19(6), 1754.
[http://dx.doi.org/10.3390/ijms19061754] [PMID: 29899271]
[129]
Bourre, J.M.; Galea, F. An important source of omega-3 fatty acids, vitamins D and E, carotenoids, iodine and selenium: A new natural multi-enriched egg. J. Nutr. Health Aging, 2006, 10(5), 371-376.
[PMID: 17066208]
[130]
Luo, W.; Karpf, A.R.; Deeb, K.K.; Muindi, J.R.; Morrison, C.D.; Johnson, C.S.; Trump, D.L. Epigenetic regulation of vitamin D 24-hydroxylase/CYP24A1 in human prostate cancer. Cancer Res., 2010, 70(14), 5953-5962.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0617] [PMID: 20587525]
[131]
Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported dietary intake and food sources of zinc, selenium, and vitamins A, E and C in the spanish population: Findings from the ANIBES study. Nutrients, 2017, 9(7), 697.
[http://dx.doi.org/10.3390/nu9070697] [PMID: 28684689]
[132]
de Miranda, J.X.; Andrade, F.O.; Conti, A.; Dagli, M.L.Z.; Moreno, F.S.; Ong, T.P. Effects of selenium compounds on proliferation and epigenetic marks of breast cancer cells. J. Trace Elem. Med. Biol., 2014, 28(4), 486-491.
[http://dx.doi.org/10.1016/j.jtemb.2014.06.017] [PMID: 25087768]
[133]
Fu, L.J.; Ding, Y.B.; Wu, L.X.; Wen, C.J.; Qu, Q.; Zhang, X.; Zhou, H.H. The effects of lycopene on the methylation of the GSTP1 promoter and global methylation in prostatic cancer cell lines PC3 and LNCaP. Int. J. Endocrinol., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/620165] [PMID: 25389438]
[134]
Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; Sharifi-Rad, J. Food sources, biological activities, and human health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/2713511] [PMID: 34840666]
[135]
Paik, W.H.; Kim, H.R.; Park, J.K.; Song, B.J.; Lee, S.H.; Hwang, J.H. Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res., 2013, 33(4), 1473-1481.
[PMID: 23564788]
[136]
Mansouri, K.; Rasoulpoor, S.; Daneshkhah, A.; Abolfathi, S.; Salari, N.; Mohammadi, M.; Rasoulpoor, S.; Shabani, S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 2020, 20(1), 791.
[http://dx.doi.org/10.1186/s12885-020-07256-8] [PMID: 32838749]
[137]
Shankar, S.; Chen, Q.; Sarva, K.; Siddiqui, I.; Srivastava, R.K. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J. Mol. Signal., 2007, 2(1), 10.
[http://dx.doi.org/10.1186/1750-2187-2-10] [PMID: 17916240]
[138]
Silvestre, F.; Santos, C.; Silva, V.; Ombredane, A.; Pinheiro, W.; Andrade, L.; Garcia, M.; Pacheco, T.; Joanitti, G.; Luz, G.; Carneiro, M. Pharmacokinetics of curcumin delivered by nanoparticles and the relationship with antitumor efficacy: A systematic review. Pharmaceuticals, 2023, 16(7), 943.
[http://dx.doi.org/10.3390/ph16070943] [PMID: 37513855]
[139]
Hao, M.; Chu, Y.; Lei, J.; Yao, Z.; Wang, P.; Chen, Z.; Wang, K.; Sang, X.; Han, X.; Wang, L.; Cao, G. Pharmacological mechanisms and clinical applications of curcumin: Update. Aging Dis., 2023, 14(3), 716-749.
[http://dx.doi.org/10.14336/AD.2022.1101] [PMID: 37191432]
[140]
Smirnova, E.; Moniruzzaman, M.; Chin, S.; Sureshbabu, A.; Karthikeyan, A.; Do, K.; Min, T. A review of the role of curcumin in metal induced toxicity. Antioxidants, 2023, 12(2), 243.
[http://dx.doi.org/10.3390/antiox12020243] [PMID: 36829803]
[141]
Costea, T.; Nagy, P.; Ganea, C. Szöllősi, J.; Mocanu, M.M. Molecular mechanisms and bioavailability of polyphenols in prostate cancer. Int. J. Mol. Sci., 2019, 20(5), 1062.
[http://dx.doi.org/10.3390/ijms20051062] [PMID: 30823649]
[142]
Jin, H.; Zhao, Y.; Yao, Y.; Zhao, J.; Luo, R.; Fan, S.; Wei, Y.; Ouyang, S.; Peng, W.; Zhang, Y.; Pi, J.; Huang, G. Therapeutic effects of tea polyphenol-loaded nanoparticles coated with platelet membranes on LPS-induced lung injury. Biomater. Sci., 2023, 11(18), 6223-6235.
[http://dx.doi.org/10.1039/D3BM00802A] [PMID: 37529873]
[143]
Rojo, M.Á.; Garrosa, M.; Jiménez, P.; Girbés, T.; Garcia-Recio, V.; Cordoba-Diaz, M.; Cordoba-Diaz, D. Unexpected toxicity of green tea polyphenols in combination with the Sambucus RIL Ebulin. Toxins, 2020, 12(9), 542.
[http://dx.doi.org/10.3390/toxins12090542] [PMID: 32842591]
[144]
Yang, H.; Cao, J.; Li, J.M.; Li, C.; Zhou, W.W.; Luo, J.W. Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification. Mol. Divers., 2023, 1-14.
[http://dx.doi.org/10.1007/s11030-023-10700-z] [PMID: 37486473]
[145]
Aronson, W.J.; Barnard, R.J.; Freedland, S.J.; Henning, S.; Elashoff, D.; Jardack, P.M.; Cohen, P.; Heber, D.; Kobayashi, N. Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J. Urol., 2010, 183(1), 345-350.
[http://dx.doi.org/10.1016/j.juro.2009.08.104] [PMID: 19914662]
[146]
Lusas, E.W.; Riaz, M.N.; Alam, M.S.; Clough, R. Animal and vegetable fats, oils, and waxes. Handbook of Ind. J; Chem; Biotechnol, 2017, pp. 823-932.
[http://dx.doi.org/10.1007/978-1-4614-4259-2_34]
[147]
Schulz, W.A.; Burchardt, M.; Cronauer, M.V. Molecular biology of prostate cancer. Mol. Hum. Reprod., 2003, 9(8), 437-448.
[http://dx.doi.org/10.1093/molehr/gag064] [PMID: 12837920]
[148]
Sha, J.; Pan, J.; Ping, P.; Xuan, H.; Li, D.; Bo, J.; Liu, D.; Huang, Y. Synergistic effect and mechanism of vitamin A and vitamin D on inducing apoptosis of prostate cancer cells. Mol. Biol. Rep., 2013, 40(4), 2763-2768.
[http://dx.doi.org/10.1007/s11033-012-1925-0] [PMID: 23436065]
[149]
Saz-Lara, A.; Cavero-Redondo, I.; Martínez-Vizcaíno, V.; Martínez-Ortega, I.A.; Notario-Pacheco, B.; Pascual-Morena, C. The comparative effects of different types of oral vitamin supplements on arterial stiffness: A network meta-analysis. Nutrients, 2022, 14(5), 1009.
[http://dx.doi.org/10.3390/nu14051009] [PMID: 35267985]
[150]
Fagbohun, O.F.; Gillies, C.R.; Murphy, K.P.J.; Rupasinghe, H.P.V. Role of antioxidant vitamins and other micronutrients on regulations of specific genes and signaling pathways in the prevention and treatment of cancer. Int. J. Mol. Sci., 2023, 24(7), 6092.
[http://dx.doi.org/10.3390/ijms24076092] [PMID: 37047063]
[151]
El-Sharkawy, A.; Malki, A. Vitamin D signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules, 2020, 25(14), 3219.
[http://dx.doi.org/10.3390/molecules25143219] [PMID: 32679655]
[152]
Zhang, F.F.; Barr, S.I.; McNulty, H.; Li, D.; Blumberg, J.B. Health effects of vitamin and mineral supplements. BMJ, 2020, 369, m2511.
[http://dx.doi.org/10.1136/bmj.m2511] [PMID: 32601065]
[153]
Bai, B.; Chen, Q.; Jing, R.; He, X.; Wang, H.; Ban, Y.; Ye, Q.; Xu, W.; Zheng, C. Molecular basis of prostate cancer and natural products as potential chemotherapeutic and chemopreventive agents. Front. Pharmacol., 2021, 12, 738235.
[http://dx.doi.org/10.3389/fphar.2021.738235] [PMID: 34630112]
[154]
Xiao, J.; Song, Y.; Li, Y. Comparison of quantitative X-ray diffraction mineral analysis methods. Minerals, 2023, 13(4), 566.
[http://dx.doi.org/10.3390/min13040566]
[155]
Zhong, X.; Di, Z.; Xu, Y.; Liang, Q.; Feng, K.; Zhang, Y.; Di, L.; Wang, R. Mineral medicine: From traditional drugs to multifunctional delivery systems. Chin. Med., 2022, 17(1), 21.
[http://dx.doi.org/10.1186/s13020-022-00577-9] [PMID: 35144660]
[156]
Fontana, F.; Raimondi, M.; Marzagalli, M.; Di Domizio, A.; Limonta, P. Natural compounds in prostate cancer prevention and treatment: Mechanisms of action and molecular targets. Cells, 2020, 9(2), 460.
[http://dx.doi.org/10.3390/cells9020460] [PMID: 32085497]
[157]
Sarma, S.; Bhuyan, P.; Ganguly, M.; Hazarika, J. Resveratrol: An anti-androgen for the treatment of prostate cancer. J. Oncol., 2022, 2(2), 1046.
[158]
Wang, Y.; Romigh, T.; He, X.; Orloff, M.S.; Silverman, R.H.; Heston, W.D.; Eng, C. Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Hum. Mol. Genet., 2010, 19(22), 4319-4329.
[http://dx.doi.org/10.1093/hmg/ddq354] [PMID: 20729295]
[159]
Kemper, C.; Behnam, D.; Brothers, S.; Wahlestedt, C.; Volmar, C.H.; Bennett, D.; Hayward, M. Safety and pharmacokinetics of a highly bioavailable resveratrol preparation (JOTROL TM). AAPS Open, 2022, 8(1), 11.
[http://dx.doi.org/10.1186/s41120-022-00058-1] [PMID: 35789594]
[160]
Hać, A.; Brokowska, J.; Rintz, E.; Bartkowski, M.; Węgrzyn, G.; Herman-Antosiewicz, A. Mechanism of selective anticancer activity of isothiocyanates relies on differences in DNA damage repair between cancer and healthy cells. Eur. J. Nutr., 2020, 59(4), 1421-1432.
[http://dx.doi.org/10.1007/s00394-019-01995-6] [PMID: 31123866]
[161]
Yadav, K.; Dhankhar, J.; Kundu, P. Isothiocyanates – A Review of their health benefits and potential food applications. Curr. Res. Nutr. Food Sci., 2022, 10(2), 476-502.
[http://dx.doi.org/10.12944/CRNFSJ.10.2.6]
[162]
Pinto, J.T.; Rivlin, R.S. Garlic and prevention of prostate cancer. Nutraceuticals: Designer Foods III: Garlic; Soy and Licorice, 2004, pp. 177-187.
[http://dx.doi.org/10.1002/9780470385043.ch18]
[163]
Pandey, P.; Khan, F.; Alshammari, N.; Saeed, A.; Aqil, F.; Saeed, M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front. Pharmacol., 2023, 14, 1154034.
[http://dx.doi.org/10.3389/fphar.2023.1154034] [PMID: 37021043]
[164]
Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological properties and therapeutic applications of garlic and its components. Food Funct., 2022, 13(5), 2415-2426.
[http://dx.doi.org/10.1039/D1FO03180E] [PMID: 35174827]
[165]
Malla, R.R. Cellular and molecular mechanisms of garlic compounds in common GI cancers. Phytochemicals targeting tumor microenvironment in gastrointestinal cancers, 2020, 119-139.
[http://dx.doi.org/10.1007/978-3-030-48405-7_6]
[166]
Zgarbová, E.; Vrzal, R. The impact of indoles activating the aryl hydrocarbon receptor on androgen receptor activity in the 22Rv1 prostate cancer cell line. Int. J. Mol. Sci., 2022, 24(1), 502.
[http://dx.doi.org/10.3390/ijms24010502] [PMID: 36613955]
[167]
Kumar Das, P.; Sahu, R.; Garnaik, B. Comparative evaluation of Bactericidal, Antifungal and antioxidant properties of biologically active Schiff bases of Substituted indoles and their inclusion complexes with β CD. IOSR Journal of Applied Chemistry, 2016, 9(9), 24-30.
[http://dx.doi.org/10.9790/5736-0909022430]
[168]
Reyes-Hernández, O.D.; Figueroa-González, G.; Quintas-Granados, L.I.; Gutiérrez-Ruíz, S.C.; Hernández-Parra, H.; Romero-Montero, A.; Del Prado-Audelo, M.L.; Bernal-Chavez, S.A.; Cortés, H.; Peña-Corona, S.I.; Kiyekbayeva, L. Ateşşahin, D.A.; Goloshvili, T.; Leyva-Gómez, G.; Sharifi-Rad, J. 3,3′-Diindolylmethane and indole-3-carbinol: Potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int., 2023, 23(1), 180.
[http://dx.doi.org/10.1186/s12935-023-03031-4] [PMID: 37633886]
[169]
Fragoso-Medina, J.A.; López Vaquera, S.R.; Domínguez-Uscanga, A.; Luna-Vital, D.; García, N. Single anthocyanins effectiveness modulating inflammation markers in obesity: dosage and matrix composition analysis. Front. Nutr., 2023, 10, 1255518.
[http://dx.doi.org/10.3389/fnut.2023.1255518] [PMID: 38024376]
[170]
Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; Al-Sayed, E.; Martorell, M.; Tonelli, C.; Petroni, K.; Docea, A.O.; Calina, D.; Maroyi, A. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front. Pharmacol., 2020, 11, 1300.
[http://dx.doi.org/10.3389/fphar.2020.01300] [PMID: 32982731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy