Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Relationship between Compound α-Ketoacid and Microinflammation in Patients with Chronic Kidney Disease

Author(s): Zaobin Chen, Yongda Lin, Jiali Wang, Kaijin Yao, Yina Xie, Xiutian Chen and Tianbiao Zhou*

Volume 30, Issue 8, 2024

Published on: 19 February, 2024

Page: [589 - 596] Pages: 8

DOI: 10.2174/0113816128291248240131102709

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Chronic kidney disease (CKD) refers to the presence of structural or functional abnormalities in the kidneys that affect health, lasting for more than 3 months. CKD is not only the direct cause of global incidence rate and mortality, but also an important risk factor for cardiovascular disease. Persistent microinflammatory state has been recognized as an important component of CKD, which can lead to renal fibrosis and loss of renal function, and plays a crucial role in the pathophysiology and progression of the disease. Simultaneously, compound α-Ketoacid can bind nitrogen-containing metabolites in the blood and accelerate their excretion from the body, thereby reducing the level of metabolic waste, alleviating gastrointestinal reactions in patients, and reducing the inflammatory response and oxidative stress state of the body. Compound α-Ketoacid contains amino acids required by CKD patients. In this review, we explore the relationship between compound α-Ketoacid and microinflammation in patients with CKD. The review indicated that compound α-Ketoacid can improve the microinflammatory state in CKD patients by improving the nutritional status of CKD patients, improving patient's acid-base balance disorder, regulating oxidative stress, improving gut microbiota, and regulating abnormal lipid metabolism.

Keywords: Compound α-Ketoacid, chronic kidney disease, micro inflammatory, nitrogen-containing metabolites, oxidative stress, gut microbiota, abnormal lipid metabolism.

[1]
Rovin BH, Adler SG, Barratt J, et al. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 2021; 100(4): S1-S276.
[http://dx.doi.org/10.1016/j.kint.2021.05.021] [PMID: 34556256]
[2]
Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management. JAMA 2019; 322(13): 1294-304.
[http://dx.doi.org/10.1001/jama.2019.14745] [PMID: 31573641]
[3]
Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020; 395(10225): 709-33.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[4]
Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif 2015; 39(1-3): 84-92.
[http://dx.doi.org/10.1159/000368940] [PMID: 25662331]
[5]
Stenvinkel P. Inflammation in end-stage renal failure: Could it be treated? Nephrol Dial Transplant 2002; 17(90008): 33-8.
[http://dx.doi.org/10.1093/ndt/17.suppl_8.33] [PMID: 12147775]
[6]
Tao YX, Huang GX, Li ZJ, Jiang H, Zeng J. The efficacy of low protein diet intervention added with α-ketoacid on clinical outcome of chronic kidney disease patient. Sichuan Med J 2016; 37(04): 404-8.
[http://dx.doi.org/10.16252/j.cnki.issn1004-0501-2016.04.013]
[7]
Zhu H, Zou Y. Effect of α-ketoacid on the nutrition related indicators for chronic kidney disease. J Clin Nephrol 2018; 18(11): 698-701.
[http://dx.doi.org/10.3969/j.issn.1671-2390.2018.11.009]
[8]
Schömig M, Eisenhardt A, Ritz E. The microinflammatory state of uremia. Blood Purif 2000; 18(4): 327-32.
[http://dx.doi.org/10.1159/000014457] [PMID: 10965076]
[9]
Zhang J, Lu X, Wang S, Li H. High neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are associated with poor survival in patients with hemodialysis. BioMed Res Int 2021; 2021: 1-6.
[http://dx.doi.org/10.1155/2021/9958081] [PMID: 34104653]
[10]
Li Q, Chen P, Shi S, et al. Neutrophil-to-lymphocyte ratio as an independent inflammatory indicator of poor prognosis in IgA nephropathy. Int Immunopharmacol 2020; 87: 106811.
[http://dx.doi.org/10.1016/j.intimp.2020.106811] [PMID: 32711375]
[11]
Li P, Xia C, Liu P, et al. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in evaluation of inflammation in non-dialysis patients with end-stage renal disease (ESRD). BMC Nephrol 2020; 21(1): 511.
[http://dx.doi.org/10.1186/s12882-020-02174-0] [PMID: 33238906]
[12]
Yoshitomi R, Nakayama M, Sakoh T, et al. High neutrophil/lymphocyte ratio is associated with poor renal outcomes in Japanese patients with chronic kidney disease. Ren Fail 2019; 41(1): 238-43.
[http://dx.doi.org/10.1080/0886022X.2019.1595645] [PMID: 30942116]
[13]
Mihai S, Codrici E, Popescu ID, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res 2018; 2018: 1-16.
[http://dx.doi.org/10.1155/2018/2180373] [PMID: 30271792]
[14]
Amdur RL, Feldman HI, Gupta J, et al. Inflammation and progression of CKD: The CRIC study. Clin J Am Soc Nephrol 2016; 11(9): 1546-56.
[http://dx.doi.org/10.2215/CJN.13121215] [PMID: 27340285]
[15]
White S, Lin L, Hu K. NF-κB and tPA signaling in kidney and other diseases. Cells 2020; 9(6): 1348.
[http://dx.doi.org/10.3390/cells9061348] [PMID: 32485860]
[16]
Sun T, Dong W, Jiang G, et al. Cordyceps militaris improves chronic kidney disease by affecting TLR4/NF-κB redox signaling pathway. Oxidat Med Cell Longev 2019; 7850863.
[http://dx.doi.org/10.1155/2019/7850863]
[17]
Deng X, Wang Y. Research advances of role of TLR4/NLRP3 inflammasome in diabetic nephropathy. J Clin Nephrol 2022; 22(07): 595-601.
[http://dx.doi.org/10.3969/j.issn.1671-2390.2022.07.011]
[18]
Ori Y, Bergman M, Bessler H, et al. Cytokine secretion and markers of inflammation in relation to acidosis among chronic hemodialysis patients. Blood Purif 2013; 35(1-3): 181-6.
[http://dx.doi.org/10.1159/000346689] [PMID: 23463880]
[19]
Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet 1999; 353(9167): 1838-42.
[http://dx.doi.org/10.1016/S0140-6736(98)09286-1] [PMID: 10359409]
[20]
Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996; 27(5): 1201-6.
[http://dx.doi.org/10.1016/0735-1097(95)00589-7] [PMID: 8609343]
[21]
Cachofeiro V, Goicochea M, de Vinuesa SG, Oubiña P, Lahera V, Luño J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int 2008; 74(111): S4-9.
[http://dx.doi.org/10.1038/ki.2008.516] [PMID: 19034325]
[22]
Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013; 83(6): 1029-41.
[http://dx.doi.org/10.1038/ki.2012.439] [PMID: 23325084]
[23]
Xu G, Gu Y, Yan N, Li Y, Sun L, Li B. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways. Environ Toxicol 2021; 36(11): 2161-73.
[http://dx.doi.org/10.1002/tox.23330] [PMID: 34272803]
[24]
Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 2018; 0167-4889.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.010]
[25]
Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 2010; 298(3): F662-71.
[http://dx.doi.org/10.1152/ajprenal.00421.2009] [PMID: 20007347]
[26]
Drüeke T, Witko-Sarsat V, Massy Z, et al. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 2002; 106(17): 2212-7.
[http://dx.doi.org/10.1161/01.CIR.0000035250.66458.67] [PMID: 12390950]
[27]
Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol 2019; 9(206): 206.
[http://dx.doi.org/10.3389/fcimb.2019.00206] [PMID: 31245306]
[28]
Yang J, Lim SY, Ko YS, et al. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant 2019; 34(3): 419-28.
[http://dx.doi.org/10.1093/ndt/gfy172] [PMID: 29939312]
[29]
Nishiyama K, Aono K, Fujimoto Y, et al. Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility. J Cell Physiol 2019; 234(5): 6667-78.
[http://dx.doi.org/10.1002/jcp.27408] [PMID: 30317589]
[30]
Wang F, Zhang P, Jiang H, Cheng S. Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci 2012; 57(11): 2856-62.
[http://dx.doi.org/10.1007/s10620-012-2242-0] [PMID: 22615020]
[31]
Clària J, Flores-Costa R, Duran-Güell M, López-Vicario C. Proresolving lipid mediators and liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866(11): 159023.
[http://dx.doi.org/10.1016/j.bbalip.2021.159023] [PMID: 34352389]
[32]
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: Molecular and metabolic alterations. Nat Rev Nephrol 2021; 17(8): 528-42.
[http://dx.doi.org/10.1038/s41581-021-00423-5] [PMID: 33972752]
[33]
Memoli B, Minutolo R, Bisesti V, et al. Changes of serum albumin and C-reactive protein are related to changes of interleukin-6 release by peripheral blood mononuclear cells in hemodialysis patients treated with different membranes. Am J Kidney Dis 2002; 39(2): 266-73.
[http://dx.doi.org/10.1053/ajkd.2002.30545] [PMID: 11840366]
[34]
Kohlová M, Amorim CG, Araújo A, Santos-Silva A, Solich P, Montenegro MCBSM. The biocompatibility and bioactivity of hemodialysis membranes: Their impact in end-stage renal disease. J Artif Organs 2019; 22(1): 14-28.
[http://dx.doi.org/10.1007/s10047-018-1059-9] [PMID: 30006787]
[35]
Susantitaphong P, Riella C, Jaber BL. Effect of ultrapure dialysate on markers of inflammation, oxidative stress, nutrition and anemia parameters: A meta-analysis. Nephrol Dial Transplant 2013; 28(2): 438-46.
[http://dx.doi.org/10.1093/ndt/gfs514] [PMID: 23291370]
[36]
Dukkipati R, Molnar MZ, Park J, et al. Association of vascular access type with inflammatory marker levels in maintenance hemodialysis patients. Semin Dial 2014; 27(4): 415-23.
[http://dx.doi.org/10.1111/sdi.12146] [PMID: 24118625]
[37]
Bayraktar G, Kurtulus I, Kazancioglu R, et al. Oral health and inflammation in patients with end-stage renal failure. Perit Dial Int 2009; 29(4): 472-9.
[http://dx.doi.org/10.1177/089686080902900415] [PMID: 19602614]
[38]
Sumida K, Kovesdy CP. The gut-kidney-heart axis in chronic kidney disease. Physiol Int 2019; 106(3): 195-206.
[http://dx.doi.org/10.1556/2060.106.2019.19] [PMID: 31560235]
[39]
Lau WL, Kalantar-Zadeh K, Vaziri ND. The gut as a source of inflammation in chronic kidney disease. Nephron J 2015; 130(2): 92-8.
[http://dx.doi.org/10.1159/000381990] [PMID: 25967288]
[40]
Lau WL, Savoj J, Nakata MB, Vaziri ND. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin Sci 2018; 132(5): 509-22.
[http://dx.doi.org/10.1042/CS20171107] [PMID: 29523750]
[41]
Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 2008; 73(4): 391-8.
[http://dx.doi.org/10.1038/sj.ki.5002585] [PMID: 18094682]
[42]
Carrero JJ, Thomas F, Nagy K, et al. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J Ren Nutr 2018; 28(6): 380-92.
[http://dx.doi.org/10.1053/j.jrn.2018.08.006] [PMID: 30348259]
[43]
Iorember FM. Malnutrition in chronic kidney disease. Front Pediatr 2018; 6: 161.
[http://dx.doi.org/10.3389/fped.2018.00161] [PMID: 29974043]
[44]
Anderstam B, Mamoun AH, Södersten P, Bergström J. Middle-sized molecule fractions isolated from uremic ultrafiltrate and normal urine inhibit ingestive behavior in the rat. J Am Soc Nephrol 1996; 7(11): 2453-60.
[http://dx.doi.org/10.1681/ASN.V7112453] [PMID: 8959639]
[45]
Mafra D, Guebre-Egziabher F, Cleaud C, et al. Obestatin and ghrelin interplay in hemodialysis patients. Nutrition 2010; 26(11-12): 1100-4.
[http://dx.doi.org/10.1016/j.nut.2009.09.003] [PMID: 20018486]
[46]
Muscaritoli M, Molfino A, Chiappini MG, et al. Anorexia in hemodialysis patients: The possible role of des-acyl ghrelin. Am J Nephrol 2007; 27(4): 360-5.
[http://dx.doi.org/10.1159/000103798] [PMID: 17556836]
[47]
Kaysen GA, Greene T, Daugirdas JT, et al. Longitudinal and cross-sectional effects of C-reactive protein, equilibrated normalized protein catabolic rate, and serum bicarbonate on creatinine and albumin levels in dialysis patients. Am J Kidney Dis 2003; 42(6): 1200-11.
[http://dx.doi.org/10.1053/j.ajkd.2003.08.021] [PMID: 14655192]
[48]
Snaedal S, Qureshi AR, Lund SH, et al. Dialysis modality and nutritional status are associated with variability of inflammatory markers. Nephrol Dial Transplant 2016; 31(8): 1320-7.
[http://dx.doi.org/10.1093/ndt/gfw104] [PMID: 27220753]
[49]
Bi X, Chu M, Ai H, Hu C, Ding W. Association of serum IL-18 with protein-energy wasting in end-stage renal disease patients on haemodialysis. Int Urol Nephrol 2019; 51(7): 1271-8.
[http://dx.doi.org/10.1007/s11255-019-02167-5] [PMID: 31119516]
[50]
Lee BT, Ahmed FA, Hamm LL, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol 2015; 16(1): 77.
[http://dx.doi.org/10.1186/s12882-015-0068-7] [PMID: 26025192]
[51]
Canepa A, Perfumo F, Carrea A, et al. Nutritional status in children receiving chronic peritoneal dialysis. Perit Dial Int 1996; 16(1_suppl): 526-31.
[http://dx.doi.org/10.1177/089686089601601S108] [PMID: 8728263]
[52]
Kraut JA, Madias NE. Adverse effects of the metabolic acidosis of chronic kidney disease. Adv Chronic Kidney Dis 2017; 24(5): 289-97.
[http://dx.doi.org/10.1053/j.ackd.2017.06.005] [PMID: 29031355]
[53]
Alp Ikizler T, Cano NJ, Franch H, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 2013; 84(6): 1096-107.
[http://dx.doi.org/10.1038/ki.2013.147] [PMID: 23698226]
[54]
Roelfsema V, Clark RG. The growth hormone and insulin-like growth factor axis: Its manipulation for the benefit of growth disorders in renal failure. J Am Soc Nephrol 2001; 12(6): 1297-306.
[http://dx.doi.org/10.1681/ASN.V1261297] [PMID: 11373355]
[55]
Ma KW, Greene EL, Raij L. Cardiovascular risk factors in chronic renal failure and hemodialysis populations. Am J Kidney Dis 1992; 19(6): 505-13.
[http://dx.doi.org/10.1016/S0272-6386(12)80827-4] [PMID: 1534442]
[56]
Stenvinkel P, Heimbürger O, Lindholm B, Kaysen GA, Bergström J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol Dial Transplant 2000; 15(7): 953-60.
[http://dx.doi.org/10.1093/ndt/15.7.953] [PMID: 10862630]
[57]
Jankowska M, Cobo G, Lindholm B, Stenvinkel P. Inflammation and protein-energy wasting in the uremic milieu. Contrib Nephrol 2017; 191: 58-71.
[http://dx.doi.org/10.1159/000479256] [PMID: 28910791]
[58]
de Mutsert R, Grootendorst DC, Axelsson J, Boeschoten EW, Krediet RT, Dekker FW. Excess mortality due to interaction between protein-energy wasting, inflammation and cardiovascular disease in chronic dialysis patients. Nephrol Dial Transplant 2008; 23(9): 2957-64.
[http://dx.doi.org/10.1093/ndt/gfn167] [PMID: 18400817]
[59]
Yan BJ, Wang LH. Low protein diet and progression of chronic kidney disease. J Nephrol Dialy Transplant 2017; 26(02): 179-83.
[http://dx.doi.org/10.3969/cndt.j.issn.1006-298X.2017.02.017]
[60]
Cao QF, Wang LF, Lan WH, et al. Application value of C-reactive protein detection in diagnosis and treatment of upper urinary tract stones combined with renal suppurative infection. Lab Med Clin 2016; 13(21): 3091-3.
[http://dx.doi.org/10.3969/j.issn.1672-9455.2016.21.044]
[61]
Levey AS, Greene , Beck GJ, et al. Dietary protein restriction and the progression of chronic renal disease: What have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J Am Soc Nephrol 1999; 10(11): 2426-39.
[http://dx.doi.org/10.1681/ASN.V10112426] [PMID: 10541304]
[62]
Dong HY, Jin SK, Jin LY, Han F, Ma JL. Effects of compound α-ketoacid tablets on renal function, renal fibrosis indexes and oxidative stress in patients with diabetic nephropathy. J Hainan Med Univer 2018; 24(17): 1558-61.
[http://dx.doi.org/10.13210/j.cnki.jhmu.20180725.005]
[63]
Wang XH, Lin JC, Zeng Y. Effects of compound α-ketoacid tablets on renal function and oxidative stress in patients with diabetic nephropathy. Pract Clin Med 2020; 21(11): 11-3.
[http://dx.doi.org/10.13764/j.cnki.lcsy.2020.11.004]
[64]
Wang L, Pang M, Wang X, Wang P, Xiao Y, Liu Q. Characteristics, composition, and antioxidant activities in vitro and in vivo of Gynostemma pentaphyllum (Thunb.) Makino seed oil. J Sci Food Agric 2017; 97(7): 2084-93.
[http://dx.doi.org/10.1002/jsfa.8013] [PMID: 27569782]
[65]
Zhang M, Du N, Wang L, et al. Conjugated fatty acid-rich oil from Gynostrmma pentaphyllum seed can ameliorate lipid and glucose metabolism in type 2 diabetes mellitus mice. Food Funct 2017; 8(10): 3696-706.
[http://dx.doi.org/10.1039/C7FO00712D] [PMID: 28944807]
[66]
Tsuzuki T, Kawakami Y, Abe R, et al. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J Nutr 2006; 136(8): 2153-9.
[http://dx.doi.org/10.1093/jn/136.8.2153] [PMID: 16857834]
[67]
Chaplin A, Parra P, Serra F, Palou A. Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One 2015; 10(4): e0125091.
[http://dx.doi.org/10.1371/journal.pone.0125091] [PMID: 25915857]
[68]
Druart C, Neyrinck AM, Dewulf EM, et al. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. Br J Nutr 2013; 110(6): 998-1011.
[http://dx.doi.org/10.1017/S0007114513000123] [PMID: 23507010]
[69]
Hartigh D. Obese mice losing weight due to trans-10, cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiota (vol 148, pg 562, 2018). J Nutr 2019; 149(5): 884-4.
[http://dx.doi.org/10.1093/jn/nxy312] [PMID: 31050744]
[70]
Borghi M, Puccetti M, Pariano M, et al. Tryptophan as a central hub for host/microbial symbiosis. Int J Trypt Res 2020; 13: 1178-6469.
[http://dx.doi.org/10.1177/1178646920919755]
[71]
Schefold JC, Zeden JP, Fotopoulou C, et al. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: A possible link between chronic inflammation and uraemic symptoms. Nephrol Dial Transplant 2009; 24(6): 1901-8.
[http://dx.doi.org/10.1093/ndt/gfn739] [PMID: 19155537]
[72]
Honda H, Qureshi AR, Heimbürger O, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis 2006; 47(1): 139-48.
[http://dx.doi.org/10.1053/j.ajkd.2005.09.014] [PMID: 16377395]
[73]
Luo WR, Yao SD, Chen J. Effect of Qinghua decoction combined with hormone therapy on renal function and lipid metabolism disorder in patients with nephrotic syndrome. Clin Educ General Prac 2019; 17(9): 822-5.
[http://dx.doi.org/10.13558/j.cnki.issn1672-3686.2019.09.015]
[74]
Xu Y, Gao YX, Ma RX. Lipid metabolism disorders and chronic renal failure. Int J Urol Nephrol 2003; 04(04): 449-52.
[http://dx.doi.org/10.3760/cma.j.issn.1673-4416.2003.04.035]
[75]
Long K, Zhu ZZ, Lu L, Wu CX. Dyslipidemias and their risk factors in patients with chronic kidney disease stages 3 and 4. Shandong Med J 2013; 53(48): 16-8.
[76]
Ren H, Chen N, Zhao Q, et al. Evaluation of the effect of low-protein diet and combination diet withα-ketoacid therapy in chronic renal failure. Shanghai Med J 2002; 25(11): 671-4.
[http://dx.doi.org/10.3969/j.issn.0253-9934.2002.11.002]
[77]
Cai ZY, Zhou WC. Progresses in researches of HMG CoA reductase inhibitors. Chinese J New Drugs 2006; 15(22): 1907-12.
[http://dx.doi.org/10.3321/j.issn:1003-3734.2006.22.005]
[78]
Xiang Q, Huang XX, Zeng JF, Wu YJ, Wang L. Clinical observation on nutrition and lipid metabolism in patients with maintenance hemodialysis treated with low calcium dialysate combined with compound alpha-ketoic acid. Elec J Clin Med Literat 2019; 6(32): 4-5.
[http://dx.doi.org/10.16281/j.cnki.jocml.2019.32.003]
[79]
Li Y, Dong XH, Zou ZJ. Effect of nutrition and lipid metabolism in maintenance hemodialysis patients treated with α-keto acids. Prog Modern Biomed 2011; 11(13): 2528-31.
[http://dx.doi.org/10.13241/j.cnki.pmb.2011.13.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy