Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Preparation, Optimization and In Vitro Characterization of Fluticasoneloaded Mixed Micelles Based on Stearic Acid-g-chitosan as a Pulmonary Delivery System

Author(s): Shima Tasharoie*, Seyed Naser Ostad, Mohsen Amini, Reyhaneh Sabourian and Kambiz Gilani*

Volume 18, Issue 1, 2024

Published on: 15 February, 2024

Page: [61 - 76] Pages: 16

DOI: 10.2174/0126673878262764240208054140

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Purpose: The primary objective of this study was to optimize formulation variables and investigate the in vitro characteristics of fluticasone propionate (FP)-loaded mixed polymeric micelles, which were composed of depolymerized chitosan-stearic acid copolymer (DC-SA) in combination with either tocopheryl polyethylene glycol succinate or dipalmitoylphosphatidylcholine for pulmonary drug delivery.

Methods: A D-optimal design was employed for the optimization procedure, considering lipid/ polymer ratio, polymer concentration, drug/ polymer ratio, and lipid type as independent variables. Dependent variables included particle size, polydispersion index, zeta potential, drug encapsulation efficiency, and loading efficiency of the polymeric micelles. Additionally, the nebulization efficacy and cell viability of the optimal FP-loaded DC-SA micellar formulations were evaluated.

Results: The mixed polymeric micelles were successfully prepared with properties falling within the desired ranges, resulting in four optimized formulations. The release of FP from the optimal systems exhibited a sustained release profile over 72 hours, with 70% of the drug still retained within the core of the micelles. The nebulization efficiency of these optimal formulations reached up to 63%, and the fine particle fraction (FPF) ranged from 41% to 48%. Cellular viability assays demonstrated that FP-loaded DC-SA polymeric micelles exhibited lower cytotoxicity than the free drug but were slightly more cytotoxic than empty mixed micelles.

Conclusion: In conclusion, this study suggests that DC-SA/ lipid mixed micelles have the potential to serve as effective carriers for nebulizing poorly soluble FP.

Keywords: Fluticasone propionate, polymeric micelle, pulmonary delivery, optimization design, Vitamin E TPGS, dipalmitoylphosphatidylcholine.

Graphical Abstract
[1]
Paranjpe M. Müller-Goymann CCJIjoms. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci 2014; 15(4): 5852-73.
[http://dx.doi.org/10.3390/ijms15045852]
[2]
Dhoundiyal S, Alam MA, Kaur A, Sharma S. Nanomedicines: Impactful approaches for targeting pulmonary diseases. Pharm Nanotechnol 2024; 12(1): 14-31.
[http://dx.doi.org/10.2174/2211738511666230525151106] [PMID: 37231722]
[3]
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent advances in lung cancer therapy based on nanomaterials: A review. Curr Med Chem 2023; 30(3): 335-55.
[http://dx.doi.org/10.2174/0929867328666210810160901] [PMID: 34375182]
[4]
Zhang J, Wu L, Chan HK, Watanabe W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 2011; 63(6): 441-55.
[http://dx.doi.org/10.1016/j.addr.2010.11.002] [PMID: 21118707]
[5]
Mansour H. Haemosu, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine 2009; 4: 299-319.
[http://dx.doi.org/10.2147/IJN.S4937] [PMID: 20054434]
[6]
Patton JS, Byron PR. Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007; 6(1): 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[7]
Brodt AM, Stovold E, Zhang LJERJ. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: A systematic review. Eur Respir J 2014; 44(2): 382-93.
[http://dx.doi.org/10.1183/09031936.00018414]
[8]
Gina. global initiative for asthma (2019) global strategy for asthma management and prevention. 2019. Available from: www.ginasthma.org
[9]
Parthasarathi A, Srinivas S, Biligere Siddaiah J, Anand Mahesh P. Local adverse drug reactions in ambulatory asthma patients treated with inhaled corticosteroids: An experience from a south indian teaching hospital. Curr Respir Med Rev 2022; 18(3): 217-27.
[http://dx.doi.org/10.2174/1573398X18666220501124708]
[10]
Mendez Y, Covantev S, Longlax SC, Hernandez R, Guerrero IG, Moya SG. Critical care management of an obese asthmatic patient: A review. Curr Respir Med Rev 2021; 17(2): 90-9.
[http://dx.doi.org/10.2174/1573398X17666210719105723]
[11]
Liang Y, Mak JCW. Inhaled therapies for asthma and chronic obstructive pulmonary disease. Curr Pharm Des 2021; 27(12): 1469-81.
[http://dx.doi.org/10.2174/1389201021666201126144057] [PMID: 33243107]
[12]
Mozdourian M, Khodashahi R. Association between the use of inhaled corticosteroids and pulmonary nontuberculous mycobacterial infection: A systematic review. Curr Respir Med Rev 2021; 16(2): 113-22.
[http://dx.doi.org/10.2174/1573398X16999200901185724]
[13]
Hoekx JC, Hedlin G, Pedersen W, Sorva R, Hollingworth K, Efthimiou J. Fluticasone propionate compared with budesonide: A double-blind trial in asthmatic children using powder devices at a dosage of 400 microg x day(-1). Eur Respir J 1996; 9(11): 2263-72.
[http://dx.doi.org/10.1183/09031936.96.09112263] [PMID: 8947070]
[14]
Akcan N, Bahceciler NN. Headliner in physiology and management of childhood asthma: Hypothalamic-pituitary-adrenal axis. Curr Pediatr Rev 2020; 16(1): 43-52.
[http://dx.doi.org/10.2174/1573396315666191026100643] [PMID: 31738144]
[15]
Derendorf H, Hochhaus G, Meibohm B, Möِllmann H, Barth J. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids. J Allergy Clin Immunol 1998; 101(4): S440-6.
[http://dx.doi.org/10.1016/S0091-6749(98)70156-3] [PMID: 9563369]
[16]
Kaufman G. Asthma: Assessment, diagnosis, and treatment adherence. Nurse Prescribing 2012; 10(7): 331-8.
[http://dx.doi.org/10.12968/npre.2012.10.7.331]
[17]
Arora D, Shah KA, Halquist MS, Sakagami M. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharm Res 2010; 27(5): 786-95.
[http://dx.doi.org/10.1007/s11095-010-0070-5] [PMID: 20229134]
[18]
Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm 2003; 255(1-2): 175-87.
[http://dx.doi.org/10.1016/S0378-5173(03)00091-7] [PMID: 12672613]
[19]
Lohade A, et al. Albumin microspheres of fluticasone propionate inclusion complexes for pulmonary delivery. Indian J Pharm Sci 2007; 69(5): 707.
[20]
Pipkin JD, et al. Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid prepared from a unit dose suspension. Google Patents, 2006.
[21]
Pandey P, Purohit D, Sharma S, et al. Nanocrystals: A deep insight into formulation aspects, stabilization strategies, and biomedical applications. Recent Pat Nanotechnol 2023; 17(4): 307-26.
[http://dx.doi.org/10.2174/1872210516666220523120313] [PMID: 35616680]
[22]
Yang JZ, Young AL, Chiang PC, Thurston A, Pretzer DK. Fluticasone and budesonide nanosuspensions for pulmonary delivery: Preparation, characterization, and pharmacokinetic studies. J Pharm Sci 2008; 97(11): 4869-78.
[http://dx.doi.org/10.1002/jps.21380] [PMID: 18351635]
[23]
Chiang PC, Alsup JW, Lai Y, Hu Y, Heyde BR, Tung D. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett 2009; 4(3): 254-61.
[http://dx.doi.org/10.1007/s11671-008-9234-1] [PMID: 20596335]
[24]
Gopalan R, et al. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles 2019; 557: 254-63.
[25]
Kamada AK, Szefler SJ, Martin RJ, et al. Issues in the use of inhaled glucocorticoids. Am J Respir Crit Care Med 1996; 153(6): 1739-48.
[http://dx.doi.org/10.1164/ajrccm.153.6.8665030] [PMID: 8665030]
[26]
Rochat TS, Janssens JP. [Systemic and oropharyngeal side effects of inhaled corticosteroids]. Rev Med Suisse 2012; 8(363): 2219-23.
[PMID: 23240297]
[27]
Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. Journal of controlled release: official journal of the Controlled Release Society 2001; 73(2-3): 137.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1]
[28]
Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 1995; 16(2-3): 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]
[29]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[30]
Agrawal R, Chauhan CS, Garg A. A snapshot on polymeric micelles as a carrier for drug delivery. Curr Nanomed 2023; 13(1): 27-38.
[http://dx.doi.org/10.2174/2468187313666230320115153]
[31]
Wu Y, Li M, Gao H. Polymeric micelle composed of PLA and chitosan as a drug carrier. J Polym Res 2009; 16(1): 11-8.
[http://dx.doi.org/10.1007/s10965-008-9197-z]
[32]
Ye YQ, Chen FY, Wu Q, et al. Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery. J Pharm Sci 2009; 98(2): 704-12.
[http://dx.doi.org/10.1002/jps.21464] [PMID: 18563810]
[33]
Yuan H, Lu LJ, Du YZ, Hu FQ. Stearic acid-g-chitosan polymeric micelle for oral drug delivery: In vitro transport and in vivo absorption. Mol Pharm 2011; 8(1): 225-38.
[http://dx.doi.org/10.1021/mp100289v] [PMID: 21138243]
[34]
Matalqah SM, Aiedeh K, Mhaidat NM, Alzoubi KH, Bustanji Y, Hamad I. Chitosan nanoparticles as a novel drug delivery system: A review article. Curr Drug Targets 2020; 21(15): 1613-24.
[http://dx.doi.org/10.2174/1389450121666200711172536] [PMID: 32651965]
[35]
Ma J, Zhong L, Peng X, Xu Y, Sun R. Functional chitosan-based materials for biological applications. Curr Med Chem 2020; 27(28): 4660-72.
[http://dx.doi.org/10.2174/0929867327666200420091312] [PMID: 32310039]
[36]
Ilium L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15(9): 1326-31.
[http://dx.doi.org/10.1023/A:1011929016601] [PMID: 9755881]
[37]
Gilani K, Moazeni E, Ramezanli T, Amini M, Fazeli MR, Jamalifar H. Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. J Pharm Sci 2011; 100(1): 252-9.
[http://dx.doi.org/10.1002/jps.22274] [PMID: 20602350]
[38]
Hu FQ, Ren GF, Yuan H, Du YZ, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B Biointerfaces 2006; 50(2): 97-103.
[http://dx.doi.org/10.1016/j.colsurfb.2006.04.009] [PMID: 16759840]
[39]
Moazeni E, Gilani K, Najafabadi AR, et al. Preparation and evaluation of inhalable itraconazole chitosan based polymeric micelles. Daru 2012; 20(1): 85.
[http://dx.doi.org/10.1186/2008-2231-20-85] [PMID: 23351398]
[40]
Boe J, Dennis JH, O’Driscoll BR, et al. European respiratory society guidelines on the use of nebulizers. Eur Respir J 2001; 18(1): 228-42.
[http://dx.doi.org/10.1183/09031936.01.00220001] [PMID: 11510796]
[41]
Gao Y, Li LB, Zhai G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B Biointerfaces 2008; 64(2): 194-9.
[http://dx.doi.org/10.1016/j.colsurfb.2008.01.021] [PMID: 18325744]
[42]
Kulthe SS, Inamdar NN, Choudhari YM, Shirolikar SM, Borde LC, Mourya VK. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: Implications for controlled and targeted drug delivery. Colloids Surf B Biointerfaces 2011; 88(2): 691-6.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.002] [PMID: 21862296]
[43]
Rupp C, Steckel H, Müller BW. Mixed micelle formation with phosphatidylcholines: The influence of surfactants with different molecule structures. Int J Pharm 2010; 387(1-2): 120-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.018] [PMID: 20005930]
[44]
Jiang L, Li X, Liu L, Zhang Q. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett 2013; 8(1): 66.
[http://dx.doi.org/10.1186/1556-276X-8-66] [PMID: 23394588]
[45]
Balasubramanian SV, Straubinger RM. Taxol-lipid interactions: Taxol-dependent effects on the physical properties of model membranes. Biochemistry 1994; 33(30): 8941-7.
[http://dx.doi.org/10.1021/bi00196a011] [PMID: 7913831]
[46]
Wenk MR, Fahr A, Reszka R, Seelig J. Paclitaxel partitioning into lipid bilayers. J Pharm Sci 1996; 85(2): 228-31.
[http://dx.doi.org/10.1021/js950120i] [PMID: 8683453]
[47]
Cagel M, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019]
[48]
Azadi A, Hamidi M, Khoshayand MR, Amini M, Rouini MR. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery. Carbohydr Polym 2012; 90(1): 462-71.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.066] [PMID: 24751066]
[49]
Mohajel N, Najafabadi AR, Azadmanesh K, et al. Optimization of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. Int J Pharm 2012; 423(2): 577-85.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.014] [PMID: 22101289]
[50]
Peniston Q. ohnson, EL Process for depolymerization of chitosan. US Pat 1975; (3): 922-260.
[51]
Hu FQ, Wu X, Du YZ, You J, Yuan H. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm 2008; 69(1): 117-25.
[http://dx.doi.org/10.1016/j.ejpb.2007.09.018] [PMID: 17997293]
[52]
Yokoyama M, Opanasopit P, Okano T, Kawano K, Maitani Y. Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J Drug Target 2004; 12(6): 373-84.
[http://dx.doi.org/10.1080/10611860412331285251] [PMID: 15545087]
[53]
Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol 1980; 12(4): 214-9.
[http://dx.doi.org/10.1080/00224065.1980.11980968]
[54]
Zhao CL, Winnik MA, Riess G, Croucher MD. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 1990; 6(2): 514-6.
[http://dx.doi.org/10.1021/la00092a038]
[55]
Craparo EF, Teresi G, Bondi’ ML, Licciardi M, Cavallaro G. Phospholipid–polyaspartamide micelles for pulmonary delivery of corticosteroids. Int J Pharm 2011; 406(1-2): 135-44.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.024] [PMID: 21185363]
[56]
Orabi MAA, Zidan SAH, Sakagami H, et al. Antileishmanial and lung adenocarcinoma cell toxicity of Withania somnifera (Linn.) dunal root and fruit extracts. Nat Prod Res 2022; 36(16): 4231-7.
[http://dx.doi.org/10.1080/14786419.2021.1973462] [PMID: 34520289]
[57]
Orabi MAA, Alqahtani OS, Alyami BA, et al. Human lung cancer (A549) cell line cytotoxicity and anti-leishmania major activity of carissa macrocarpa leaves: A study supported by UPLC-ESI-MS/MS metabolites profiling and molecular docking. Pharmaceuticals 2022; 15(12): 1561.
[http://dx.doi.org/10.3390/ph15121561] [PMID: 36559012]
[58]
Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T. The depolymerization of chitosan: Effects on physicochemical and biological properties. Int J Pharm 2004; 281(1-2): 45-54.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.019] [PMID: 15288342]
[59]
Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: In vitro and in vivo characterization. Biomacromolecules 2007; 8(1): 202-8.
[http://dx.doi.org/10.1021/bm060307b] [PMID: 17206808]
[60]
Li L, et al. Amphiphilic polymeric micelles based on deoxycholic acid and folic acid modified chitosan for the delivery of paclitaxel. Int J Mol Sci 2018; 19(10): 3132.
[http://dx.doi.org/10.3390/ijms19103132]
[61]
Jiang GB, Quan D, Liao K, Wang H. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydr Polym 2006; 66(4): 514-20.
[http://dx.doi.org/10.1016/j.carbpol.2006.04.008]
[62]
Prakobvaitayakit M, Nimmannit U. Optimization of polylactic-co-glycolic acid nanoparticles containing itraconazole using 23 factorial design. AAPS PharmSciTech 2003; 4(4): 565-73.
[http://dx.doi.org/10.1208/pt040471] [PMID: 15198566]
[63]
Fidler IJ, Raz A, Fogler WE, Kirsh R, Bugelski P, Poste G. Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages. Cancer Res 1980; 40(12): 4460-6.
[PMID: 7002293]
[64]
Yang W, Peters JI, Williams RO III. Inhaled nanoparticles—A current review. Int J Pharm 2008; 356(1-2): 239-47.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.011] [PMID: 18358652]
[65]
Jones M-C, Leroux J-C. Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48(2): 101-11.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9]
[66]
Ye YQ, Yang FL, Hu FQ, Du YZ, Yuan H, Yu HY. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. Int J Pharm 2008; 352(1-2): 294-301.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.035] [PMID: 18096336]
[67]
Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 2004; 56(9): 1273-89.
[http://dx.doi.org/10.1016/j.addr.2003.12.004] [PMID: 15109769]
[68]
Du YZ, Wang L, Yuan H, Wei XH, Hu FQ. Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf B Biointerfaces 2009; 69(2): 257-63.
[http://dx.doi.org/10.1016/j.colsurfb.2008.11.030] [PMID: 19131223]
[69]
Kadian R, Nanda A. A comprehensive insight on recent advancements in self-emulsifying drug delivery systems. Curr Drug Deliv 2023; 20(8): 1095-114.
[http://dx.doi.org/10.2174/1567201819666220914113324] [PMID: 36111756]
[70]
Rupp C, Steckel H, Müller BW. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int J Pharm 2010; 395(1-2): 272-80.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.025] [PMID: 20580793]
[71]
Mu L, Elbayoumi TA, Torchilin VP. Mixed micelles made of poly(ethylene glycol)–phosphatidylethanolamine conjugate and d-α--tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm 2005; 306(1-2): 142-9.
[http://dx.doi.org/10.1016/j.ijpharm.2005.08.026] [PMID: 16242875]
[72]
Thakur S, Singh A, Sharma R, Aurora R, Jain SK. Biosurfactants as a novel additive in pharmaceutical formulations: current trends and future implications. Curr Drug Metab 2020; 21(11): 885-901.
[http://dx.doi.org/10.2174/1389200221666201008143238] [PMID: 33032505]
[73]
Tam JM, McConville JT, Williams RO III, Johnston KP. Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci 2008; 97(11): 4915-33.
[http://dx.doi.org/10.1002/jps.21367] [PMID: 18351641]
[74]
Desai TR, Hancock REW, Finlay WH. A facile method of delivery of liposomes by nebulization. J Control Release 2002; 84(1-2): 69-78.
[http://dx.doi.org/10.1016/S0168-3659(02)00264-X] [PMID: 12399169]
[75]
Helle A. Hirsjärvi S, Peltonen L, Hirvonen J, Wiedmer SK, Hyötyläinen T. Novel, dynamic on-line analytical separation system for dissolution of drugs from poly(lactic acid) nanoparticles. J Pharm Biomed Anal 2010; 51(1): 125-30.
[http://dx.doi.org/10.1016/j.jpba.2009.08.021] [PMID: 19744811]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy