Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Stabilizing Scaffold for Short Peptides Based on Knottins

Author(s): Evgenii Beloborodov, Elena Iurova, Dmitrii Sugak, Eugenia Rastorgueva, Evgeniya Pogodina, Aleksandr Fomin, Denis Viktorov, Sergei Slesarev and Yury Saenko*

Volume 24, Issue 12, 2024

Published on: 13 February, 2024

Page: [1275 - 1285] Pages: 11

DOI: 10.2174/0115680096285288240118090050

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability.

Objective: In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot.

Methods: We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy.

Results: The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity.

Conclusion: Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.

Keywords: Bombesin, peptide toxin, inhibitory cystine knot, stability, cancer, proteins.

Graphical Abstract
[1]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[2]
Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem., 2018, 26(10), 2738-2758.
[http://dx.doi.org/10.1016/j.bmc.2017.09.029] [PMID: 28988749]
[3]
Sharma, K.; Sharma, K.K.; Sharma, A.; Jain, R. Peptide-based drug discovery: Current status and recent advances. Drug Discov. Today, 2023, 28(2), 103464.
[http://dx.doi.org/10.1016/j.drudis.2022.103464] [PMID: 36481586]
[4]
Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; Perera, C.O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W.M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E.M.; Toth, I. A global review on short peptides: Frontiers and perspectives. Molecules, 2021, 26(2), 430.
[http://dx.doi.org/10.3390/molecules26020430] [PMID: 33467522]
[5]
Goodwin, D.; Simerska, P.; Toth, I. Peptides as therapeutics with enhanced bioactivity. Curr. Med. Chem., 2012, 19(26), 4451-4461.
[http://dx.doi.org/10.2174/092986712803251548] [PMID: 22830348]
[6]
Khalily, M.P.; Soydan, M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem. Biol. Drug Des., 2023, 101(3), 772-793.
[http://dx.doi.org/10.1111/cbdd.14180] [PMID: 36366980]
[7]
Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application. Int. J. Oncol., 2020, 57(3), 678-696.
[http://dx.doi.org/10.3892/ijo.2020.5099] [PMID: 32705178]
[8]
Soudy, R.; Kimura, R.; Patel, A.; Fu, W.; Kaur, K.; Westaway, D.; Yang, J.; Jhamandas, J. Short amylin receptor antagonist peptides improve memory deficits in Alzheimer’s disease mouse model. Sci. Rep., 2019, 9(1), 10942.
[http://dx.doi.org/10.1038/s41598-019-47255-9] [PMID: 31358858]
[9]
Hilchie, A.L.; Hoskin, D.W.; Power Coombs, M.R. Anticancer activities of natural and synthetic peptides. In: Advances in Experimental Medicine and Biology; Springer Singapore: Singapore, 2019; pp. 131-147.
[10]
Ghaly, G.; Tallima, H.; Dabbish, E.; Badr ElDin, N.; Abd El-Rahman, M.K.; Ibrahim, M.A.A.; Shoeib, T. Anti-cancer peptides: Status and future prospects. Molecules, 2023, 28(3), 1148.
[http://dx.doi.org/10.3390/molecules28031148] [PMID: 36770815]
[11]
Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383.
[http://dx.doi.org/10.3390/ijms20102383] [PMID: 31091705]
[12]
Qian, Z.; Dougherty, P.G.; Pei, D. Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides. Curr. Opin. Chem. Biol., 2017, 38, 80-86.
[http://dx.doi.org/10.1016/j.cbpa.2017.03.011] [PMID: 28388463]
[13]
Anand, U.; Bandyopadhyay, A.; Jha, N.K.; Pérez de la Lastra, J.M.; Dey, A. Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. Biofactors, 2023, 49(2), 251-269.
[http://dx.doi.org/10.1002/biof.1913] [PMID: 36326181]
[14]
Wichapong, K.; Poelman, H.; Ercig, B.; Hrdinova, J.; Liu, X.; Lutgens, E.; Nicolaes, G.A.F. Rational modulator design by exploitation of protein-protein complex structures. Fut. Med. Chem., 2019, 11(9), 1015-1033.
[http://dx.doi.org/10.4155/fmc-2018-0433] [PMID: 31141413]
[15]
Schroeder, R.P.J.; Weerden, W.M.; Bangma, C.; Krenning, E.P.; Jong, M. Peptide receptor imaging of prostate cancer with radiolabelled bombesin analogues. Methods, 2009, 48(2), 200-204.
[http://dx.doi.org/10.1016/j.ymeth.2009.04.002] [PMID: 19398012]
[16]
Tornesello, A.; Buonaguro, L.; Tornesello, M.; Buonaguro, F. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules, 2017, 22(8), 1282.
[http://dx.doi.org/10.3390/molecules22081282] [PMID: 28767081]
[17]
Nock, B.A.; Kaloudi, A.; Lymperis, E.; Giarika, A.; Kulkarni, H.R.; Klette, I.; Singh, A.; Krenning, E.P.; de Jong, M.; Maina, T.; Baum, R.P. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: Preclinical and first clinical results. J. Nucl. Med., 2017, 58(1), 75-80.
[http://dx.doi.org/10.2967/jnumed.116.178889] [PMID: 27493272]
[18]
Peng, S.; Zhan, Y.; Zhang, D.; Ren, L.; Chen, A.; Chen, Z.F.; Zhang, H. Structures of human gastrin-releasing peptide receptors bound to antagonist and agonist for cancer and itch therapy. Proc. Natl. Acad. Sci., 2023, 120(6), e2216230120.
[http://dx.doi.org/10.1073/pnas.2216230120] [PMID: 36724251]
[19]
Polgár, E.; Dickie, A.C.; Gutierrez-Mecinas, M.; Bell, A.M.; Boyle, K.A.; Quillet, R.; Ab Rashid, E.; Clark, R.A.; German, M.T.; Watanabe, M.; Riddell, J.S.; Todd, A.J. Grpr expression defines a population of superficial dorsal horn vertical cells that have a role in both itch and pain. Pain, 2023, 164(1), 149-170.
[http://dx.doi.org/10.1097/j.pain.0000000000002677] [PMID: 35543635]
[20]
Moreno, P.; Ramos-Álvarez, I.; Moody, T.W.; Jensen, R.T. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin. Ther. Targets, 2016, 20(9), 1055-1073.
[http://dx.doi.org/10.1517/14728222.2016.1164694] [PMID: 26981612]
[21]
Begum, A.A.; Moyle, P.M.; Toth, I. Investigation of bombesin peptide as a targeting ligand for the gastrin releasing peptide (GRP) receptor. Bioorg. Med. Chem., 2016, 24(22), 5834-5841.
[http://dx.doi.org/10.1016/j.bmc.2016.09.039] [PMID: 27670095]
[22]
Sun, H.; Ma, Q.; Bian, H.; Meng, X.; Jin, J. Novel insight on GRP/GRPR axis in diseases. Biomed. Pharmacother., 2023, 161(114497), 114497.
[http://dx.doi.org/10.1016/j.biopha.2023.114497] [PMID: 36933382]
[23]
Gomena, J.; Vári, B.; Oláh-Szabó, R.; Biri-Kovács, B.; Bősze, S.; Borbély, A.; Soós, Á.; Ranđelović, I.; Tóvári, J.; Mező, G. Targeting the gastrin-releasing peptide receptor (GRP-R) in cancer therapy: Development of bombesin-based peptide–drug conjugates. Int. J. Mol. Sci., 2023, 24(4), 3400.
[http://dx.doi.org/10.3390/ijms24043400] [PMID: 36834815]
[24]
Carlucci, G.; Kuipers, A.; Ananias, H.J.K.; de Paula Faria, D.; Dierckx, R.A.J.O.; Helfrich, W.; Rink, R.; Moll, G.N.; de Jong, I.J.; Elsinga, P.H. GRPR-selective PET imaging of prostate cancer using [18F]-lanthionine-bombesin analogs. Peptides, 2015, 67, 45-54.
[http://dx.doi.org/10.1016/j.peptides.2015.03.004] [PMID: 25797109]
[25]
Stott Reynolds, T.J.; Smith, C.J.; Lewis, M.R. Peptide-based radiopharmaceuticals for molecular imaging of prostate cancer. In: Advances in Experimental Medicine and Biology; Springer: Cham, 2018; pp. 135-158.
[26]
Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Haberkorn, U.; Eisenhut, M.; Kopka, K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate, 2014, 74(6), 659-668.
[http://dx.doi.org/10.1002/pros.22784] [PMID: 24464532]
[27]
Olivera, B.M.; Hillyard, D.R.; Marsh, M.; Yoshikami, D. Combinatorial peptide libraries in drug design: Lessons from venomous cone snails. Trends Biotechnol., 1995, 13(10), 422-426.
[http://dx.doi.org/10.1016/S0167-7799(00)88996-9] [PMID: 7546566]
[28]
Cardoso, F.C.; Servent, D.; de Lima, M.E. Editorial: Venom peptides: A rich combinatorial library for drug development. Front. Mol. Biosci., 2022, 9, 924023.
[http://dx.doi.org/10.3389/fmolb.2022.924023] [PMID: 35647027]
[29]
Coulter-Parkhill, A.; McClean, S.; Gault, V.A.; Irwin, N. Therapeutic potential of peptides derived from animal venoms: Current views and emerging drugs for diabetes. Clin. Med. Insights Endocrinol. Diabetes, 2021, 14
[http://dx.doi.org/10.1177/11795514211006071] [PMID: 34621137]
[30]
Chen, N.; Xu, S.; Zhang, Y.; Wang, F. Animal protein toxins: Origins and therapeutic applications. Biophys. Rep., 2018, 4(5), 233-242.
[http://dx.doi.org/10.1007/s41048-018-0067-x] [PMID: 30533488]
[31]
Silverman, A.P.; Levin, A.M.; Lahti, J.L.; Cochran, J.R. Engineered cystine-knot peptides that bind alpha(v)β(3) integrin with antibody-like affinities. J. Mol. Biol., 2009, 385(4), 1064-1075.
[http://dx.doi.org/10.1016/j.jmb.2008.11.004] [PMID: 19038268]
[32]
Pallaghy, P.K.; Norton, R.S.; Nielsen, K.J.; Craik, D.J. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci., 1994, 3(10), 1833-1839.
[http://dx.doi.org/10.1002/pro.5560031022] [PMID: 7849598]
[33]
Krause, S.; Schmoldt, H.U.; Wentzel, A.; Ballmaier, M.; Friedrich, K.; Kolmar, H. Grafting of thrombopoietin-mimetic peptides into cystine knot miniproteins yields high-affinity thrombopoietin antagonists and agonists. FEBS J., 2007, 274(1), 86-95.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05567.x] [PMID: 17147697]
[34]
Kimura, T. Stability and safety of inhibitor cystine knot peptide, GTx1-15, from the tarantula spider grammostola rosea. Toxins, 2021, 13(9), 621.
[http://dx.doi.org/10.3390/toxins13090621] [PMID: 34564625]
[35]
Moore, S.J.; Leung, C.L.; Norton, H.K.; Cochran, J.R. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One, 2013, 8(4), e60498.
[http://dx.doi.org/10.1371/journal.pone.0060498] [PMID: 23573262]
[36]
Lumiprobe, R.U.S. Labeling of biomolecules with activated esters. Available from:https://ru.lumiprobe.com/protocols/nhs-ester-labeling (Accessed 12.07.2023).
[37]
Ke, N.; Wang, X.; Xu, X.; Abassi, Y.A. The XCELligence system for real-time and label-free monitoring of cell viability. In: Methods in Molecular Biology; Humana Press: Totowa, NJ, 2011; pp. 33-43.
[38]
Ferreira, C.A.; Fuscaldi, L.L.; Townsend, D.M.; Rubello, D.; Barros, A.L.B. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed. Pharmacother., 2017, 87, 58-72.
[http://dx.doi.org/10.1016/j.biopha.2016.12.083] [PMID: 28040598]
[39]
Ananias, H.; de Jong, I.; Dierckx, R.; de Wiele, C.; Helfrich, W.; Elsinga, P. Nuclear imaging of prostate cancer with gastrin-releasing-peptide-receptor targeted radiopharmaceuticals. Curr. Pharm. Des., 2008, 14(28), 3033-3047.
[http://dx.doi.org/10.2174/138161208786404335] [PMID: 18991717]
[40]
Smith, C.J.; Volkert, W.A.; Hoffman, T.J. Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl. Med. Biol., 2005, 32(7), 733-740.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.05.005] [PMID: 16243649]
[41]
Pooja, D.; Gunukula, A.; Gupta, N.; Adams, D.J.; Kulhari, H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int. J. Biochem. Cell Biol., 2019, 114(105567), 105567.
[http://dx.doi.org/10.1016/j.biocel.2019.105567] [PMID: 31295552]
[42]
Ghaly, H.S.A.; Varamini, P. New drug delivery strategies targeting the GnRH receptor in breast and other cancers. Endocr. Relat. Cancer, 2021, 28(11), R251-R269.
[http://dx.doi.org/10.1530/ERC-20-0442] [PMID: 34236041]
[43]
Matters, G.; Harms, J. Utilizing peptide ligand GPCRs to image and treat pancreatic cancer. Biomedicines, 2018, 6(2), 65.
[http://dx.doi.org/10.3390/biomedicines6020065] [PMID: 29865257]
[44]
Liu, J.; Chen, S.; Chai, X.Y.; Gao, F.; Wang, C.; Tang, H.; Li, X.; Liu, Y.; Hu, H.G. Design, synthesis, and biological evaluation of stapled ascaphin-8 peptides. Bioorg. Med. Chem., 2021, 40(116158), 116158.
[http://dx.doi.org/10.1016/j.bmc.2021.116158] [PMID: 33932712]
[45]
Conlon, J.M.; Mechkarska, M.; Prajeep, M.; Arafat, K.; Zaric, M.; Lukic, M.L.; Attoub, S. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 2013, 44(2), 715-723.
[http://dx.doi.org/10.1007/s00726-012-1395-7] [PMID: 22965637]
[46]
Li, Y.; Wu, M.; Chang, Q.; Zhao, X. Stapling strategy enables improvement of antitumor activity and proteolytic stability of host-defense peptide hymenochirin-1B. RSC Advances, 2018, 8(39), 22268-22275.
[http://dx.doi.org/10.1039/C8RA03446J] [PMID: 35541711]
[47]
Marcu, K.B.; Schibler, U.; Perry, R.P. Nuclear transcripts of mouse heavy chain immunoglobulin genes contain only the expressed class of C-region sequences. Science, 1979, 204(4397), 1087-1088.
[http://dx.doi.org/10.1126/science.109919] [PMID: 109919]
[48]
Ghosh, A.; Woolum, K.; Kothandaraman, S.; Tweedle, M.F.; Kumar, K. Stability evaluation and stabilization of a Gastrin-Releasing Peptide Receptor (GRPR) targeting imaging pharmaceutical. Molecules, 2019, 24(16), 2878.
[http://dx.doi.org/10.3390/molecules24162878] [PMID: 31398865]
[49]
Fu, Y.; Xu, Y.; Ruijne, F.; Kuipers, O.P. Engineering lanthipeptides by introducing a large variety of RiPP modifications to obtain new-to-nature bioactive peptides. FEMS Microbiol. Rev., 2023, 47(3), fuad017.
[http://dx.doi.org/10.1093/femsre/fuad017] [PMID: 37096385]
[50]
Hou, H.; Wang, J.; Wang, J.; Tang, W.; Shaikh, A.S.; Li, Y.; Fu, J.; Lu, L.; Wang, F.; Sun, F.; Tan, H. A review of bioactive peptides: Chemical modification, structural characterization and therapeutic applications. J. Biomed. Nanotechnol., 2020, 16(12), 1687-1718.
[http://dx.doi.org/10.1166/jbn.2020.3001] [PMID: 33485398]
[51]
Ajingi, Y.S.; Rukying, N.; Aroonsri, A.; Jongruja, N. Recombinant active peptides and their therapeutic functions. Curr. Pharm. Biotechnol., 2022, 23(5), 645-663.
[http://dx.doi.org/10.2174/1389201022666210702123934] [PMID: 34225618]
[52]
Podstawka, E. Investigation of molecular structure of bombesin and its modified analogues nonadsorbed and adsorbed on electrochemically roughened silver surface. Biopolymers, 2008, 89(6), 506-521.
[http://dx.doi.org/10.1002/bip.20909] [PMID: 18098178]
[53]
Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for improving peptide stability and delivery. Pharmaceuticals, 2022, 15(10), 1283.
[http://dx.doi.org/10.3390/ph15101283] [PMID: 36297395]
[54]
Del Borgo, M.P.; Kulkarni, K.; Aguilar, M.I. Using β-amino acids and β-peptide templates to create bioactive ligands and biomaterials. Curr. Pharm. Des., 2017, 23(26), 3772-3785.
[http://dx.doi.org/10.2174/1381612823666170616083031] [PMID: 28625136]
[55]
Däpp, S.; Garayoa, E.G.; Maes, V.; Brans, L.; Tourwé, D.A.; Müller, C.; Schibli, R. PEGylation of 99mTc-labeled bombesin analogues improves their pharmacokinetic properties. Nucl. Med. Biol., 2011, 38(7), 997-1009.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.02.014] [PMID: 21982571]
[56]
Veronese, F.M. Peptide and protein PEGylation. Biomaterials, 2001, 22(5), 405-417.
[http://dx.doi.org/10.1016/S0142-9612(00)00193-9] [PMID: 11214751]
[57]
Zuma, L.K.; Gasa, N.L.; Mazibuko, X.; Simelane, M.B.C.; Pillay, P.; Kwezi, L.; Tsekoa, T.; Pooe, O.J. Recombinant expression, purification and PEGylation of DNA ligases. Protein Pept. Lett., 2022, 29(6), 505-513.
[http://dx.doi.org/10.2174/0929866529666220426122432] [PMID: 35657285]
[58]
Abbasi, S.; Farahani, H.; Lanjanian, H.; Taheri, M.; Firoozpour, L.; Davoodi, J.; Pirkalkhoran, S.; Riazi, G.; Pooyan, S. Site directed disulfide PEGylation of interferon-β-1b with fork peptide linker. Bioconjug. Chem., 2020, 31(3), 708-720.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00839] [PMID: 31951391]
[59]
Postic, G.; Gracy, J.; Périn, C.; Chiche, L.; Gelly, J.C. KNOTTIN: The database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res., 2018, 46(D1), D454-D458.
[http://dx.doi.org/10.1093/nar/gkx1084] [PMID: 29136213]
[60]
Attah, F.A.; Lawal, B.A.; Yusuf, A.B.; Adedeji, O.J.; Folahan, J.T.; Akhigbe, K.O.; Roy, T.; Lawal, A.A.; Ogah, N.B.; Olorundare, O.E.; Chamcheu, J.C. Nutritional and pharmaceutical applications of under-explored knottin peptide-rich phytomedicines. Plants, 2022, 11(23), 3271.
[http://dx.doi.org/10.3390/plants11233271] [PMID: 36501311]
[61]
Li, C.Y.; Rehm, F.B.H.; Yap, K.; Zdenek, C.N.; Harding, M.D.; Fry, B.G.; Durek, T.; Craik, D.J.; de Veer, S.J. Cystine knot peptides with tuneable activity and mechanism. Angew. Chem. Int. Ed., 2022, 61(19), e202200951.
[http://dx.doi.org/10.1002/anie.202200951] [PMID: 35224831]
[62]
Ackerman, S.E.; Currier, N.V.; Bergen, J.M.; Cochran, J.R. Cystine-knot peptides: Emerging tools for cancer imaging and therapy. Expert Rev. Proteomics, 2014, 11(5), 561-572.
[http://dx.doi.org/10.1586/14789450.2014.932251] [PMID: 25163524]
[63]
Schmidt, T.G.M.; Eichinger, A.; Schneider, M.; Bonet, L.; Carl, U.; Karthaus, D.; Theobald, I.; Skerra, A. The role of changing loop conformations in streptavidin versions engineered for high-affinity binding of the strep-tag II peptide. J. Mol. Biol., 2021, 433(9), 166893.
[http://dx.doi.org/10.1016/j.jmb.2021.166893] [PMID: 33639211]
[64]
Li, X.; Cai, H.; Wu, X.; Li, L.; Wu, H.; Tian, R. New frontiers in molecular imaging using peptide-based radiopharmaceuticals for prostate cancer. Front Chem., 2020, 8, 583309.
[http://dx.doi.org/10.3389/fchem.2020.583309] [PMID: 33335885]
[65]
Lundmark, F.; Abouzayed, A.; Mitran, B.; Rinne, S.S.; Varasteh, Z.; Larhed, M.; Tolmachev, V.; Rosenström, U.; Orlova, A. Heterodimeric radiotracer targeting psma and grpr for imaging of prostate cancer—optimization of the affinity towards PSMA by linker modification in murine model. Pharmaceutics, 2020, 12(7), 614.
[http://dx.doi.org/10.3390/pharmaceutics12070614] [PMID: 32630176]
[66]
Mansi, R.; Nock, B.A.; Dalm, S.U.; Busstra, M.B.; van Weerden, W.M.; Maina, T. Radiolabeled bombesin analogs. Cancers, 2021, 13(22), 5766.
[http://dx.doi.org/10.3390/cancers13225766] [PMID: 34830920]
[67]
Sonni, I.; Baratto, L.; Iagaru, A. Imaging of prostate cancer using gallium-68-labeled bombesin. PET Clin., 2017, 12(2), 159-171.
[http://dx.doi.org/10.1016/j.cpet.2016.11.003] [PMID: 28267450]
[68]
Chakraborty, K.; Mondal, J.; An, J.M.; Park, J.; Lee, Y.K. Advances in radionuclides and radiolabelled peptides for cancer therapeutics. Pharmaceutics, 2023, 15(3), 971.
[http://dx.doi.org/10.3390/pharmaceutics15030971] [PMID: 36986832]
[69]
Pandey, S.; Malviya, G.; Chottova Dvorakova, M. Role of peptides in diagnostics. Int. J. Mol. Sci., 2021, 22(16), 8828.
[http://dx.doi.org/10.3390/ijms22168828] [PMID: 34445532]
[70]
Baratto, L.; Jadvar, H.; Iagaru, A. Prostate cancer theranostics targeting gastrin-releasing peptide receptors. Mol. Imaging Biol., 2018, 20(4), 501-509.
[http://dx.doi.org/10.1007/s11307-017-1151-1] [PMID: 29256046]
[71]
Rurarz, B.P.; Bukowczyk, M.; Gibka, N.; Piastowska-Ciesielska, A.W.; Karczmarczyk, U.; Ulański, P. Nanostrategies for therapeutic and diagnostic targeting of gastrin-releasing peptide receptor. Int. J. Mol. Sci., 2023, 24(4), 3455.
[http://dx.doi.org/10.3390/ijms24043455] [PMID: 36834867]
[72]
D’Onofrio, A.; Silva, F.; Gano, L.; Raposinho, P.; Fernandes, C.; Sikora, A.; Wyczółkowska, M.; Mikołajczak, R.; Garnuszek, P.; Paulo, A. Bioorthogonal chemistry approach for the theranostics of GRPR-expressing cancers. Pharmaceutics, 2022, 14(12), 2569.
[http://dx.doi.org/10.3390/pharmaceutics14122569] [PMID: 36559063]
[73]
Gorica, J.; De Feo, M.S.; Filippi, L.; Frantellizzi, V.; Schillaci, O.; De Vincentis, G. Gastrin-releasing peptide receptor agonists and antagonists for molecular imaging of breast and prostate cancer: From pre-clinical studies to translational perspectives. Expert Rev. Mol. Diagn., 2022, 22(11), 991-996.
[http://dx.doi.org/10.1080/14737159.2022.2145187] [PMID: 36369779]
[74]
Kurth, J.; Potratz, M.; Heuschkel, M.; Krause, B.J.; Schwarzenböck, S.M. GRPr theranostics: Current status of imaging and therapy using GRPr targeting radiopharmaceuticals. Nucl. Med., 2022, 61(3), 247-261.
[http://dx.doi.org/10.1055/a-1759-4189] [PMID: 35668669]
[75]
Urbain, J.L.; Scott, A.M.; Lee, S.T.; Buscombe, J.; Weston, C.; Hatazawa, J.; Kinuya, S.; Singh, B.; Haidar, M.; Ross, A.; Lamoureux, F.; Kunikowska, J.; Wadsak, W.; Dierckx, R.; Paez, D.; Giammarile, F.; Lee, K.H.; O, J.H.; Moshe, M.; Louw, L.; More, S.; Nadel, H.; Lee, D.; Wahl, R. Theranostic radiopharmaceuticals: A universal challenging educational paradigm in nuclear medicine. J. Nucl. Med., 2023, 64(6), 986-991.
[http://dx.doi.org/10.2967/jnumed.123.265603] [PMID: 37142302]
[76]
Lim, J.C.; Cho, E.H.; Kim, J.J.; Choi, S.M.; Lee, S.Y.; Nam, S.S.; Park, U.J.; Park, S.H. Preclinical pharmacokinetic, biodistribution, imaging and therapeutic efficacy of 177Lu-Labeled glycated bombesin analogue for gastrin-releasing peptide receptor-positive prostate tumor targeting. Nucl. Med. Biol., 2015, 42(3), 234-241.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.10.008] [PMID: 25498002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy