Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Georgian Medicinal Plants as Rich Natural Sources of Antioxidant Derivatives: A Review on the Current Knowledge and Future Perspectives

Author(s): Marina Pirtskhalava, Valentina Mittova, Zurab R. Tsetskhladze, Rosanna Palumbo, Raffaele Pastore and Giovanni N. Roviello*

Volume 31, Issue 28, 2024

Published on: 09 February, 2024

Page: [4407 - 4424] Pages: 18

DOI: 10.2174/0109298673262575231127034952

Price: $65

conference banner
Abstract

The study of antioxidants is of pivotal importance in biomedicine as these molecules could be involved in biological pathways associated with disease. The identification of new antioxidants together with the acquisition of a deeper knowledge on their biology, could lead to the use of these compounds as drugs for innovative treatments. Plants are an important reservoir of phytodrugs that in many cases can be isolated with good extraction yields directly from the vegetal source and are often endowed with a low toxicity profile. Georgia, a country situated on the Black Sea coast in the Caucasus region at the intersection of Western Asia and Eastern Europe, is renowned for its unique woodland habitats and immense biological diversity due to the great variety of climate zones and landscapes. Many wild plants in the area are used as remedies for a number of illnesses in the local traditional medicine. However, the scientific knowledge of these sources of natural drugs and of their molecular components is still far from exhaustive. Therefore, with the present work we reviewed the scientific literature on some of the main Georgian medicinal plants and found that several species are a valuable source of hydrophilic and hydrophobic antioxidants, endowed in some cases with a high ROS-scavenging ability. The analysis of the literature also demonstrated that most of the medicinal extracts and compounds isolated from these plants are beneficial in suppressing multiple diseases in vitro. This review will provide information for scientists looking to develop secure plant-based pharmaceuticals as well as a rationale for using Georgian medicinal plants for the treatment of a range of diseases.

Keywords: Antioxidants, phytomolecules, medicinal chemistry, biodiversity, plant-based, natural drugs, Georgian medicinal plants.

Next »
[1]
Bhatt, I.D.; Rawat, S.; Rawal, R.S. Antioxidants in Medicinal Plants. In: Biotechnology for Medicinal Plants; Chandra, S.; Lata, H.; Varma, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 295-326.
[http://dx.doi.org/10.1007/978-3-642-29974-2_13]
[2]
Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules, 2016, 21(3), 257.
[http://dx.doi.org/10.3390/molecules21030257] [PMID: 26927038]
[3]
Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragrance J., 2010, 25(5), 291-312.
[http://dx.doi.org/10.1002/ffj.1961]
[4]
Miller, J.S.; McCue, K.; Consiglio, T.; Stone, J.; Eristavi, M.; Sikharulidze, S.; Mikatadze-Pantsulaia, T.; Khutsishvili, M. Endemic Medicinal Plants of Georgia (Caucasus); Miller, J.S.; McCue, K.; Consiglio, T.; Stone, J.; Eristavi, M.; Sikharulidze, S.; Mikatadze-Pantsulaia, T.; Khutsishvili, M., Eds.; Missouri Botanical Garden Press: Illus, 2005, p. 45.
[5]
Martkoplishvili, I.; Kvavadze, E. Some popular medicinal plants and diseases of the Upper Palaeolithic in Western Georgia. J. Ethnopharmacol., 2015, 166, 42-52.
[http://dx.doi.org/10.1016/j.jep.2015.03.003] [PMID: 25769538]
[6]
Vicidomini, C.; Roviello, V.; Roviello, G.N. In silico investigation on the interaction of chiral phytochemicals from opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry, 2021, 13(6), 1041.
[http://dx.doi.org/10.3390/sym13061041]
[7]
Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environ. Chem. Lett., 2022, 20(1), 131-140.
[http://dx.doi.org/10.1007/s10311-021-01321-9] [PMID: 34566548]
[8]
Autiero, I.; Roviello, G.N. Interaction of laurusides 1 and 2 with the 3C-like protease (Mpro) from wild-type and omicron variant of SARS-CoV-2: A molecular dynamics study. Int. J. Mol. Sci., 2023, 24(6), 5511.
[http://dx.doi.org/10.3390/ijms24065511] [PMID: 36982585]
[9]
Ricci, A.; Roviello, G.N. Exploring the protective effect of food drugs against viral diseases: Interaction of functional food ingredients and SARS-COV-2, influenza virus, and HSV. Life, 2023, 13(2), 402.
[http://dx.doi.org/10.3390/life13020402] [PMID: 36836758]
[10]
Baker, S.; Gilhen-Baker, M.; Roviello, G.N. The role of nutrition and forest-bathing in the physical rehabilitation of physically inactive patients: from the molecular aspects to new nature-inspired techniques. Int. J. Environ. Res. Public Health, 2022, 20(1), 793.
[http://dx.doi.org/10.3390/ijerph20010793] [PMID: 36613115]
[11]
Palumbo, R.; Omodei, D.; Vicidomini, C.; Roviello, G.N. Willardiine and its synthetic analogues: Biological aspects and implications in peptide chemistry of this nucleobase amino acid. Pharmaceuticals, 2022, 15(10), 1243.
[http://dx.doi.org/10.3390/ph15101243] [PMID: 36297355]
[12]
Costanzo, V.; Gilhen-Baker, M.; Beresford-Kroeger, D.; Roviello, G.N. Tree-inhabiting polypore fungi as sources of a cornucopia of bioactive compounds. Future Microbiol., 2022, 17(12), 899-902.
[http://dx.doi.org/10.2217/fmb-2022-0098] [PMID: 35694907]
[13]
Kikvidze, Z. Ethnobiology of Georgia; Ilia State University: Tbilisi, Georgia, 2020.
[14]
Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed; Oxford University Press: Oxford, 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[15]
Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med., 1991, 91(3), S14-S22.
[http://dx.doi.org/10.1016/0002-9343(91)90279-7] [PMID: 1928205]
[16]
Szőllősi Istvánné Varga, I.; Stajner, D. An evaluation of the antioxidant abilities of Allium species. Acta Biol. Szeged., 2003, 47(1–4), 103-106.
[17]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[18]
Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants, 2019, 8(11), 519.
[http://dx.doi.org/10.3390/antiox8110519] [PMID: 31671820]
[19]
Buettner, G.R.; Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res., 1996, 145(5), 532-541.
[http://dx.doi.org/10.2307/3579271] [PMID: 8619018]
[20]
Zechmann, B. Subcellular distribution of ascorbate in plants. Plant Signal. Behav., 2011, 6(3), 360-363.
[http://dx.doi.org/10.4161/psb.6.3.14342] [PMID: 21350341]
[21]
Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 249-279.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.249] [PMID: 15012235]
[22]
Abaci, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik, E. Chemical composition, volatiles, and antioxidant activity of Rosa iberica STEV. Hips. Acta Sci. Pol. Hortorum Cultus, 2016, 15(1), 41-54.
[23]
Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J., 2013, 7(1), 73.
[http://dx.doi.org/10.1186/1752-153X-7-73] [PMID: 23618509]
[24]
Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem., 2007, 104(4), 1379-1384.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.053]
[25]
Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. Lebensm. Wiss. Technol., 2014, 57(1), 126-133.
[http://dx.doi.org/10.1016/j.lwt.2013.12.038]
[26]
Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z.; Ghorbani, A.; Khajoei Nasab, F.; Paniagua-Zambrana, N.Y.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D. Rosa canina L. Rosa pimpinellifolia Boiss. In: Ethnobotany of the Mountain Regions of Far Eastern Europe; Batsatsashvili, K.; Kikvidze, Z.; Bussmann, R., Eds.; Springer: Cham, 2020; pp. 815-822.
[http://dx.doi.org/10.1007/978-3-030-28940-9_118]
[27]
Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem., 2020, 44(9), e13394.
[http://dx.doi.org/10.1111/jfbc.13394] [PMID: 32691460]
[28]
Robbins, R.J.; Bean, S.R. Development of a quantitative high-performance liquid chromatography–photodiode array detection measurement system for phenolic acids. J. Chromatogr. A, 2004, 1038(1-2), 97-105.
[http://dx.doi.org/10.1016/j.chroma.2004.03.009] [PMID: 15233525]
[29]
Spiridon, I.; Nechita, C.; Niculaua, M.; Silion, M.; Armatu, A.; Teacă, C.A.; Bodîrlău, R. Antioxidant and chemical properties of Inula helenium root extracts. Open Chem., 2013, 11(10), 1699-1709.
[http://dx.doi.org/10.2478/s11532-013-0295-3]
[30]
Batsatsashvili, K.; Mehdiyeva, N.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Alizade, V.; Paniagua Zambrana, N.Y.; Bussmann, R.W. Inula Helenium L. Asteraceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2016; pp. 1-5.
[31]
Ketskhoveli, N.; Kharadze, A.; Gagnidze, R. Flora of Georgia; Tbilisi, 1971-2011, pp. 1-16.
[32]
Nersezashvili, M.; Berashvili, D.; Skiba, A.; Skalicka-Wozniak, K.; Maciag, M.; Metreveli, M.; Widelski, J. Studying of potential anxiolytic activity of Angelica adzharica m. Pimen. methanolic extract. JECM, 2022, (7), 1-15.
[http://dx.doi.org/10.52340/jecm.2022.07.47]
[33]
Getia, M.; Mshvildadze, V.; Tabatadze, N.; Legault, J.; Pichette, A. Biological active compounds from Betula megrelica grown in Georgia. Int. J. Herb. Med., 2018, 6(4), 48-51.
[34]
Vergun, O.; Brindza, J.; Rakhmetov, D. Total antioxidant activity of plants of Symphytum L. species. In: Agrobiodiversity for Improving Nutrition, Health and Life Quality; , 2020; pp. 488-492.
[35]
Barbakadze, V.V.; Kemertelidze, E.P.; Mulkijanyan, K.G.; van den Berg, A.J.J.; Beukelman, C.J.; van den Worm, E.; Quarles van Ufford, H.C.; Usov, A.I. Antioxidant and anticomplement activity of poly[3-(3,4-dihydroxyphenyl)glyceric acid] from Symphytum asperum and Symphytum caucasicum plants. Pharm. Chem. J., 2007, 41(1), 14-16.
[http://dx.doi.org/10.1007/s11094-007-0004-7]
[36]
Batsatsashvili, K.; Mehdiyeva, N.; Fayvush, G.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Aleksanyan, A.; Alizade, V.; Paniagua Zambrana, N.Y.; Bussmann, R.W. Symphytum caucasicum M. Bieb., Boraginaceae. In: Ethnobotany of the Caucasus, 2016, pp. 1-6.
[http://dx.doi.org/10.1007/978-3-319-50009-6_61-1]
[37]
Beddiar, H.; Boudiba, S.; Benahmed, M.; Tamfu, A.N.; Ceylan, Ö.; Hanini, K.; Kucukaydin, S.; Elomri, A.; Bensouici, C.; Laouer, H.; Akkal, S.; Boudiba, L.; Dinica, R.M. Chemical composition, anti-quorum sensing, enzyme inhibitory, and antioxidant properties of phenolic extracts of Clinopodium nepeta L. Kuntze. Plants, 2021, 10(9), 1955.
[http://dx.doi.org/10.3390/plants10091955] [PMID: 34579487]
[38]
Grossheim, A.A. Plant resources of the Caucasus; Publishing house of AS of Azerbaijani SSR: Baku, 1946.
[39]
Mahomoodally, M.F.; Picot-Allain, M.C.N.; Zengin, G.; Llorent-Martínez, E.J.; Stefanucci, A.; Ak, G.; Senkardes, I.; Tomczyk, M.; Mollica, A. Chemical profiles and biological potential of tuber extracts from Cyclamen coum Mill. Biocatal. Agric. Biotechnol., 2021, 33, 102008.
[http://dx.doi.org/10.1016/j.bcab.2021.102008]
[40]
Debussche, M.; Garnier, E.; Thompson, J.D. Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: A genus-wide study of Cyclamen. Bot. J. Linn. Soc., 2004, 145(4), 469-484.
[http://dx.doi.org/10.1111/j.1095-8339.2004.00298.x]
[41]
Kubczak, M.; Khassenova, A.B.; Skalski, B.; Michlewska, S.; Wielanek, M.; Aralbayeva, A.N.; Murzakhmetova, M.K.; Zamaraeva, M.; Skłodowska, M.; Bryszewska, M.; Ionov, M. Bioactive compounds and antiradical activity of the Rosa canina L. leaf and twig extracts. Agronomy, 2020, 10(12), 1897.
[http://dx.doi.org/10.3390/agronomy10121897]
[42]
Santos, T.N.; Costa, G.; Ferreira, J.P.; Liberal, J.; Francisco, V.; Paranhos, A.; Cruz, M.T.; Castelo-Branco, M.; Figueiredo, I.V.; Batista, M.T. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. Infusion. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8309894] [PMID: 28491113]
[43]
Ivanova, D.; Vankova, D.; Nashar, M. Agrimonia eupatoria tea consumption in relation to markers of inflammation, oxidative status and lipid metabolism in healthy subjects. Arch. Physiol. Biochem., 2013, 119(1), 32-37.
[http://dx.doi.org/10.3109/13813455.2012.729844] [PMID: 23078582]
[44]
Sukhikh, S.; Ivanova, S.; Skrypnik, L.; Bakhtiyarova, A.; Larina, V.; Krol, O.; Prosekov, A.; Frolov, A.; Povydysh, M.; Babich, O. Study of the antioxidant properties of Filipendula ulmaria and Alnus glutinosa. Plants, 2022, 11(18), 2415.
[http://dx.doi.org/10.3390/plants11182415] [PMID: 36145820]
[45]
Mehdiyeva, N.P.; Alizade, V.M.; Batsatsashvili, K.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Zambrana, N.Y.P.; Bussmann, R.W. Filipendula ulmaria (L.) Maxim. Rosaceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2017; pp. 305-308.
[http://dx.doi.org/10.1007/978-3-319-49412-8_74]
[46]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[47]
Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 2022, 383, 132531.
[http://dx.doi.org/10.1016/j.foodchem.2022.132531] [PMID: 35413752]
[48]
Sarian, M.N.; Ahmed, Q.U.; Mat So’ad, S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S.N.A.; Khatib, A.; Latip, J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Res. Int., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/8386065] [PMID: 29318154]
[49]
Zeng, Y.; Song, J.; Zhang, M.; Wang, H.; Zhang, Y.; Suo, H. Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures. Antioxidants, 2020, 9(8), 732.
[http://dx.doi.org/10.3390/antiox9080732] [PMID: 32796543]
[50]
Arif, H.; Sohail, A.; Farhan, M.; Rehman, A.A.; Ahmad, A.; Hadi, S.M. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int. J. Biol. Macromol., 2018, 106, 569-578.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.049] [PMID: 28834706]
[51]
Cherrak, S.A.; Mokhtari-Soulimane, N.; Berroukeche, F.; Bensenane, B.; Cherbonnel, A.; Merzouk, H.; Elhabiri, M. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One, 2016, 11(10), e0165575.
[http://dx.doi.org/10.1371/journal.pone.0165575] [PMID: 27788249]
[52]
Süzgeç-Selçuk, S.; Birteksöz, A.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S. Afr. J. Bot., 2011, 77(1), 170-174.
[http://dx.doi.org/10.1016/j.sajb.2010.07.017]
[53]
Dincer, C.; Topuz, A.; Sahin-Nadeem, H.; Ozdemir, K.S.; Cam, I.B.; Tontul, I.; Gokturk, R.S.; Ay, S.T. A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage. Ind. Crops Prod., 2012, 39, 170-176.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.032]
[54]
Li, X.; Wang, X.; Li, C.; Khutsishvili, M.; Fayvush, G.; Atha, D.; Zhang, Y.; Borris, R.P. Unusual flavones from Primula macrocalyx as inhibitors of OAT1 and OAT3 and as antifungal agents against Candida rugosa. Sci. Rep., 2019, 9(1), 9230.
[http://dx.doi.org/10.1038/s41598-019-45728-5] [PMID: 31239507]
[55]
Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshovyi, O. Phytochemical and pharmacological research in Agrimonia Eupatoria L. herb extract with anti-inflammatory and hepatoprotective properties. Plants, 2022, 11(18), 2371.
[http://dx.doi.org/10.3390/plants11182371] [PMID: 36145771]
[56]
Carotenoids: Physical, Chemical, and Biological Functions and Properties, 1st ed; Landrum, J.T., Ed.; CRC Press: Boca Raton, 2009.
[http://dx.doi.org/10.1201/9781420052312]
[57]
Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture, 2022, 2(1), 3.
[http://dx.doi.org/10.1186/s43897-022-00023-2] [PMID: 37789426]
[58]
Carotenoids; Britton, G.; Liaaen-Jensen, S.; Pfander, H., Eds.; Springer: Basel, 2008.
[59]
Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med., 2020, 74(1), 1-16.
[http://dx.doi.org/10.1007/s11418-019-01364-x] [PMID: 31588965]
[60]
Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, 6(2), 466-488.
[http://dx.doi.org/10.3390/nu6020466] [PMID: 24473231]
[61]
Ghazghazi, M.; Miguel, M.G.; Hasnaoui, B.; Sebei, H.; Ksontini, M.; Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G. Phenols, essential oils and carotenoids of Rosa canina from Tunisia and their antioxidant activities. Afr. J. Biotechnol., 2010, 9(18), 2709-2716.
[62]
Yamauchi, R.; Matsushita, S. Quenching effect of tocopherols on the methyl linoleate photooxidation and their oxidation products. Agric. Biol. Chem., 1977, 41(8), 1425-1430.
[http://dx.doi.org/10.1080/00021369.1977.10862693]
[63]
Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food Sci. Food Saf., 2022, 21(1), 642-688.
[http://dx.doi.org/10.1111/1541-4337.12867] [PMID: 34889039]
[64]
Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive compounds and antioxidant capacity of Rosa rugosa depending on degree of ripeness. Antioxidants, 2018, 7(10), 134.
[http://dx.doi.org/10.3390/antiox7100134] [PMID: 30282929]
[65]
Tiong, S.; Looi, C.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.; Cheah, S.C.; Mustafa, M.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 2013, 18(8), 9770-9784.
[http://dx.doi.org/10.3390/molecules18089770] [PMID: 23955322]
[66]
Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X, 2022, 13, 100217.
[http://dx.doi.org/10.1016/j.fochx.2022.100217] [PMID: 35498985]
[67]
Chen, Y.; Miao, Y.; Huang, L.; Li, J.; Sun, H.; Zhao, Y.; Yang, J.; Zhou, W. Antioxidant activities of saponins extracted from Radix Trichosanthis: An in vivo and in vitro evaluation. BMC Complement. Altern. Med., 2014, 14(1), 86.
[http://dx.doi.org/10.1186/1472-6882-14-86] [PMID: 24597831]
[68]
Khan, M.; Karima, G.; Khan, M.; Shin, J.; Kim, J. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. Int. J. Mol. Sci., 2022, 23(18), 10665.
[http://dx.doi.org/10.3390/ijms231810665] [PMID: 36142578]
[69]
Emir, C.; Emir, A.; Bozkurt, B.; Somer, N.U. Phytochemical constituents from Galanthus alpinus Sosn. var. alpinus and their anticholinesterase activities. S. Afr. J. Bot., 2019, 121, 63-67.
[http://dx.doi.org/10.1016/j.sajb.2018.10.021]
[70]
Jokhadze, M.; Kuchukhidze, J.; Adeishvili, L.; Makharadze, R. Bioactive alkaloids from Georgian Amaryllidaceae Proceedings of the VII National Congress of Pharmacists of Ukraine, Kharkiv, Ukraine, September 15-17, 2010, p. 216.
[71]
Kemularia-Natadze, J.M. Study of Caucasian species from genus Galanthus L. Works BIN AN GSSR, 1947, 13, 24-29.
[72]
Zonneveld, B.J.M.; Grimshaw, J.M.; Davis, A.P. The systematic value of nuclear DNA content in Galanthus. Plant Syst. Evol., 2003, 241(1-2), 89-102.
[http://dx.doi.org/10.1007/s00606-003-0016-z]
[73]
Sirotyuk, E.; Shadge, A.; Gunina, G. Distribution and variability of morphoparameters of species of the genus Galanthus L. in the Republic of Adygea. Russ. J. Earth Sci., 2022, 5, 1-6.
[http://dx.doi.org/10.2205/2022ES01SI09]
[74]
Şöhretoğlu, D.; Gença, Y.; Harput, Ü.Ş.; Sabuncuoğlub, S.; Šoralc, M.; Rendad, G.; Liptaj, T. Phytochemical content, antioxidant and cytotoxic activities of Sedum spurium. Nat. Prod. Commun., 2016, 11(11), 1934578X1601101.
[http://dx.doi.org/10.1177/1934578X1601101117] [PMID: 30475509]
[75]
Batsatsashvili, K.; Mehdiyeva, N.P.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Alizade, V.M.; Zambrana, N.Y.P.; Bussmann, R.W. Sedum caucasicum (Grossh.) Boriss. Sedum spurium M. Bieb. Crassulaceae. In: Ethnobotany of the Caucasus; , 2017; pp. 635-640.
[http://dx.doi.org/10.1007/978-3-319-49412-8_128]
[76]
Younessi-Hamzekhanlu, M.; Sanjari, S.; Dejahang, A.; Karkaj, E.S.; Nojadeh, M.S.; Gönenç, T.M.; Ozturk, M. Evaluation of essential oil from different Artemisia fragrans Willd. populations: chemical composition, antioxidant, and antibacterial activity. J. Essent. Oil-Bear. Plants, 2020, 23(6), 1218-1236.
[http://dx.doi.org/10.1080/0972060X.2020.1854129]
[77]
Shafaghat, A.; Noormohammadi, Y.; Zaifizadeh, M. Composition and antibacterial activity of essential oils of Artemisia fragrans Willd. leaves and roots from Iran. Nat. Prod. Commun., 2009, 4(2), 1-4.
[http://dx.doi.org/10.1177/1934578X0900400223] [PMID: 19370939]
[78]
Batsatsashvili, K.; Mehdiyeva, N.P.; Fayvush, G.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Aleksanyan, A.; Alizade, V.M.; Zambrana, N.Y.P.; Bussmann, R.W. Artemisia annua L. Artemisia fragrans Willd. Asteraceae. In: Ethnobotany of the Caucasus; Bussmann, R.W., Ed.; Springer International Publishing: Cham, 2017; pp. 117-122.
[http://dx.doi.org/10.1007/978-3-319-49412-8_127]
[79]
Mohammadi, M.; Yousefi, M.; Habibi, Z.; Dastan, D. Chemical composition and antioxidant activity of the essential oil of aerial parts of Petasites albus from Iran: A good natural source of euparin. Nat. Prod. Res., 2012, 26(4), 291-297.
[http://dx.doi.org/10.1080/14786410903374819] [PMID: 21416453]
[80]
Getia, M.; Korkotadze, T.; Moshiashvili, G.; Tabatadze, N.; Legault, J.; Mshvildadze, V. Composition and cytotoxicity of essential oils from aerial parts of Thymus tiflisiensis and T. collinus growing in Georgia. Chem. Nat. Compd., 2022, 58(5), 959-961.
[http://dx.doi.org/10.1007/s10600-022-03840-5]
[81]
Öztürk, G.; Yilmaz, G.; Ekşi̇, G.; Demi̇Rci̇, B. Chemical composition and antibacterial activity of Clinopodium nepeta subsp. glandulosum (Req.) Govaerts essential oil. Nat. Volatiles Essent., 2021, 8(3), 75-80.
[http://dx.doi.org/10.37929/nveo.949959]
[82]
Khazaei, S.; Abdul Hamid, R.; Ramachandran, V.; Mohd Esa, N.; Pandurangan, A.K.; Danazadeh, F.; Ismail, P. Cytotoxicity and proapoptotic effects of Allium atroviolaceum flower extract by modulating cell cycle arrest and caspase-dependent and P53 -independent pathway in breast cancer cell lines. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-16.
[http://dx.doi.org/10.1155/2017/1468957] [PMID: 29250124]
[83]
Jgerenaia, G.; Frederich, M.; Mskhiladze, L. Phytochemical and pharmacological review of Allium species from Georgia. Sys. Rev. Pharm., 2022, 13(5), 543-549.
[84]
Hosseini, A.; Shahrani, M.; Asgharian, S.; Anjomshoa, M.; Rostamzadeh, A.; Lorigooini, Z.; Asgharzadeh, N.; Azari, A. Ameliorative effect of Allium atroviolaceum on sperm quality in cyclophosphamide-treated mice. Future J. Pharm. Sci, 2021, 7(1), 82.
[http://dx.doi.org/10.1186/s43094-021-00234-2]
[85]
Ghasemi, S.; Lorigooini, Z.; Wibowo, J.; Amini-khoei, H. Tricin isolated from Allium atroviolaceum potentiated the effect of docetaxel on PC3 cell proliferation: Role of miR-21. Nat. Prod. Res., 2019, 33(12), 1828-1831.
[http://dx.doi.org/10.1080/14786419.2018.1437439] [PMID: 29447469]
[86]
Bokov DO, B.; Krasikova MK, K.; Sergunova EV, S.; Bobkova NV, B.; Kovaleva TYu, K.; Bondar AA, B.; Marakhova AI, M.; Morokhina SL, M.; Krasnyuk, K., II; Moiseev DV, M. Pharmacognostic, phytochemical and ethnopharmacological potential of cyclamen coum mill. Pharmacogn. J., 2020, 12(1), 204-212.
[http://dx.doi.org/10.5530/pj.2020.12.31]
[87]
Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process., 2011, 89(3), 217-233.
[http://dx.doi.org/10.1016/j.fbp.2010.04.008]
[88]
Sielicka, M.; Małecka, M.; Purłan, M. Comparison of the antioxidant capacity of lipid-soluble compounds in selected cold-pressed oils using photochemiluminescence assay (PCL) and DPPH method. Eur. J. Lipid Sci. Technol., 2014, 116(4), 388-394.
[http://dx.doi.org/10.1002/ejlt.201300356]
[89]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[90]
Opitz, S.E.W.; Smrke, S.; Goodman, B.A.; Yeretzian, C. Methodology for the measurement of antioxidant capacity of coffee. Processing and Impact on Antioxidants in Beverages; Elsevier, 2014, pp. 253-264.
[http://dx.doi.org/10.1016/B978-0-12-404738-9.00026-X]
[91]
Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol., 2016, 53(1), 451-460.
[http://dx.doi.org/10.1007/s13197-015-1994-x] [PMID: 26787964]
[92]
Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/936486] [PMID: 22927725]
[93]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging, 2012, 4(3), 166-175.
[http://dx.doi.org/10.18632/aging.100444] [PMID: 22411934]
[94]
Feng, H.; Xiang, H.; Zhang, J.; Liu, G.; Guo, N.; Wang, X.; Wu, X.; Deng, X.; Yu, L. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cryptotanshinone. J. Biomed. Biotechnol., 2009, 2009, 1-8.
[http://dx.doi.org/10.1155/2009/617509] [PMID: 19707532]
[95]
Schwarz, K.B. Oxidative stress during viral infection: A review. Free Radic. Biol. Med., 1996, 21(5), 641-649.
[http://dx.doi.org/10.1016/0891-5849(96)00131-1] [PMID: 8891667]
[96]
Mishra, A.; Sharma, A.K.; Kumar, S.; Saxena, A.K.; Pandey, A.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res. Int., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/915436] [PMID: 24093108]
[97]
Agarwala, M.; Yadav, R. Phytochemical analysis of some medicinal plants. J. Phytol., 2011, 3(12), 10-14.
[98]
Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa, 2016, 261(3), 201.
[http://dx.doi.org/10.11646/phytotaxa.261.3.1]
[99]
Halliwell, B. Drug antioxidant effects. A basis for drug selection? Drugs, 1991, 42(4), 569-605.
[http://dx.doi.org/10.2165/00003495-199142040-00003] [PMID: 1723362]
[100]
Mahase, E. Cancer overtakes CVD to become leading cause of death in high income countries. BMJ, 2019, 366, l5368.
[http://dx.doi.org/10.1136/bmj.l5368] [PMID: 31481521]
[101]
Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[102]
Cragg, G.M.; Boyd, M.R.; Cardellina, J.H.; Newman, D.J.; Snader, K.M.; McCloud, T.G. Ethnobotany and Drug Discovery: The Experience of the US National Cancer Institute. In: Novartis Foundation Symposia; Chadwick, D.J.; Marsh, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 178-196.
[103]
Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa canina Extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS One, 2016, 11(7), e0159136.
[http://dx.doi.org/10.1371/journal.pone.0159136] [PMID: 27467555]
[104]
Yildiz, M.; Bozcu, H.; Tokgun, O.; Karagur, E.R.; Akyurt, O.; Akca, H. Cyclamen exerts cytotoxicity in solid tumor cell lines: A step toward new anticancer agents? Asian Pac. J. Cancer Prev., 2013, 14(10), 5911-5913.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5911] [PMID: 24289599]
[105]
Amin Jaradat, N.; Al-Masri, M.; Hussen, F.; Zaid, A.N.; Ali, I.; Tammam, A.; Mostafa Odeh, D.; Hussein Shakarneh, O.; Rajabi, A. Preliminary phytochemical and biological screening of cyclamen coum a member of Palestinian flora. Ulum-i Daruyi, 2017, 23(3), 231-237.
[http://dx.doi.org/10.15171/PS.2017.34]
[106]
Fialho, L.; Cunha-e-Silva, J.A.; Santa-Maria, A.F.; Madureira, F.A.; Iglesias, A.C. Comparative study of systemic early postoperative inflammatory response among elderly and non-elderly patients undergoing laparoscopic cholecystectomy. Rev. Col. Bras. Cir., 2018, 45(1), e1586.
[http://dx.doi.org/10.1590/0100-6991e-20181586] [PMID: 29590237]
[107]
Jang, C.H.; Kim, Y.Y.; Seong, J.Y.; Kang, S.H.; Jung, E.K.; Sung, C.M.; Kim, S.B.; Cho, Y.B. Clinical characteristics of pediatric external auditory canal cholesteatoma. Int. J. Pediatr. Otorhinolaryngol., 2016, 87, 5-10.
[http://dx.doi.org/10.1016/j.ijporl.2016.05.029] [PMID: 27368435]
[108]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[109]
Nunes, C.R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules, 2020, 25(16), 3726.
[http://dx.doi.org/10.3390/molecules25163726] [PMID: 32824133]
[110]
Saaby, L.; Jäger, A.K.; Moesby, L.; Hansen, E.W.; Christensen, S.B. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytother. Res., 2011, 25(2), 195-201.
[http://dx.doi.org/10.1002/ptr.3241] [PMID: 20632303]
[111]
Schwager, J.; Hoeller, U.; Wolfram, S.; Richard, N. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression. BMC Complement. Altern. Med., 2011, 11(1), 105.
[http://dx.doi.org/10.1186/1472-6882-11-105] [PMID: 22051322]
[112]
Mindadze, N. Traditional medicinal culture of Georgian people; Ilia State University: Tbilisi, Georgia, 2013.
[113]
Mihajilov-Krstev, T.; Jovanović, B.; Zlatković, B.; Matejić, J.; Vitorović, J.; Cvetković, V.; Ilić, B.; Đorđević, L.; Joković, N.; Miladinović, D.; Jakšić, T.; Stanković, N.; Stankov Jovanović, V.; Bernstein, N. Phytochemistry, toxicology and therapeutic value of Petasites hybridus subsp. ochroleucus (common butterbur) from the Balkans. Plants, 2020, 9(6), 700.
[http://dx.doi.org/10.3390/plants9060700] [PMID: 32486467]
[114]
Rawat, M.; Parmar, N. Medicinal plants with antidiabetic potential-a review. Am.-Eurasian J. Agric. Environ. Sci., 2013, 13(1), 81-94.
[115]
Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404(6779), 787-790.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[116]
Yung, L.; Leung, F.; Yao, X.; Chen, Z.Y.; Huang, Y. Reactive oxygen species in vascular wall. Cardiovasc. Hematol. Disord. Drug Targets, 2006, 6(1), 1-19.
[http://dx.doi.org/10.2174/187152906776092659] [PMID: 16724932]
[117]
Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab., 2012, 16(8)(Suppl. 2), 267.
[http://dx.doi.org/10.4103/2230-8210.104057] [PMID: 23565396]
[118]
Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol., 2010, 128(2), 384-389.
[http://dx.doi.org/10.1016/j.jep.2010.01.040] [PMID: 20100559]
[119]
Gray, A.M.; Flatt, P.R. Actions of the traditional anti-diabetic plant, Agrimony eupatoria (agrimony): Effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br. J. Nutr., 1998, 80(1), 109-114.
[http://dx.doi.org/10.1017/S0007114598001834] [PMID: 9797650]
[120]
Duff, M.; Demidova, O.; Blackburn, S.; Shubrook, J. Cutaneous manifestations of diabetes mellitus. Clin. Diabetes, 2015, 33(1), 40-48.
[http://dx.doi.org/10.2337/diaclin.33.1.40] [PMID: 25653473]
[121]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[122]
[123]
Shankar, S.R.; Rangarajan, R.; Sarada, D.V.L.; Kumar, C.S. Evaluation of antibacterial activity and phytochemical screening of Wrightia tinctoria L. Pharmacogn. J., 2010, 2(14), 19-22.
[http://dx.doi.org/10.1016/S0975-3575(10)80066-5]
[124]
Ghosh, M.D.; Golageri, D.B.; Sandaruwan, W.K.S.; Vishnu, J.; Rachel, S. Phytochemical Screening, in-vitro evaluation of antioxidant and antibacterial efficacy of methanolic leaf extract of Clinopodium nepeta (L.) Kuntze. Int. J. Pharm. Sci. Res., 2020, 11(12), 6463-6469.
[125]
Genebashvili, M. Medicinal Forest Plants of the Caucasus, Recreational and Sightseeing Zones of Georgia; Georgian Academy of Sciences: Tbilisi, Georgia, 1992.
[126]
Muruzović, M.Ž.; Mladenović, K.G.; Stefanović, O.D.; Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal., 2016, 24(3), 539-547.
[http://dx.doi.org/10.1016/j.jfda.2016.02.007] [PMID: 28911559]
[127]
Cwikla, C.; Schmidt, K.; Matthias, A.; Bone, K.M.; Lehmann, R.; Tiralongo, E. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother. Res., 2010, 24(5), 649-656.
[http://dx.doi.org/10.1002/ptr.2933] [PMID: 19653313]
[128]
Kwon, D.H.; Kwon, H.Y.; Kim, H.J.; Chang, E.J.; Kim, M.B.; Yoon, S.K.; Song, E.Y.; Yoon, D.Y.; Lee, Y.H.; Choi, I.S.; Choi, Y.K. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother. Res., 2005, 19(4), 355-358.
[http://dx.doi.org/10.1002/ptr.1689] [PMID: 16041735]
[129]
Shengelia, Z. The culture of medicinal plants in Georgia; Sabchota Sakartvelo: Tbilisi, 1983.
[130]
Abdi Ali, A.; Shafiei, M.; Shahcheraghi, F.; Saboora, A.; Ghazanfari, T. The study of synergistic effects of n. butanolic Cyclamen coum extract and ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation. BJM, 2015, 3(12), 25-32.
[131]
Paluch, Z.; Biriczová, L.; Pallag, G.; Carvalheiro Marques, E.; Vargová, N.; Kmoníčková, E. The therapeutic effects of Agrimonia eupatoria L. Physiol. Res., 2020, 69(Suppl. 4), S555-S571.
[http://dx.doi.org/10.33549/physiolres.934641] [PMID: 33646008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy