Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Role of Herbal Medicine in Modulating Bone Homeostasis

Author(s): Xinnan Cheng, Shanshan Jin, Mingzhe Feng, Yunfeng Miao, Qi Dong and Baorong He*

Volume 24, Issue 7, 2024

Published on: 07 February, 2024

Page: [634 - 643] Pages: 10

DOI: 10.2174/0115680266286931240201131724

Price: $65

conference banner
Abstract

Osteoporosis and other bone diseases are a major public health concern worldwide. Current pharmaceutical treatments for bone disorders have limitations, driving interest in complementary herbal medicines that can help maintain bone health. This review summarizes the scientific evidence for medicinal herbs that modulate bone cell activity and improve bone mass, quality and strength. Herbs with osteogenic, anti-osteoporotic, and anti-osteoclastic effects are discussed, including compounds and mechanisms of action. Additionally, this review examines the challenges and future directions for translational research on herbal medicines for osteoporosis and bone health. While preliminary research indicates beneficial bone bioactivities for various herbs, rigorous clinical trials are still needed to verify therapeutic efficacy and safety. Further studies should also elucidate synergistic combinations, bioavailability of active phytochemicals, and precision approaches to match optimal herbs with specific etiologies of bone disease. Advancing evidence- based herbal medicines may provide novel alternatives for promoting bone homeostasis and treating skeletal disorders.

Keywords: Herbal medicine, Bone homeostasis, Osteoclast, Osteogenic, Osteoporosis, Osteoblasts.

Graphical Abstract
[1]
Lu, W.; Zheng, C.; Zhang, H.; Cheng, P.; Miao, S.; Wang, H.; He, T.; Fan, J.; Hu, Y.; Liu, H.; Jia, L.; Hao, X.; Luo, Z.; Xu, J.; Jie, Q.; Yang, L. Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast–osteoblast coupling. Cell. Mol. Life Sci., 2023, 80(6), 171.
[http://dx.doi.org/10.1007/s00018-023-04821-9] [PMID: 37261512]
[2]
Anderson, A.B.; McCarthy, C.F.; Hoyt, B.W.; Forsberg, J.A.; Potter, B.K. Bone homeostasis and physiology in normal and orthopaedic disease conditions. J. Am. Acad. Orthop. Surg., 2023, 31(21), e940-e948.
[http://dx.doi.org/10.5435/JAAOS-D-23-00164] [PMID: 37467418]
[3]
Al-Bari, A.A.; Al Mamun, A. Current advances in regulation of bone homeostasis. FASEB Bioadv., 2020, 2(11), 668-679.
[http://dx.doi.org/10.1096/fba.2020-00058] [PMID: 33205007]
[4]
Lanzillotti, C.; De Mattei, M.; Mazziotta, C.; Taraballi, F.; Rotondo, J.C.; Tognon, M.; Martini, F. Long non-coding RNAs and MicroRNAs interplay in osteogenic differentiation of mesenchymal stem cells. Front. Cell Dev. Biol., 2021, 9, 646032.
[http://dx.doi.org/10.3389/fcell.2021.646032] [PMID: 33898434]
[5]
Mazziotta, C.; Badiale, G.; Cervellera, C.F.; Tognon, M.; Martini, F.; Rotondo, J.C. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation. Theranostics, 2024, 14(1), 143-158.
[http://dx.doi.org/10.7150/thno.89066] [PMID: 38164139]
[6]
Thomas, S.; Jaganathan, B.G. Signaling network regulating osteogenesis in mesenchymal stem cells. J. Cell Commun. Signal., 2022, 16(1), 47-61.
[http://dx.doi.org/10.1007/s12079-021-00635-1] [PMID: 34236594]
[7]
Langdahl, B.L.; Loft, A.G.; Eriksen, E.F.; Mosekilde, L.; Charles, P. Bone mass, bone turnover, calcium homeostasis, and body composition in surgically and radioiodine-treated former hyperthyroid patients. Thyroid, 1996, 6(3), 169-175.
[PMID: 8837322]
[8]
Sims, N.A.; Clément-Lacroix, P.; Da Ponte, F.; Bouali, Y.; Binart, N.; Moriggl, R.; Goffin, V.; Coschigano, K.; Gaillard-Kelly, M.; Kopchick, J.; Baron, R.; Kelly, P.A. Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of Stat5. J. Clin. Invest., 2000, 106(9), 1095-1103.
[http://dx.doi.org/10.1172/JCI10753] [PMID: 11067862]
[9]
Sanjari, M.; Yarmohammadi, H.; Fahimfar, N.; Hajivalizadeh, F.; Hesari, E.; Mansourzadeh, M.J.; Gorgani, K.; Khalagi, K.; Hajipour, F.; Larijani, B.; Ostovar, A. Mind the osteoporosis care gap with timely diagnosis: An executive summary of nationwide osteoporosis Campaigns 2019–2021. J. Diabetes Metab. Disord., 2023, 22(2), 1365-1372.
[http://dx.doi.org/10.1007/s40200-023-01257-7] [PMID: 37975090]
[10]
Tiwari, J.P. Osteoporosis in renal disease. Indian J. Orthop., 2023, 57(S1), 192-199.
[http://dx.doi.org/10.1007/s43465-023-01021-2] [PMID: 38107809]
[11]
Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone turnover markers: Basic biology to clinical applications. Endocr. Rev., 2023, 44(3), 417-473.
[http://dx.doi.org/10.1210/endrev/bnac031] [PMID: 36510335]
[12]
Malheiros-Souza, D.; Gaia, L.F.P.; Sousa, F.F.A.; Favaro, P.I.F.; Rodrigues, V.; Rodrigues, D.B.R. Evaluation of hormonal influence in patients with fractures attributed to osteoporosis. Rev. Bras. Ortop., 2021, 56(6), 804-808.
[PMID: 34900111]
[13]
Chen, M.; Fu, W.; Xu, H.; Liu, C. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev., 2023, 70, 54-66.
[http://dx.doi.org/10.1016/j.cytogfr.2023.03.002] [PMID: 36906448]
[14]
Kota, S.K.; Jammula, S.; Kota, S.; Meher, L.; Modi, K. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density. Indian J. Orthop., 2013, 47(4), 402-407.
[http://dx.doi.org/10.4103/0019-5413.114932] [PMID: 23960286]
[15]
Wein, M.N.; Kronenberg, H.M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb. Perspect. Med., 2018, 8(8), a031237.
[http://dx.doi.org/10.1101/cshperspect.a031237] [PMID: 29358318]
[16]
Zhang, G.; Qin, L.; Hung, W.Y.; Shi, Y.Y.; Leung, P.C.; Yeung, H.Y.; Leung, K.S. Flavonoids derived from herbal Epimedium Brevicornum Maxim prevent OVX-induced osteoporosis in rats independent of its enhancement in intestinal calcium absorption. Bone, 2006, 38(6), 818-825.
[http://dx.doi.org/10.1016/j.bone.2005.11.019] [PMID: 16413840]
[17]
Liu, C.; Wang, L.; Zhu, R.; Liu, H.; Ma, R.; Chen, B.; Li, L.; Guo, Y.; Jia, Q.; Shi, S.; Zhao, D.; Mo, F.; Zhao, B.; Niu, J.; Fu, M.; Orekhov, A.N.; Brömme, D.; Gao, S.; Zhang, D. Rehmanniae radix preparata suppresses bone loss and increases bone strength through interfering with canonical wnt/β-catenin signaling pathway in OVX rats. Osteoporos. Int., 2019, 30(2), 491-505.
[http://dx.doi.org/10.1007/s00198-018-4670-y] [PMID: 30151623]
[18]
Hsieh, T.P.; Sheu, S.Y.; Sun, J.S.; Chen, M.H.; Liu, M.H. Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression. Phytomedicine, 2010, 17(6), 414-423.
[http://dx.doi.org/10.1016/j.phymed.2009.08.007] [PMID: 19747809]
[19]
Wang, L.; Li, Y.; Guo, Y.; Ma, R.; Fu, M.; Niu, J.; Gao, S.; Zhang, D. Herba epimedii: An ancient chinese herbal medicine in the prevention and treatment of osteoporosis. Curr. Pharm. Des., 2015, 22(3), 328-349.
[http://dx.doi.org/10.2174/1381612822666151112145907] [PMID: 26561074]
[20]
Zhang, F.; Li, Q.; Wu, J.; Ruan, H.; Sun, C.; Zhu, J.; Song, Q.; Wei, X.; Shi, Y.; Zhu, L. Total flavonoids of drynariae rhizoma improve glucocorticoid-induced osteoporosis of rats: UHPLC-MS-based qualitative analysis, network pharmacology strategy and pharmacodynamic validation. Front. Endocrinol., 2022, 13, 920931.
[http://dx.doi.org/10.3389/fendo.2022.920931] [PMID: 35846330]
[21]
Brindisi, M.; Bouzidi, C.; Frattaruolo, L.; Loizzo, M.R.; Cappello, M.S.; Dugay, A.; Deguin, B.; Lauria, G.; Cappello, A.R.; Tundis, R. New insights into the antioxidant and anti-inflammatory effects of italian salvia officinalis leaf and flower extracts in lipopolysaccharide and tumor-mediated inflammation models. Antioxidants, 2021, 10(2), 311.
[http://dx.doi.org/10.3390/antiox10020311] [PMID: 33669555]
[22]
Azmy Abd E, B.; Tarek Ebra, M.; Khairy Moh, H. Salvia officinalis Extract and 17β-Estradiol Suppresses Ovariectomy Induced Osteoporosis in Female Rats. Pak. J. Biol. Sci., 2021, 24(3), 434-444.
[http://dx.doi.org/10.3923/pjbs.2021.434.444] [PMID: 34486329]
[23]
Deng, W.; Fu, M.; Cao, Y.; Cao, X.; Wang, M.; Yang, Y.; Qu, R.; Li, J.; Xu, X.; Yu, J. Angelica sinensis polysaccharide nanoparticles as novel non-viral carriers for gene delivery to mesenchymal stem cells. Nanomedicine, 2013, 9(8), 1181-1191.
[http://dx.doi.org/10.1016/j.nano.2013.05.008] [PMID: 24024571]
[24]
Xiao, H.; Xiong, L.; Song, X.; Jin, P.; Chen, L.; Chen, X.; Yao, H.; Wang, Y.; Wang, L. Angelica sinensis polysaccharides ameliorate stress-induced premature senescence of hematopoietic cell via protecting bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil. Int. J. Mol. Sci., 2017, 18(11), 2265.
[http://dx.doi.org/10.3390/ijms18112265] [PMID: 29143796]
[25]
Qian, G.; Zhang, X.; Lu, L.; Wu, X.; Li, S.; Meng, J. Regulation of Cbfa1 expression by total flavonoids of Herba epimedii. Endocr. J., 2006, 53(1), 87-94.
[http://dx.doi.org/10.1507/endocrj.53.87] [PMID: 16543677]
[26]
Sun, Y.; Lee, S.M.Y.; Wong, Y.M.; Lau, C.P.; Shaw, P.C.; Qin, L.; Leung, P.C.; Fung, K.P. Dosing effects of an antiosteoporosis herbal formula – a preclinical investigation using a rat model. Phytother. Res., 2008, 22(2), 267-273.
[http://dx.doi.org/10.1002/ptr.2291] [PMID: 17726734]
[27]
Xie, Q.F.; Xie, J.H.; Dong, T.T.X.; Su, J.Y.; Cai, D.K.; Chen, J.P.; Liu, L.F.; Li, Y.C.; Lai, X.P.; Tsim, K.W.K.; Su, Z.R. Effect of a derived herbal recipe from an ancient Chinese formula, Danggui Buxue Tang, on ovariectomized rats. J. Ethnopharmacol., 2012, 144(3), 567-575.
[http://dx.doi.org/10.1016/j.jep.2012.09.041] [PMID: 23036809]
[28]
Mok, S.K.; Chen, W.F.; Lai, W.P.; Leung, P.C.; Wang, X.L.; Yao, X.S.; Wong, M.S. Icariin protects against bone loss induced by oestrogen deficiency and activates oestrogen receptor-dependent osteoblastic functions in UMR 106 cells. Br. J. Pharmacol., 2010, 159(4), 939-949.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00593.x] [PMID: 20128811]
[29]
Xia, L.; Li, Y.; Zhou, Z.; Dai, Y.; Liu, H.; Liu, H. Icariin delivery porous PHBV scaffolds for promoting osteoblast expansion in vitro. Mater. Sci. Eng. C, 2013, 33(6), 3545-3552.
[http://dx.doi.org/10.1016/j.msec.2013.04.050] [PMID: 23706245]
[30]
Feng, R.; Feng, L.; Yuan, Z.; Wang, D.; Wang, F.; Tan, B.; Han, S.; Li, T.; Li, D.; Han, Y. Icariin protects against glucocorticoid-induced osteoporosis in vitro and prevents glucocorticoid-induced osteocyte apoptosis in vivo. Cell Biochem. Biophys., 2013, 67(1), 189-197.
[http://dx.doi.org/10.1007/s12013-013-9533-8] [PMID: 23417569]
[31]
Jiang, J.; Feng, L.; Sun, E.; Li, H.; Cui, L.; Jia, X. Metabolic profiling of isomeric aglycones central-icaritin ( c -IT) and icaritin (IT) in osteoporotic rats by UPLC-QTOF-MS. Drug Test. Anal., 2015, 7(4), 309-319.
[http://dx.doi.org/10.1002/dta.1672] [PMID: 24934976]
[32]
Wei, Q.; Zhang, J.; Hong, G.; Chen, Z.; Deng, W.; He, W.; Chen, M.H. Icariin promotes osteogenic differentiation of rat bone marrow stromal cells by activating the ERα-Wnt/β-catenin signaling pathway. Biomed. Pharmacother., 2016, 84, 931-939.
[http://dx.doi.org/10.1016/j.biopha.2016.09.107] [PMID: 27764755]
[33]
Wu, Y.; Xia, L.; Zhou, Y.; Xu, Y.; Jiang, X. Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK -dependent manner. Cell Prolif., 2015, 48(3), 375-384.
[http://dx.doi.org/10.1111/cpr.12185] [PMID: 25867119]
[34]
Gao, J.; Xiang, S.; Wei, X.; Yadav, R.I.; Han, M.; Zheng, W.; Zhao, L.; Shi, Y.; Cao, Y. Icariin promotes the osteogenesis of bone marrow mesenchymal stem cells through regulating sclerostin and activating the wnt/β-catenin signaling pathway. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6666836] [PMID: 33553429]
[35]
Jiao, F.; Tang, W.; Huang, H.; Zhang, Z.; Liu, D.; Zhang, H.; Ren, H. Icariin promotes the migration of BMSCs in vitro and in vivo via the MAPK signaling pathway. Stem Cells Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/2562105] [PMID: 30319696]
[36]
Xu, Y.; Li, L.; Tang, Y.; Yang, J.; Jin, Y.; Ma, C. Icariin promotes osteogenic differentiation by suppressing Notch signaling. Eur. J. Pharmacol., 2019, 865, 172794.
[http://dx.doi.org/10.1016/j.ejphar.2019.172794] [PMID: 31733213]
[37]
Yao, X.; Jing, X.; Guo, J.; Sun, K.; Deng, Y.; Zhang, Y.; Guo, F.; Ye, Y. Icariin Protects Bone Marrow Mesenchymal Stem Cells Against Iron Overload Induced Dysfunction Through Mitochondrial Fusion and Fission, PI3K/AKT/mTOR and MAPK Pathways. Front. Pharmacol., 2019, 10, 163.
[http://dx.doi.org/10.3389/fphar.2019.00163] [PMID: 30873034]
[38]
Wang, Z.; Wang, D.; Yang, D.; Zhen, W.; Zhang, J.; Peng, S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos. Int., 2018, 29(3), 535-544.
[http://dx.doi.org/10.1007/s00198-017-4255-1] [PMID: 29110063]
[39]
Li, M.; Gu, Q.; Chen, M.; Zhang, C.; Chen, S.; Zhao, J. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering. Mater. Sci. Eng. C, 2017, 71, 260-267.
[http://dx.doi.org/10.1016/j.msec.2016.10.016] [PMID: 27987707]
[40]
Shen, X.; Yu, P.; Chen, H.; Wang, J.; Lu, B.; Cai, X.; Gu, C.; Liang, G.; Hao, D.; Ma, Q.; Li, Y. Icariin controlled release on a silk fibroin/mesoporous bioactive glass nanoparticles scaffold for promoting stem cell osteogenic differentiation. RSC Advances, 2020, 10(20), 12105-12112.
[http://dx.doi.org/10.1039/D0RA00637H] [PMID: 35496600]
[41]
Dong, M.; Wu, S.; Xu, H.; Yu, X.; Wang, L.; Bai, H.; Niu, W. FBS-derived exosomes as a natural nano-scale carrier for icariin promote osteoblast proliferation. Front. Bioeng. Biotechnol., 2021, 9, 615920.
[http://dx.doi.org/10.3389/fbioe.2021.615920] [PMID: 33718337]
[42]
Jeong, J.C.; Yoon, C.H.; Jeong, C.W.; Lee, Y.C.; Chang, Y.C.; Kim, C.H. Inhibitory activity of Drynariae rhizoma extracts on cathepsin having bone resorption activity. Immunopharmacol. Immunotoxicol., 2004, 26(3), 373-385.
[http://dx.doi.org/10.1081/IPH-200026879] [PMID: 15518171]
[43]
Liu, X.; Zhang, S.; Lu, X.; Zheng, S.; Li, F.; Xiong, Z. Metabonomic study on the anti-osteoporosis effect of Rhizoma Drynariae and its action mechanism using ultra-performance liquid chromatography–tandem mass spectrometry. J. Ethnopharmacol., 2012, 139(1), 311-317.
[http://dx.doi.org/10.1016/j.jep.2011.11.017] [PMID: 22120013]
[44]
Li, F.; Sun, X.; Ma, J.; Ma, X.; Zhao, B.; Zhang, Y.; Tian, P.; Li, Y.; Han, Z. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway. Biochem. Biophys. Res. Commun., 2014, 452(3), 629-635.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.117] [PMID: 25181344]
[45]
Qiu, Z.C.; Dong, X.L.; Dai, Y.; Xiao, G.K.; Wang, X.L.; Wong, K.C.; Wong, M.S.; Yao, X.S. Discovery of a new class of cathepsin K inhibitors in rhizoma drynariae as potential candidates for the treatment of osteoporosis. Int. J. Mol. Sci., 2016, 17(12), 2116.
[http://dx.doi.org/10.3390/ijms17122116] [PMID: 27999266]
[46]
Wu, L.; Ling, Z.; Feng, X.; Mao, C.; Xu, Z. Herb Medicines against Osteoporosis: Active Compounds & Relevant Biological Mechanisms. Curr. Top. Med. Chem., 2017, 17(15), 1670-1691.
[http://dx.doi.org/10.2174/1568026617666161116141033] [PMID: 27848901]
[47]
Ge, X.; Zhou, G. Protective effects of naringin on glucocorticoid-induced osteoporosis through regulating the PI3K/Akt/mTOR signaling pathway. Am. J. Transl. Res., 2021, 13(6), 6330-6341.
[PMID: 34306372]
[48]
Wang, W.; Mao, J.; Chen, Y.; Zuo, J.; Chen, L.; Li, Y.; Gao, Y.; Lu, Q. Naringin promotes osteogenesis and ameliorates osteoporosis development by targeting JAK2/STAT3 signalling. Clin. Exp. Pharmacol. Physiol., 2022, 49(1), 113-121.
[http://dx.doi.org/10.1111/1440-1681.13591] [PMID: 34525226]
[49]
Yu, G.; Zheng, G.; Chang, B.; Hu, Q.; Lin, F.; Liu, D.; Wu, C.; Du, S.; Li, X. Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the notch signaling pathway. Stem Cells Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/7130653] [PMID: 27069482]
[50]
Xu, X.; Fan, X.; Wu, X.; Xia, R.; Liang, J.; Gao, F.; Shu, J.; Yang, M.; Sun, W. Luteolin ameliorates necroptosis in Glucocorticoid-induced osteonecrosis of the femoral head via RIPK1/RIPK3/MLKL pathway based on network pharmacology analysis. Biochem. Biophys. Res. Commun., 2023, 661, 108-118.
[http://dx.doi.org/10.1016/j.bbrc.2023.04.023] [PMID: 37099894]
[51]
Zhang, Y.; Jiang, J.; Shen, H.; Chai, Y.; Wei, X.; Xie, Y. Total flavonoids from Rhizoma Drynariae (Gusuibu) for treating osteoporotic fractures: Implication in clinical practice. Drug Des. Devel. Ther., 2017, 11, 1881-1890.
[http://dx.doi.org/10.2147/DDDT.S139804] [PMID: 28694688]
[52]
Karpiński, T.M.; Adamczak, A.; Ożarowski, M. Radioprotective Effects of Plants from the Lamiaceae Family. Anticancer. Agents Med. Chem., 2021, 22(1), 4-19.
[http://dx.doi.org/10.2174/1871520620666201029120147] [PMID: 33121420]
[53]
Kolac, U.K.; Ustuner, M.C.; Tekin, N.; Ustuner, D.; Colak, E.; Entok, E. The anti-inflammatory and antioxidant effects of salvia officinalis on lipopolysaccharide-induced inflammation in rats. J. Med. Food, 2017, 20(12), 1193-1200.
[http://dx.doi.org/10.1089/jmf.2017.0035] [PMID: 29131698]
[54]
Diab, K.A.E.; Fahmy, M.A.; Hassan, Z.M.; Hassan, E.M.; Salama, A.B.; Omara, E.A. Genotoxicity of carbon tetrachloride and the protective role of essential oil of Salvia officinalis L. in mice using chromosomal aberration, micronuclei formation, and comet assay. Environ. Sci. Pollut. Res. Int., 2018, 25(2), 1621-1636.
[http://dx.doi.org/10.1007/s11356-017-0601-2] [PMID: 29098592]
[55]
Yang, M.; Chan, G.C.F.; Deng, R.; Ng, M.H.; Cheng, S.W.; Lau, C.P.; Ye, J.Y.; Wang, L.; Liu, C. An herbal decoction of Radix astragali and Radix angelicae sinensis promotes hematopoiesis and thrombopoiesis. J. Ethnopharmacol., 2009, 124(1), 87-97.
[http://dx.doi.org/10.1016/j.jep.2009.04.007] [PMID: 19443149]
[56]
Zhou, W.; Chen, B.; Shang, J.; Li, R. Ferulic acid attenuates osteoporosis induced by glucocorticoid through regulating the GSK-3β/Lrp-5/ERK signalling pathways. Physiol. Int., 2021, 108(3), 317-341.
[http://dx.doi.org/10.1556/2060.2021.00180] [PMID: 34529586]
[57]
Wang, D.; Li, J.; Feng, W.; Yao, J.; Ou, L.; Liao, S.; Liu, Y.; Li, B.; Lin, C.; Zhao, J.; Zhao, G. Ligustilide suppresses RANKL-induced osteoclastogenesis and bone resorption via inhibition of RANK expression. J. Cell. Biochem., 2019, 120(11), 18667-18677.
[http://dx.doi.org/10.1002/jcb.29153] [PMID: 31436338]
[58]
Xie, X.; Liu, M.; Meng, Q. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19. Bone Joint Res., 2019, 8(7), 323-332.
[http://dx.doi.org/10.1302/2046-3758.87.BJR-2018-0223.R2] [PMID: 31463041]
[59]
Zhao, X.; Wu, Z.X.; Zhang, Y.; Yan, Y.B.; He, Q.; Cao, P.C.; Lei, W. Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats. J. Ethnopharmacol., 2011, 137(3), 1083-1088.
[http://dx.doi.org/10.1016/j.jep.2011.07.017] [PMID: 21782010]
[60]
Huang, D.; Hou, X.; Zhang, D.; Zhang, Q.; Yan, C. Two novel polysaccharides from rhizomes of Cibotium barometz promote bone formation via activating the BMP2/SMAD1 signaling pathway in MC3T3-E1 cells. Carbohydr. Polym., 2020, 231, 115732.
[http://dx.doi.org/10.1016/j.carbpol.2019.115732] [PMID: 31888819]
[61]
Song, J.; Zhang, Y.; Zhu, Y.; Jin, X.; Li, L.; Wang, C.; Zhou, Y.; Li, Y.; Wang, D.; Hu, M. Structural characterization and anti-osteoporosis effects of polysaccharide purified from Eucommia ulmoides Oliver cortex based on its modulation on bone metabolism. Carbohydr. Polym., 2023, 306, 120601.
[http://dx.doi.org/10.1016/j.carbpol.2023.120601] [PMID: 36746570]
[62]
Wang, J.Y.; Chen, X.J.; Zhang, L.; Pan, Y.Y.; Gu, Z.X.; Yuan, Y. Anti-inflammatory effects of Eucommia ulmoides Oliv. male flower extract on lipopolysaccharide-induced inflammation. Chin. Med. J., 2019, 132(3), 319-328.
[http://dx.doi.org/10.1097/CM9.0000000000000066] [PMID: 30681498]
[63]
Ha, H.; Ho, J.; Shin, S.; Kim, H.; Koo, S.; Kim, I.H.; Kim, C. Effects of eucommiae cortex on osteoblast-like cell proliferation and osteoclast inhibition. Arch. Pharm. Res., 2003, 26(11), 929-936.
[http://dx.doi.org/10.1007/BF02980202] [PMID: 14661859]
[64]
He, J.; Li, X.; Wang, Z.; Bennett, S.; Chen, K.; Xiao, Z.; Zhan, J.; Chen, S.; Hou, Y.; Chen, J.; Wang, S.; Xu, J.; Lin, D. Therapeutic anabolic and anticatabolic benefits of natural chinese medicines for the treatment of osteoporosis. Front. Pharmacol., 2019, 10, 1344.
[http://dx.doi.org/10.3389/fphar.2019.01344] [PMID: 31824310]
[65]
Jiang, T.; Gu, H.; Wei, J. Echinacoside inhibits osteoclast function by down-regulating PI3K/Akt/C-Fos to alleviate osteolysis caused by periprosthetic joint infection. Front. Pharmacol., 2022, 13, 930053.
[http://dx.doi.org/10.3389/fphar.2022.930053] [PMID: 35814196]
[66]
Qian, D.; Zhou, H.; Fan, P.; Yu, T.; Patel, A.; O’Brien, M.; Wang, Z.; Lu, S.; Tong, G.; Shan, Y.; Wang, L.; Gao, Y.; Xiong, Y.; Zhang, L.; Wang, X.; Liu, Y.; Zhou, S. A traditional chinese medicine plant extract prevents alcohol-induced osteopenia. Front. Pharmacol., 2021, 12, 754088.
[http://dx.doi.org/10.3389/fphar.2021.754088] [PMID: 35002697]
[67]
Zhang, B.; Yang, L.L.; Ding, S.Q.; Liu, J.J.; Dong, Y.H.; Li, Y.T.; Li, N.; Zhao, X.J.; Hu, C.L.; Jiang, Y.; Ma, X.Q. Anti-osteoporotic activity of an edible traditional chinese medicine cistanche deserticola on bone metabolism of ovariectomized rats through RANKL/RANK/TRAF6-mediated signaling pathways. Front. Pharmacol., 2019, 10, 1412.
[http://dx.doi.org/10.3389/fphar.2019.01412] [PMID: 31849666]
[68]
Liu, C.; Ma, R.; Wang, L.; Zhu, R.; Liu, H.; Guo, Y.; Zhao, B.; Zhao, S.; Tang, J.; Li, Y.; Niu, J.; Fu, M.; Zhang, D.; Gao, S. Rehmanniae Radix in osteoporosis: A review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J. Ethnopharmacol., 2017, 198, 351-362.
[http://dx.doi.org/10.1016/j.jep.2017.01.021] [PMID: 28111216]
[69]
Meng, J.; Zhang, W.; Wang, C.; Zhang, W.; Zhou, C.; Jiang, G.; Hong, J.; Yan, S.; Yan, W. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem. Pharmacol., 2020, 171, 113715.
[http://dx.doi.org/10.1016/j.bcp.2019.113715] [PMID: 31751538]
[70]
Kim, M.H.; Choi, Y.Y.; Lee, H.J.; Lee, H.; Park, J.C.; Yang, W.M. Topical application of herbal formula for the treatment of ligature-induced periodontitis. J. Periodontal Implant Sci., 2015, 45(4), 145-151.
[http://dx.doi.org/10.5051/jpis.2015.45.4.145] [PMID: 26339524]
[71]
Gao, X.; Liu, Y.; An, Z.; Ni, J. Active components and pharmacological effects of cornus officinalis: Literature review. Front. Pharmacol., 2021, 12, 633447.
[http://dx.doi.org/10.3389/fphar.2021.633447] [PMID: 33912050]
[72]
Kim, J.Y.; Kim, Y.K.; Choi, M.K.; Oh, J.; Kwak, H.B.; Kim, J.J. Effect of cornus officinalis on receptor activator of nuclear factor-kappab ligand (RANKL)-induced osteoclast differentiation. J. Bone Metab., 2012, 19(2), 121-127.
[http://dx.doi.org/10.11005/jbm.2012.19.2.121] [PMID: 24524042]
[73]
Xiao, J.; Han, Q.; Yu, Z.; Liu, M.; Sun, J.; Wu, M.; Yin, H.; Fu, J.; Guo, Y.; Wang, L.; Ma, Y. Morroniside inhibits inflammatory bone loss through the TRAF6-Mediated NF-κB/MAPK signalling pathway. Pharmaceuticals, 2023, 16(10), 1438.
[http://dx.doi.org/10.3390/ph16101438] [PMID: 37895909]
[74]
Lee, C.G.; Kim, D.W.; Kim, J.; Uprety, L.P.; Oh, K.I.; Singh, S.; Yoo, J.; Jin, H.S.; Choi, T.H.; Park, E.; Jeong, S.Y. Effects of loganin on bone formation and resorption in vitro and in vivo. Int. J. Mol. Sci., 2022, 23(22), 14128.
[http://dx.doi.org/10.3390/ijms232214128] [PMID: 36430605]
[75]
Park, E.; Lim, E.; Yeo, S.; Yong, Y.; Yang, J.; Jeong, S.Y. Anti-menopausal effects of cornus officinalis and ribes fasciculatum extract in vitro and in vivo. Nutrients, 2020, 12(2), 369.
[http://dx.doi.org/10.3390/nu12020369] [PMID: 32019227]
[76]
Tang, X.; Huang, Y.; Fang, X.; Tong, X.; Yu, Q.; Zheng, W.; Fu, F. Cornus officinalis: A potential herb for treatment of osteoporosis. Front. Med., 2023, 10, 1289144.
[http://dx.doi.org/10.3389/fmed.2023.1289144] [PMID: 38111697]
[77]
Kim, J.; Lee, C.G.; Yun, S.H.; Hwang, S.; Jeon, H.; Park, E.; Jeong, S.Y. Inhibitory effect of ulmus davidiana and cornus officinalis extracts on osteoporotic bone loss in vitro and in vivo. Medicina, 2022, 58(4), 466.
[http://dx.doi.org/10.3390/medicina58040466] [PMID: 35454305]
[78]
He, Y.Q.; Zhang, Q.; Shen, Y.; Han, T.; Zhang, Q.L.; Zhang, J.H.; Lin, B.; Song, H.T.; Hsu, H.Y.; Qin, L.P.; Xin, H.L.; Zhang, Q.Y. Rubiadin-1-methyl ether from Morinda officinalis How. Inhibits osteoclastogenesis through blocking RANKL-induced NF-κB pathway. Biochem. Biophys. Res. Commun., 2018, 506(4), 927-931.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.100] [PMID: 30392907]
[79]
Hong, G.; Zhou, L.; Shi, X.; He, W.; Wang, H.; Wei, Q.; Chen, P.; Qi, L.; Tickner, J.; Lin, L.; Xu, J. Bajijiasu abrogates osteoclast differentiation via the suppression of RANKL signaling pathways through NF-κB and NFAT. Int. J. Mol. Sci., 2017, 18(1), 203.
[http://dx.doi.org/10.3390/ijms18010203] [PMID: 28106828]
[80]
Jiang, K. Investigation of inulins from the roots of Morinda officinalis for potential therapeutic application as anti-osteoporosis agent. Int J Biol Macromol, 2018, 120(Pt A), 170-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.082]
[81]
Wu, P.Y.; Chen, W.; Huang, H.; Tang, W.; Liang, J. Morinda officinalis polysaccharide regulates rat bone mesenchymal stem cell osteogenic–adipogenic differentiation in osteoporosis by upregulating MIR -21 and activating the PI3K / AKT pathway. Kaohsiung J. Med. Sci., 2022, 38(7), 675-685.
[http://dx.doi.org/10.1002/kjm2.12544] [PMID: 35593324]
[82]
Rong, K.; Chen, P.; Lang, Y.; Zhang, Y.; Wang, Z.; Wen, F.; Lu, L. Morinda officinalis polysaccharide attenuates osteoporosis in rats underwent bilateral ovariectomy by suppressing the PGC-1α/PPARγ pathway. J. Orthop. Surg., 2022, 30(3)
[http://dx.doi.org/10.1177/10225536221130824] [PMID: 36369661]
[83]
Li, Y.; Lü, S.S.; Tang, G.Y.; Hou, M.; Tang, Q.; Zhang, X.N.; Chen, W.H.; Chen, G.; Xue, Q.; Zhang, C.C.; Zhang, J.F.; Chen, Y.; Xu, X.Y. Effect of Morinda officinalis capsule on osteoporosis in ovariectomized rats. Chin. J. Nat. Med., 2014, 12(3), 204-212.
[http://dx.doi.org/10.1016/S1875-5364(14)60034-0] [PMID: 24702807]
[84]
Tseng, S.H.; Sung, C.H.; Chen, L.G.; Lai, Y.J.; Chang, W.S.; Sung, H.C.; Wang, C.C. Comparison of chemical compositions and osteoprotective effects of different sections of velvet antler. J. Ethnopharmacol., 2014, 151(1), 352-360.
[http://dx.doi.org/10.1016/j.jep.2013.10.060] [PMID: 24212078]
[85]
Yao, B.; Gao, H.; Liu, J.; Zhang, M.; Leng, X.; Zhao, D. Identification of potential therapeutic targets of deer antler extract on bone regulation based on serum proteomic analysis. Mol. Biol. Rep., 2019, 46(5), 4861-4872.
[http://dx.doi.org/10.1007/s11033-019-04934-0] [PMID: 31286391]
[86]
Kim, H.K.; Kim, M.G.; Leem, K.H. Comparison of the effect of velvet antler from different sections on longitudinal bone growth of adolescent rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/1927534] [PMID: 27382403]
[87]
Pan, W.; Du, J.; An, L.; Xu, G.; Yuan, G.; Sheng, Y.; Sun, J.; Wang, M.; Zhao, N.; Guo, X.; Li, H.; Han, X. Sika deer velvet antler protein extract modulater bone metabolism and the structure of gut microbiota in ovariectomized mice. Food Sci. Nutr., 2023, 11(6), 3309-3319.
[http://dx.doi.org/10.1002/fsn3.3316] [PMID: 37324858]
[88]
Du, K.; Li, J.; Guo, X.; Li, Y.; Chang, Y. Quantitative analysis of phenolic acids and flavonoids in cuscuta chinensis lam. by synchronous ultrasonic-assisted extraction with response surface methodology. J. Anal. Methods Chem., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/6796720] [PMID: 30671278]
[89]
Yang, L.; Chen, Q.; Wang, F.; Zhang, G. Antiosteoporotic compounds from seeds of Cuscuta chinensis. J. Ethnopharmacol., 2011, 135(2), 553-560.
[http://dx.doi.org/10.1016/j.jep.2011.03.056] [PMID: 21463675]
[90]
Mo, H.; Zhang, N.; Li, H.; Li, F.; Pu, R. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz. J. Med. Biol. Res., 2019, 52(12), e8754.
[http://dx.doi.org/10.1590/1414-431x20198754] [PMID: 31826180]
[91]
Yang, H.M.; Shin, H.K.; Kang, Y.H.; Kim, J.K. Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells. J. Med. Food, 2009, 12(1), 85-92.
[http://dx.doi.org/10.1089/jmf.2007.0665] [PMID: 19298200]
[92]
Wegiel, B.; Persson, J.L. Effect of a novel botanical agent Drynol Cibotin on human osteoblast cells and implications for osteoporosis: promotion of cell growth, calcium uptake and collagen production. Phytother. Res., 2010, 24(S2), S139-S147.
[http://dx.doi.org/10.1002/ptr.3026] [PMID: 19953582]
[93]
Chai, L.; Zhou, K.; Wang, S.; Zhang, H.; Fan, N.; Li, J.; Tan, X.; Hu, L.; Fan, X. Psoralen and bakuchiol ameliorate M-CSF Plus RANKL-induced osteoclast differentiation and bone resorption via inhibition of AKT and AP-1 pathways in vitro. Cell. Physiol. Biochem., 2018, 48(5), 2123-2133.
[http://dx.doi.org/10.1159/000492554] [PMID: 30110702]
[94]
Kong, L.; Ma, R.; Yang, X.; Zhu, Z.; Guo, H.; He, B.; Wang, B.; Hao, D. Psoralidin suppresses osteoclastogenesis in BMMs and attenuates LPS-mediated osteolysis by inhibiting inflammatory cytokines. Int. Immunopharmacol., 2017, 51, 31-39.
[http://dx.doi.org/10.1016/j.intimp.2017.07.003] [PMID: 28779592]
[95]
Rebhun, J.F.; Du, Q.; Hood, M.; Guo, H.; Glynn, K.M.; Cen, H.; Scholten, J.D.; Tian, F.; Gui, M.; Li, M.; Zhao, Y. Evaluation of selected traditional Chinese medical extracts for bone mineral density maintenance: A mechanistic study. J. Tradit. Complement. Med., 2019, 9(3), 227-235.
[http://dx.doi.org/10.1016/j.jtcme.2017.07.004] [PMID: 31193882]
[96]
Zhou, D.; Zhang, H.; Xue, X.; Tao, Y.; Wang, S.; Ren, X.; Su, J. Safety evaluation of natural drugs in chronic skeletal disorders: A literature review of clinical trials in the past 20 years. Front. Pharmacol., 2022, 12, 801287.
[http://dx.doi.org/10.3389/fphar.2021.801287] [PMID: 35095508]
[97]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[98]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 28197471]
[99]
Okaiyeto, K.; Oguntibeju, O.O. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. Int. J. Environ. Res. Public Health, 2021, 18(11), 5988.
[http://dx.doi.org/10.3390/ijerph18115988] [PMID: 34199632]
[100]
Hassen, G.; Belete, G.; Carrera, K.G.; Iriowen, R.O.; Araya, H.; Alemu, T.; Solomon, N.; Bam, D.S.; Nicola, S.M.; Araya, M.E.; Debele, T.; Zouetr, M.; Jain, N. Clinical implications of herbal supplements in conventional medical practice: A US perspective. Cureus, 2022, 14(7), e26893.
[http://dx.doi.org/10.7759/cureus.26893] [PMID: 35978741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy