Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Potential Role of Bone Metabolism Markers in Kidney Transplant Recipients

Author(s): Flávia Maria Borges Vigil, Pedro Alves Soares Vaz de Castro, Ursula Gramiscelli Hasparyk, Victória Soares Bartolomei and Ana Cristina Simões e Silva*

Volume 31, Issue 19, 2024

Published on: 07 February, 2024

Page: [2809 - 2820] Pages: 12

DOI: 10.2174/0109298673250291231121052433

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The impact of treatments, suppressing the immune system, persistent hyperparathyroidism, and other risk factors on mineral and bone disorder (MBD) after kidney transplantation is well-known. However, there is limited knowledge about their effect on bone metabolism biomarkers. This study aimed to investigate the influence of kidney transplant on these markers, comparing them to patients undergoing hemodialysis and healthy individuals.

Methods: In this cross-sectional study, three groups were included: kidney transplant patients (n = 57), hemodialysis patients (n = 26), and healthy controls (n = 31). Plasma concentrations of various bone metabolism biomarkers, including Dickkopf-related protein 1, osteoprotegerin, osteocalcin, osteopontin, sclerostin, and fibroblast growth factor 23, were measured. Associations between these biomarkers and clinical and laboratory data were evaluated.

Results: A total of 114 patients participated. Transplant recipients had significantly lower levels of Dickkopf-related protein 1, osteoprotegerin, osteocalcin, osteopontin, sclerostin, and fibroblast growth factor 23 compared to hemodialysis patients. Alkaline phosphatase levels positively correlated with osteopontin (r = 0.572, p < 0.001), while fibroblast growth factor 23 negatively correlated with 25-hydroxyvitamin D (r = -0.531, p = 0.019). The panel of bone biomarkers successfully predicted hypercalcemia (area under the curve [AUC] = 0.852, 95% confidence interval [CI] = 0.679-1.000) and dyslipidemia (AUC = 0.811, 95% CI 0.640-0.982) in transplant recipients.

Conclusion: Kidney transplantation significantly improves mineral and bone disorders associated with end-stage kidney disease by modulating MBD markers and reducing bone metabolism markers, such as Dickkopf-related protein 1, osteoprotegerin, osteocalcin, osteopontin, and sclerostin. Moreover, the panel of bone biomarkers effectively predicted hypercalcemia and dyslipidemia in transplant recipients.

Keywords: Kidney transplantation, hemodialysis, bone metabolism, renal osteodystrophy, chronic kidney disease, biomarkers.

[1]
Kidney disease: Improving global outcomes (KDIGO) CKD-MBD update work group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl., 2011, 2017(7), 1-59.
[2]
Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone disease after kidney transplantation. Clin. J. Am. Soc. Nephrol., 2016, 11(7), 1282-1296.
[http://dx.doi.org/10.2215/CJN.11371015] [PMID: 26912549]
[3]
Moe, S.M.; Chen, N.X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol., 2008, 19(2), 213-216.
[http://dx.doi.org/10.1681/ASN.2007080854] [PMID: 18094365]
[4]
Mazzaferro, S.; Pasquali, M.; Taggi, F.; Baldinelli, M.; Conte, C.; Muci, M.L.; Pirozzi, N.; Carbone, I.; Francone, M.; Pugliese, F. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin. J. Am. Soc. Nephrol., 2009, 4(3), 685-690.
[http://dx.doi.org/10.2215/CJN.03930808] [PMID: 19211668]
[5]
Mazzaferro, S.; Pasquali, M.; Pugliese, F.; Barresi, G.; Carbone, I.; Francone, M.; Sardella, D.; Taggi, F. Serum levels of calcification inhibition proteins and coronary artery calcium score: Comparison between transplantation and dialysis. Am. J. Nephrol., 2007, 27(1), 75-83.
[http://dx.doi.org/10.1159/000099095] [PMID: 17259697]
[6]
Elias, R.M.; Moysés, R.M.A. Elderly patients with chronic kidney disease have higher risk of hyperparathyroidism. Int. Urol. Nephrol., 2017, 49(10), 1815-1821.
[http://dx.doi.org/10.1007/s11255-017-1650-7] [PMID: 28695313]
[7]
Evenepoel, P.; Claes, K.; Kuypers, D.; Maes, B.; Bammens, B.; Vanrenterghem, Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: A single-centre study. Nephrol. Dial. Transplant., 2004, 19(5), 1281-1287.
[http://dx.doi.org/10.1093/ndt/gfh128] [PMID: 14993493]
[8]
Reinhardt, W.; Bartelworth, H.; JockenhA vel, F.; Schmidt-Gayk, H.; Witzke, O.; Wagner, K.; Heemann, U.W.; Reinwein, D.; Philipp, T.; Mann, K. Sequential changes of biochemical bone parameters after kidney transplantation. Nephrol. Dial. Transplant., 1998, 13(2), 436-442.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a027843] [PMID: 9509459]
[9]
Julian, B.A.; Laskow, D.A.; Dubovsky, J.; Dubovsky, E.V.; Curtis, J.J.; Quarles, L.D. Rapid loss of vertebral mineral density after renal transplantation. N. Engl. J. Med., 1991, 325(8), 544-550.
[http://dx.doi.org/10.1056/NEJM199108223250804] [PMID: 1857390]
[10]
Cejka, D.; Jäger-Lansky, A.; Kieweg, H.; Weber, M.; Bieglmayer, C.; Haider, D.G.; Diarra, D.; Patsch, J.M.; Kainberger, F.; Bohle, B.; Haas, M. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol. Dial. Transplant., 2012, 27(1), 226-230.
[http://dx.doi.org/10.1093/ndt/gfr270] [PMID: 21613383]
[11]
Cejka, D.; Herberth, J.; Branscum, A.J.; Fardo, D.W.; Monier-Faugere, M.C.; Diarra, D.; Haas, M.; Malluche, H.H. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol., 2011, 6(4), 877-882.
[http://dx.doi.org/10.2215/CJN.06550810] [PMID: 21164019]
[12]
Cianciolo, G.; Capelli, I.; Angelini, M.L.; Valentini, C.; Baraldi, O.; Scolari, M.P.; Stefoni, S. Importance of vascular calcification in kidney transplant recipients. Am. J. Nephrol., 2014, 39(5), 418-426.
[http://dx.doi.org/10.1159/000362492] [PMID: 24819032]
[13]
Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in bone metabolism and bone diseases. Med. Sci. Monit., 2020, 26, e919159.
[http://dx.doi.org/10.12659/MSM.919159] [PMID: 31996665]
[14]
Wada, T.; McKee, M.D.; Steitz, S.; Giachelli, C.M. Calcification of vascular smooth muscle cell cultures: Inhibition by osteopontin. Circ. Res., 1999, 84(2), 166-178.
[http://dx.doi.org/10.1161/01.RES.84.2.166] [PMID: 9933248]
[15]
Rao, M.; Jain, P.; Ojo, T.; Surya, G.; Balakrishnan, V. Fibroblast growth factor and mineral metabolism parameters among prevalent kidney transplant patients. Int. J. Nephrol., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/490623] [PMID: 22811905]
[16]
Strengthening the reporting of observational studies in epidemiology. Available from: https://www.strobe-statement.org/checklists/
[17]
Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med., 1978, 8(4), 283-298.
[http://dx.doi.org/10.1016/S0001-2998(78)80014-2] [PMID: 112681]
[18]
Economidou, D.; Dovas, S.; Papagianni, A.; Pateinakis, P.; Memmos, D. FGF-23 levels before and after renal transplantation. J. Transplant., 2009, 2009, 1-5.
[http://dx.doi.org/10.1155/2009/379082] [PMID: 20107581]
[19]
Araújo, S.A.; Cordeiro, T.M.; Belisário, A.R.; Araújo, R.F.A.; Marinho, P.E.S.; Kroon, E.G.; de Oliveira, D.B.; Teixeira, M.M.; Simões e Silva, A.C. First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: Dengue and Zika virus infection. Clin. Kidney J., 2019, 12(3), 355-361.
[http://dx.doi.org/10.1093/ckj/sfy104] [PMID: 31198534]
[20]
Bonani, M.; Rodriguez, D.; Fehr, T.; Mohebbi, N.; Brockmann, J.; Blum, M.; Graf, N.; Frey, D.; Wüthrich, R.P. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press. Res., 2014, 39(4), 230-239.
[http://dx.doi.org/10.1159/000355781] [PMID: 25118597]
[21]
van Lierop, A.H.; van der Eerden, A.W.; Hamdy, N.A.T.; Hermus, A.R.; den Heijer, M.; Papapoulos, S.E. Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J. Clin. Endocrinol. Metab., 2012, 97(10), E1953-E1957.
[http://dx.doi.org/10.1210/jc.2012-2218] [PMID: 22844062]
[22]
Cejka, D.; Marculescu, R.; Kozakowski, N.; Plischke, M.; Reiter, T.; Gessl, A.; Haas, M. Renal elimination of sclerostin increases with declining kidney function. J. Clin. Endocrinol. Metab., 2014, 99(1), 248-255.
[http://dx.doi.org/10.1210/jc.2013-2786] [PMID: 24187403]
[23]
Tartaglione, L.; Pasquali, M.; Rotondi, S.; Muci, M.L.; Leonangeli, C.; Farcomeni, A.; Fassino, V.; Mazzaferro, S. Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS One, 2017, 12(5), e0178637.
[http://dx.doi.org/10.1371/journal.pone.0178637] [PMID: 28558021]
[24]
Schlieper, G.; Schurgers, L.; Brandenburg, V.; Reutelingsperger, C.; Floege, J. Vascular calcification in chronic kidney disease: An update. Nephrol. Dial. Transplant., 2016, 31(1), 31-39.
[http://dx.doi.org/10.1093/ndt/gfv111] [PMID: 25916871]
[25]
Oschatz, E.; Benesch, T.; Kodras, K.; Hoffmann, U.; Haas, M. Changes of coronary calcification after kidney transplantation. Am. J. Kidney Dis., 2006, 48(2), 307-313.
[http://dx.doi.org/10.1053/j.ajkd.2006.04.066] [PMID: 16860198]
[26]
Malluche, H.H.; Monier-Faugere, M.C.; Herberth, J. Bone disease after renal transplantation. Nat. Rev. Nephrol., 2010, 6(1), 32-40.
[http://dx.doi.org/10.1038/nrneph.2009.192] [PMID: 19918255]
[27]
Morena, M.; Jaussent, I.; Dupuy, A.M.; Bargnoux, A.S.; Kuster, N.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; Cristol, J.P. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: Potential partners in vascular calcifications. Nephrol. Dial. Transplant., 2015, 30(8), 1345-1356.
[http://dx.doi.org/10.1093/ndt/gfv081] [PMID: 25854266]
[28]
Vangala, C.; Pan, J.; Cotton, R.T.; Ramanathan, V. Mineral and bone disorders after kidney transplantation. Front. Med., 2018, 5, 211.
[http://dx.doi.org/10.3389/fmed.2018.00211] [PMID: 30109232]
[29]
Magalhães, J.; Quelhas-Santos, J.; Pereira, L.; Neto, R.; Castro-Ferreira, I.; Martins, S.; Frazão, J.M.; Carvalho, C. Could bone biomarkers predict bone turnover after kidney transplantation?—a proof-of-concept study. J. Clin. Med., 2022, 11(2), 457.
[http://dx.doi.org/10.3390/jcm11020457] [PMID: 35054152]
[30]
Trueba, D.; Sawaya, B.P.; Mawad, H.; Malluche, H.H. Bone biopsy: Indications, techniques, and complications. Semin. Dial., 2003, 16(4), 341-345.
[http://dx.doi.org/10.1046/j.1525-139X.2003.160631.x] [PMID: 12926408]
[31]
Seoane-Pillado, M.T.; Pita-Fernández, S.; Valdés-Cañedo, F.; Seijo-Bestilleiro, R.; Pértega-Díaz, S.; Fernández-Rivera, C.; Alonso-Hernández, Á.; González-Martín, C.; Balboa-Barreiro, V. Incidence of cardiovascular events and associated risk factors in kidney transplant patients: A competing risks survival analysis. BMC Cardiovasc. Disord., 2017, 17(1), 72.
[http://dx.doi.org/10.1186/s12872-017-0505-6] [PMID: 28270107]
[32]
Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis., 2017, 10, 35-45.
[http://dx.doi.org/10.2147/IJNRD.S101808] [PMID: 28223836]
[33]
Maria Borges Vigil, F.; Alves Soares Vaz de Castro, P.; Gramiscelli Hasparyk, Ú.; Soares Bartolomei, V.; Cristina Simões e Silva, A. MO947: Evaluation of bone metabolism markers in kidney transplant recipients. Nephrology Dialysis Transplantation, 2022, 37, 1685-1686.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy