Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

The Cytotoxicity Effect of Chitosan-Encapsulated Ricin-Herceptin Immunotoxin Nanoparticles on Breast Cancer Cell Lines

Author(s): Mohammad Hossein Golestani Poor, Shohreh Zare Karizi, Seyed Ali Mirhosseini, Mohammad Javad Motamedi, Fateme Frootan, Soghra Khani and Jafar Amani*

Volume 21, Issue 1, 2025

Published on: 26 January, 2024

Page: [140 - 149] Pages: 10

DOI: 10.2174/0115734137278545240102055626

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The use of targeted therapy has been increasing for cancer treatment. The aim of this study is to investigate chitosan-based ricin-Herceptin (rh) immunotoxin on breast cancer cell lines.

Methods: The gene construct encoding immunotoxin was designed, cloned, and expressed in E. coli BL21 (DE3). The expressed proteins were isolated by the nickel-nitrilotriacetic acid column and were analyzed by the Western-blotting. The cytotoxicity of immunotoxin was assayed on breast cell line MCF-7 and using MTT assay at 24 and 48 h treatment.

Results: The immunotoxins extrication rate, size, loading percentage, and electric charge of nanoparticles were reported appropriately as 78%, 151.5 nm, 83.53%, and +11.1 mV, respectively. The encapsulated immunotoxins led to the death of 70% and 78% of MCF-7 cells at 24 and 48 h treatment, respectively. The noncapsulated counterparts at equal doses killed 53% and 62% of cancer cells at the same time points.

Conclusion: The chitosan-immunotoxins impose potential cytotoxic effects on cancer cells.

Keywords: Herceptin, HER2, ricin, targeted therapy, breast cancer, nanoparticles.

Graphical Abstract
[1]
Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[2]
Sabour Takanlu, J.; Aghaie Fard, A.; Mohammdi, S.; Hosseini Rad, S.M.A.; Abroun, S.; Nikbakht, M. Indirect tumor inhibitory effects of microRNA-124 through targeting EZH2 in the multiple myeloma cell line. Cell J., 2020, 22(1), 23-29.
[PMID: 31606963]
[3]
Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[4]
Veta, M.; Pluim, J.P.W.; van Diest, P.J.; Viergever, M.A. Breast cancer histopathology image analysis: A review. IEEE Trans. Biomed. Eng., 2014, 61(5), 1400-1411.
[http://dx.doi.org/10.1109/TBME.2014.2303852] [PMID: 24759275]
[5]
Ranjbar, R.; Karimian, A.; Aghaie, F.A.; Tourani, M.; Majidinia, M.; Jadidi-Niaragh, F.; Yousefi, B. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis. J. Cell. Physiol., 2019, 234(4), 3216-3230.
[http://dx.doi.org/10.1002/jcp.26510] [PMID: 29384211]
[6]
Anderson, K.N.; Schwab, R.B.; Martinez, M.E. Reproductive risk factors and breast cancer subtypes: A review of the literature. Breast Cancer Res. Treat., 2014, 144(1), 1-10.
[http://dx.doi.org/10.1007/s10549-014-2852-7] [PMID: 24477977]
[7]
Sanna, V.; Pala, N.; Sechi, M. Targeted therapy using nanotechnology: Focus on cancer. Int. J. Nanomedicine, 2014, 9, 467-483.
[PMID: 24531078]
[8]
Nikkhoi, S.K.; Rahbarizadeh, F.; Ranjbar, S.; Khaleghi, S.; Farasat, A. Liposomal nanoparticle armed with bivalent bispecific single-domain antibodies, novel weapon in HER2 positive cancerous cell lines targeting. Mol. Immunol., 2018, 96, 98-109.
[http://dx.doi.org/10.1016/j.molimm.2018.01.010] [PMID: 29549861]
[9]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[10]
Khoshtinat Nikkhoi, S.; Heydarzadeh, H.; Ranjbar, S.; Salimi, F.; Aghaeifard, M.; Alavian, S.M.; Reshadmanesh, A. The evaluation and comparison of transcriptionally targeted noxa and puma killer genes to initiate apoptosis under cancer-specific promoter cxcr1 in hepatocarcinoma gene therapy. Hepat. Mon., 2016, 16(10), e38828.
[http://dx.doi.org/10.5812/hepatmon.38828] [PMID: 27882064]
[11]
Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A new tool for cancer therapy. Tumour Biol., 2017, 39(2)
[http://dx.doi.org/10.1177/1010428317692226] [PMID: 28218037]
[12]
Akbari, B.; Farajnia, S.; Ahdi Khosroshahi, S.; Safari, F.; Yousefi, M.; Dariushnejad, H.; Rahbarnia, L. Immunotoxins in cancer therapy: Review and update. Int. Rev. Immunol., 2017, 36(4), 207-219.
[http://dx.doi.org/10.1080/08830185.2017.1284211] [PMID: 28282218]
[13]
Pincus, S.; Bhaskaran, M.; Brey, R., III; Didier, P.; Doyle-Meyers, L.; Roy, C. Clinical and pathological findings associated with aerosol exposure of macaques to ricin toxin. Toxins, 2015, 7(6), 2121-2133.
[http://dx.doi.org/10.3390/toxins7062121] [PMID: 26067369]
[14]
Pita, R.; Romero, A. Toxins as weapons: A historical review. Forensic Sci. Rev., 2014, 26(2), 85-96.
[PMID: 26227025]
[15]
Wilson, F.R.; Coombes, M.E.; Brezden-Masley, C.; Yurchenko, M.; Wylie, Q.; Douma, R.; Varu, A.; Hutton, B.; Skidmore, B.; Cameron, C. Herceptin® (trastuzumab) in HER2-positive early breast cancer: A systematic review and cumulative network meta-analysis. Syst. Rev., 2018, 7(1), 191.
[http://dx.doi.org/10.1186/s13643-018-0854-y] [PMID: 30428932]
[16]
Davis, N.M.; Sokolosky, M.; Stadelman, K.; Abrams, S.L.; Libra, M.; Candido, S.; Nicoletti, F.; Polesel, J.; Maestro, R.; D’Assoro, A.; Drobot, L.; Rakus, D.; Gizak, A.; Laidler, P.; Dulińska-Litewka, J.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Montalto, G.; Cervello, M.; Fitzgerald, T.L.; Demidenko, Z.N.; Martelli, A.M.; Cocco, L.; Steelman, L.S.; McCubrey, J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget, 2014, 5(13), 4603-4650.
[http://dx.doi.org/10.18632/oncotarget.2209] [PMID: 25051360]
[17]
Kim, C.; Lee, C.K.; Chon, H.J.; Kim, J.H.; Park, H.S.; Heo, S.J.; Kim, H.J.; Kim, T.S.; Kwon, W.S.; Chung, H.C.; Rha, S.Y. PTEN loss and level of HER2 amplification is associated with trastuzumab resistance and prognosis in HER2-positive gastric cancer. Oncotarget, 2017, 8(69), 113494-113501.
[http://dx.doi.org/10.18632/oncotarget.23054] [PMID: 29371924]
[18]
Dillon, L.; Miller, T. Therapeutic targeting of cancers with loss of PTEN function. Curr. Drug Targets, 2014, 15(1), 65-79.
[http://dx.doi.org/10.2174/1389450114666140106100909] [PMID: 24387334]
[19]
Eto, K.; Iwatsuki, M.; Watanabe, M.; Ida, S.; Ishimoto, T.; Iwagami, S.; Baba, Y.; Sakamoto, Y.; Miyamoto, Y.; Yoshida, N.; Baba, H. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann. Surg. Oncol., 2014, 21(1), 343-350.
[http://dx.doi.org/10.1245/s10434-013-3325-7] [PMID: 24154840]
[20]
Sarisozen, C.; Torchilin, V.P. Intracellular delivery of proteins and peptides. In: Drug Delivery: Principles and Applications; Wiley, 2016.
[http://dx.doi.org/10.1002/9781118833322.ch23]
[21]
Pelletier, J.P.R.; Mukhtar, F. Passive monoclonal and polyclonal antibody therapies. In: Immunologic Concepts in Transfusion Medicine; Elsevier, 2020; pp. 251-348.
[http://dx.doi.org/10.1016/B978-0-323-67509-3.00016-0]
[22]
Oraki Kohshour, M.; Mirzaie, S.; Zeinali, M.; Amin, M.; Said Hakhamaneshi, M.; Jalili, A.; Mosaveri, N.; Jamalan, M. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des., 2014, 83(3), 259-265.
[http://dx.doi.org/10.1111/cbdd.12244] [PMID: 24118702]
[23]
Chen, J.M.; Bai, J.Y.; Yang, K.X. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life, 2018, 70(6), 491-500.
[http://dx.doi.org/10.1002/iub.1749] [PMID: 29637742]
[24]
Rebegea, L.; Firescu, D.; Dumitru, M.; Anghel, R. The incidence and risk factors for occurrence of arm lymphedema after treatment of breast cancer. Chirurgia, 2015, 110(1), 33-37.
[PMID: 25800313]
[25]
Wolff, A.C.; Blackford, A.L.; Visvanathan, K.; Rugo, H.S.; Moy, B.; Goldstein, L.J.; Stockerl-Goldstein, K.; Neumayer, L.; Langbaum, T.S.; Theriault, R.L.; Hughes, M.E.; Weeks, J.C.; Karp, J.E. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience. J. Clin. Oncol., 2015, 33(4), 340-348.
[http://dx.doi.org/10.1200/JCO.2013.54.6119] [PMID: 25534386]
[26]
Fang, J.; Xiao, L.; Joo, K.I.; Liu, Y.; Zhang, C.; Liu, S.; Conti, P.S.; Li, Z.; Wang, P. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int. J. Cancer, 2016, 138(4), 1013-1023.
[http://dx.doi.org/10.1002/ijc.29831] [PMID: 26334777]
[27]
Munir, I.; Naseer, R.; Saleem, M.; Mahmood, A.; Sultana, A. Immunotoxins, an advance tool for cancer treatment: Review and update. Acta Pol. Pharm., 2018, 75(6), 1267-1277.
[http://dx.doi.org/10.32383/appdr/91919]
[28]
Mazor, R.; King, E.M.; Pastan, I. Strategies to reduce the immunogenicity of recombinant immunotoxins. Am. J. Pathol., 2018, 188(8), 1736-1743.
[http://dx.doi.org/10.1016/j.ajpath.2018.04.016] [PMID: 29870741]
[29]
Rust, A.; Partridge, L.; Davletov, B.; Hautbergue, G. The use of plant-derived ribosome inactivating proteins in immunotoxin development: Past, present and future generations. Toxins, 2017, 9(11), 344.
[http://dx.doi.org/10.3390/toxins9110344] [PMID: 29076988]
[30]
Ballinger, M.J.; Perlman, S.J. Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog., 2017, 13(7), e1006431.
[http://dx.doi.org/10.1371/journal.ppat.1006431] [PMID: 28683136]
[31]
Li, C.H.; Li, R.S.; Li, C.M.; Huang, C.Z.; Zhen, S.J. Precise ricin A-chain delivery by Golgi-targeting carbon dots. Chem. Commun., 2019, 55(45), 6437-6440.
[http://dx.doi.org/10.1039/C9CC01599J] [PMID: 31095140]
[32]
Valabrega, G.; Montemurro, F.; Aglietta, M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann. Oncol., 2007, 18(6), 977-984.
[http://dx.doi.org/10.1093/annonc/mdl475] [PMID: 17229773]
[33]
Fiszman, G.L.; Jasnis, M.A. Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. Int. J. Breast Cancer, 2011, 2011, 352182.
[http://dx.doi.org/10.4061/2011/352182]
[34]
Nahta, R.; Esteva, F.J. Herceptin: mechanisms of action and resistance. Cancer Lett., 2006, 232(2), 123-138.
[http://dx.doi.org/10.1016/j.canlet.2005.01.041] [PMID: 16458110]
[35]
Díaz, R.; Pallarès, V.; Cano-Garrido, O.; Serna, N.; Sánchez-García, L.; Falgàs, A.; Pesarrodona, M.; Unzueta, U.; Sánchez-Chardi, A.; Sánchez, J.M.; Casanova, I.; Vázquez, E.; Mangues, R.; Villaverde, A. Selective CXCR4+ cancer cell targeting and potent antineoplastic effect by a nanostructured version of recombinant ricin. Small, 2018, 14(26), 1800665.
[http://dx.doi.org/10.1002/smll.201800665] [PMID: 29845742]
[36]
Trung, N.N.; Tho, N.T.; Thuy Dung, B.T.; My Nhung, H.T.; Thang, N.D. Effects of ricin extracted from seeds of the castor bean (ricinuscommunis) on cytotoxicity and tumorigenesis of melanoma cells. Biomed. Res. Ther., 2016, 3(5), 23.
[http://dx.doi.org/10.7603/s40730-016-0023-7]
[37]
Bich Loan, N.T.; Trung, N.N.; Le Na, N.T.; Thang, N.D. Anticancer activities of ricin-liposome complexes on SKMEL-28 cells. Asian Pac. J. Cancer Prev., 2019, 20(7), 2117-2123.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2117] [PMID: 31350974]
[38]
Hajighasemlou, S.; Alebouyeh, M.; Rastegar, H.; Manzari, M.T.; Mirmoghtadaei, M.; Moayedi, B.; Ahmadzadeh, M.; Parvizpour, F.; Johari, B.; Naeini, M.M.; Farajollahi, M.M. Preparation of immunotoxin herceptin-botulinum and killing effects on two breast cancer cell lines. Asian Pac. J. Cancer Prev., 2015, 16(14), 5977-5981.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5977] [PMID: 26320483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy