Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Organogels: “GelVolution” in Topical Drug Delivery - Present and Beyond

Author(s): Ajinkya Nitin Nikam, Amrita Roy, Ruchira Raychaudhuri, Prerana D. Navti, Soji Soman, Sanjay Kulkarni, Krishnaraj Somayaji Shirur, Abhijeet Pandey and Srinivas Mutalik*

Volume 30, Issue 7, 2024

Published on: 25 January, 2024

Page: [489 - 518] Pages: 30

DOI: 10.2174/0113816128279479231231092905

Price: $65

conference banner
Abstract

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.

Keywords: Organogels, lecithin organogels, topical drug delivery, skin permeation, dermatological treatments, drug solubility.

[1]
Nikam AN, Jacob A, Raychaudhuri R, et al. Topical micro-emulsion of 5-fluorouracil by a twin screw processor-based novel continuous manufacturing process for the treatment of skin cancer: Preparation and in vitro and in vivo evaluations. Pharmaceutics 2023; 15(9): 2175.
[http://dx.doi.org/10.3390/pharmaceutics15092175] [PMID: 37765146]
[2]
Navti PD, Pandey A, Nikam AN, et al. Ionic liquids assisted topical drug delivery for permeation enhancement: Formulation strategies, biomedical applications, and toxicological perspective. AAPS PharmSciTech 2022; 23(5): 161.
[http://dx.doi.org/10.1208/s12249-022-02313-w] [PMID: 35676441]
[3]
Mutalik S, Shetty PK, Kumar A, Kalra R, Parekh HS. Enhancement in deposition and permeation of 5-fluorouracil through human epidermis assisted by peptide dendrimers. Drug Deliv 2014; 21(1): 44-54.
[http://dx.doi.org/10.3109/10717544.2013.845861] [PMID: 24134794]
[4]
Hegde AR, Rewatkar PV, Manikkath J, Tupally K, Parekh HS, Mutalik S. Peptide dendrimer-conjugates of ketoprofen: Synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci 2017; 102: 237-49.
[http://dx.doi.org/10.1016/j.ejps.2017.03.009] [PMID: 28285173]
[5]
Shetty PK, Manikkath J, Tupally K, et al. Skin delivery of EGCG and silibinin: Potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech 2017; 18(6): 2346-57.
[http://dx.doi.org/10.1208/s12249-017-0718-0] [PMID: 28124212]
[6]
Pandey M, Belgamwar V, Gattani S, Surana S, Tekade A. Pluronic lecithin organogel as a topical drug delivery system. Drug Deliv 2010; 17(1): 38-47.
[http://dx.doi.org/10.3109/10717540903508961] [PMID: 22747074]
[7]
Zeng L, Lin X, Li P, Liu FQ, Guo H, Li WH. Recent advances of organogels: From fabrications and functions to applications. Prog Org Coat 2021; 159: 106417.
[http://dx.doi.org/10.1016/j.porgcoat.2021.106417]
[8]
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J Control Release 2018; 271: 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.019] [PMID: 29269143]
[9]
Jhawat V, Gupta S, Saini V. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid. Drug Deliv 2016; 23(9): 3573-81.
[http://dx.doi.org/10.1080/10717544.2016.1212439] [PMID: 27494650]
[10]
Sahoo S, Kumar N, Bhattacharya C, et al. Organogels: Properties and applications in drug delivery. Des Monomers Polym 2011; 14(2): 95-108.
[http://dx.doi.org/10.1163/138577211X555721]
[11]
Martinez RM, Rosado C, Velasco MVR, Lannes SCS, Baby AR. Main features and applications of organogels in cosmetics. Int J Cosmet Sci 2019; 41(2): 109-17.
[http://dx.doi.org/10.1111/ics.12519] [PMID: 30994939]
[12]
Jose J, Gopalan K. Organogels: A versatile drug delivery tool in pharmaceuticals. Res J Pharma Technol 2018; 11(3): 1242-6.
[http://dx.doi.org/10.5958/0974-360X.2018.00231.7]
[13]
Kaur J, Raza K, Preet S. Organogel mediated co-delivery of nisin and 5-fluorouracil: A synergistic approach against skin cancer. J Microencapsul 2022; 39(7-8): 609-25.
[http://dx.doi.org/10.1080/02652048.2022.2149871] [PMID: 36472891]
[14]
Uzan S, Barış D, Çolak M, Aydın H, Hoşgören H. Organogels as novel carriers for dermal and topical drug delivery vehicles. Tetrahedron 2016; 72(47): 7517-25.
[http://dx.doi.org/10.1016/j.tet.2016.10.009]
[15]
Singh VK, Pal K, Banerjee I, Pramanik K, Anis A, Al-Zahrani SM. Novel organogel based lyotropic liquid crystal physical gels for controlled delivery applications. Eur Polym J 2015; 68: 326-37.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.05.009]
[16]
Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2012; 2(1): 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[17]
Mahalingam R, Li X, Jasti BR. Semisolid dosages: Ointments, creams, and gels. Pharm Manuf Handb 2008; 1: 267-312.
[http://dx.doi.org/10.1002/9780470259818.ch9]
[18]
Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2009; 71(3): 242-51.
[http://dx.doi.org/10.4103/0250-474X.56015] [PMID: 20490289]
[19]
Trimble JO. Salt stable lecithin organogel composition. Google Patents 2009.
[20]
Balata G, El Nahas HM, Radwan S. Propolis organogel as a novel topical delivery system for treating wounds. Drug Deliv 2014; 21(1): 55-61.
[http://dx.doi.org/10.3109/10717544.2013.847032] [PMID: 24295500]
[21]
Balata GF, Shamardl HEM, Abd Elmoneim HM, Hakami AA, Almodhwahi MA. Propolis emulgel: A natural remedy for burn and wound. Drug Dev Ind Pharm 2018; 44(11): 1797-808.
[http://dx.doi.org/10.1080/03639045.2018.1496449] [PMID: 29973098]
[22]
Haznedaroglu MZ, Yurdasiper A, Koyu H, Yalcin G, Ozturk I, Gokce EH. Preparation and evaluation of a novel organogel formulation of Salvia tomentosa Mill. essential oil. Lat Am J Pharm 2013; 32(6): 845-51.
[23]
Sanapalli BKR, Kannan E, Balasubramanian S, Natarajan J, Baruah UK, Karri VVSR. Pluronic lecithin organogel of 5-aminosalicylic acid for wound healing. Drug Dev Ind Pharm 2018; 44(10): 1650-8.
[http://dx.doi.org/10.1080/03639045.2018.1483393] [PMID: 29848103]
[24]
Singh VK, Pramanik K, Ray SS, Pal K. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials. AAPS PharmSciTech 2015; 16(2): 293-305.
[http://dx.doi.org/10.1208/s12249-014-0223-7] [PMID: 25277240]
[25]
Upadhyay KK, Tiwari C, Khopade AJ, Bohidar HB, Jain SK. Sorbitan ester organogels for transdermal delivery of sumatriptan. Drug Dev Ind Pharm 2007; 33(6): 617-25.
[http://dx.doi.org/10.1080/03639040701199266] [PMID: 17613026]
[26]
Katariya M, Mehta D. Fabrication of an organogel-based transdermal delivery system of loxoprofen sodium. Proc MDPI 2020.
[27]
Jatav MP, Ramteke S. Formulation and evaluation of lecithin organogel for treatment of arthritis. Int J Sci World 2015; 3(2): 267-74.
[http://dx.doi.org/10.14419/ijsw.v3i2.5028]
[28]
Pawar S, Jahagirdar A, Kolkar D, Patil M, Udavant P, Kshirsagar S. Investigation of potential of organogel carrying etodolac for anti-inflammatory activity. Pharm Biol Eval 2015; 2: 284-97.
[29]
Sevinç-Özakar R, Seyret E, Özakar E, Adıgüzel MC. Nanoemulsion-based hydrogels and organogels containing propolis and dexpanthenol: Preparation, characterization, and comparative evaluation of stability, antimicrobial, and cytotoxic properties. Gels 2022; 8(9): 578.
[http://dx.doi.org/10.3390/gels8090578] [PMID: 36135290]
[30]
Thakur K, Mahajan A, Sharma G, et al. Implementation of Quality by Design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: An improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int J Pharm 2020; 576: 118977.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118977] [PMID: 31870953]
[31]
Querobino SM, de Faria NC, Vigato AA, et al. Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: Influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity. Mater Sci Eng C 2019; 99: 1350-61.
[http://dx.doi.org/10.1016/j.msec.2019.02.036] [PMID: 30889669]
[32]
Patil MP, Shinde GP, Kshirsagar SJ, Parakh DR. Development and characterization of ketoconazole loaded organogel for topical drug delivery. Inven J 2015; 3: 1-10.
[33]
Ambreen Z, Faran SA, Daniel A, et al. Physicochemical, rheological and antifungal evaluation of miconazole nitrate organogels for topical delivery. Pak J Pharm Sci 2022; 35(4(Special)): 1215-21.
[PMID: 36218100]
[34]
Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS PharmSciTech 2005; 6(2): E298-310.
[http://dx.doi.org/10.1208/pt060240] [PMID: 16353989]
[35]
Ahmad MU. Lipids in nanotechnology. Elsevier 2015.
[36]
Sreedevi T, Ramya D, Vedha H. An emerging era in topical delivery: Organogels. Int J Drug Dev Res 2012; 4(2): 35-40.
[37]
Mehta C, Bhatt G, Kothiyal P. A review on organogel for skin aging. Indian J Pharmaceut Biol Res 2016; 4(3): 28-37.
[http://dx.doi.org/10.30750/ijpbr.4.3.5]
[38]
Almeida H, Amaral MH, Lobão P, Lobo JMS. Pluronic® F-127 and Pluronic Lecithin Organogel (PLO): Main features and their applications in topical and transdermal administration of drugs. J Pharm Pharm Sci 2012; 15(4): 592-605.
[http://dx.doi.org/10.18433/J3HW2B] [PMID: 23106961]
[39]
Belgamwar VS, Pandey MS, Chauk DS, Surana SJ. Pluronic lecithin organogel. Asian J Pharm AJP 2008; 2(3): 43295.
[http://dx.doi.org/10.4103/0973-8398.43295]
[40]
Alsaab H, Bonam SP, Bahl D, Chowdhury P, Alexander K, Boddu SHS. Organogels in drug delivery: A special emphasis on pluronic lecithin organogels. J Pharm Pharm Sci 2016; 19(2): 252-73.
[http://dx.doi.org/10.18433/J3V89W] [PMID: 27518174]
[41]
Zhang Q, Song Y, Page SW, Garg S. Evaluation of transdermal drug permeation as modulated by lipoderm and pluronic lecithin organogel. J Pharm Sci 2018; 107(2): 587-94.
[http://dx.doi.org/10.1016/j.xphs.2017.09.008] [PMID: 28935590]
[42]
Murdan S. Organogels in drug delivery. Expert Opin Drug Deliv 2005; 2(3): 489-505.
[http://dx.doi.org/10.1517/17425247.2.3.489] [PMID: 16296770]
[43]
Feringa BL, Feringa BL. New functional materials based on self- assembling organogels: From serendipity towards design the royal netherlands academy of science is gratefully acknowledged for a fellowship for J.H.V.E. Angew Chem Int Ed Engl 2000; 39(13): 2263-6.
[http://dx.doi.org/10.1002/1521-3773(20000703)39:13<2263::AID-ANIE2263>3.0.CO;2-V] [PMID: 10941059]
[44]
Chetia M, Debnath S, Chowdhury S, Chatterjee S. Self-assembly and multifunctionality of peptide organogels: Oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Advances 2020; 10(9): 5220-33.
[http://dx.doi.org/10.1039/C9RA10395C] [PMID: 35498311]
[45]
Zhang YP, Wang BX, Yang YS, Liang C, Yang C, Chai HL. Synthesis and self-assembly of chalcone-based organogels. Colloids Surf A Physicochem Eng Asp 2019; 577: 449-55.
[http://dx.doi.org/10.1016/j.colsurfa.2019.06.010]
[46]
Hirst AR, Coates IA, Boucheteau TR, et al. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 2008; 130(28): 9113-21.
[http://dx.doi.org/10.1021/ja801804c] [PMID: 18558681]
[47]
Mujawar NK, Ghatage SL, Yeligar VC. Organogel: Factors and its importance. Int J Pharm 2014; 4(3): 758-73.
[48]
Lee WK, Lim YY, Leow ATC, Namasivayam P, Abdullah JO, Ho CL. Factors affecting yield and gelling properties of agar. J Appl Phycol 2017; 29(3): 1527-40.
[http://dx.doi.org/10.1007/s10811-016-1009-y]
[49]
Jin FY, Yuan CD, Pu WF, et al. Investigation on gelation process and microstructure for partially hydrolyzed polyacrylic amide (HPAm)-Cr(III) acetate–methanal compound crosslinked weak gel. J Sol-Gel Sci Technol 2015; 73(1): 181-91.
[http://dx.doi.org/10.1007/s10971-014-3509-z]
[50]
Alwin S, Sahaya Shajan X. Aerogels: Promising nanostructured materials for energy conversion and storage applications. Mater Renew Sustain Energy 2020; 9(2): 7.
[http://dx.doi.org/10.1007/s40243-020-00168-4]
[51]
Das J, Bhattacharjee B, Dutta J, Paul T. Organogel: An ideal drug delivery carrier. World J Pharm Res 2021; 10: 446.
[52]
Bera R, Dey A, Chakrabarty D. Studies on gelling characteristics of N-tertiary butyl acrylamide-acrylic acid copolymer. Adv Polym Technol 2014; 33(2)
[53]
Kabiri K, Azizi A, Zohuriaan-Mehr MJ, Marandi GB, Bouhendi H. Alcohophilic gels: Polymeric organogels composing carboxylic and sulfonic acid groups. J Appl Polym Sci 2011; 120(6): 3350-6.
[http://dx.doi.org/10.1002/app.33521]
[54]
Hu B, Sun W, Yang B, Li H, Zhou L, Li S. Application of solvent parameters for predicting organogel formation. AAPS PharmSciTech 2018; 19(5): 2288-300.
[http://dx.doi.org/10.1208/s12249-018-1074-4] [PMID: 29845502]
[55]
Ohsedo Y, Taniguchi M, Oono M, Saruhashi K, Watanabe H. Creation of thixotropic multicomponent alkylamide organogels containing non-volatile oil as potential drug release host materials. RSC Advances 2014; 4(67): 35484-8.
[http://dx.doi.org/10.1039/C4RA06130F]
[56]
Zafar S, Hanif M, Azeem M, Mahmood K, Gondal SA. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym Bull 2022; 79(11): 9199-219.
[http://dx.doi.org/10.1007/s00289-021-03956-8]
[57]
Ceylan D, Okay O. Macroporous polyisobutylene gels: A novel tough organogel with superfast responsivity. Macromolecules 2007; 40(24): 8742-9.
[http://dx.doi.org/10.1021/ma071605j]
[58]
Marković N, Ginić-Marković M, Dutta NK. Benzene physical and chemical organogels: Effect of network scaffolding on the thermodynamic behavior of entrapped solvent molecules. J Appl Polym Sci 2004; 94(3): 1253-64.
[http://dx.doi.org/10.1002/app.21059]
[59]
Baglioni P, Bonelli N, Chelazzi D, et al. Organogel formulations for the cleaning of easel paintings. Appl Phys, A Mater Sci Process 2015; 121(3): 857-68.
[http://dx.doi.org/10.1007/s00339-015-9364-0]
[60]
Yao X, Wu S, Chen L, et al. Self-replenishable anti-waxing organogel materials. Angew Chem Int Ed Engl 2015; 54(31): 8975-9.
[http://dx.doi.org/10.1002/anie.201503031] [PMID: 26083324]
[61]
Flory PJ, Rehner J Jr. Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 1943; 11(11): 521-6.
[http://dx.doi.org/10.1063/1.1723792]
[62]
Liu Q, Li S, Zhang P, Lan Y, Lu M. Facile preparation of PNIPAM gel with improved deswelling kinetics by using 1-dodecanethiol as chain transfer agent. J Polym Res 2007; 14(5): 397-400.
[http://dx.doi.org/10.1007/s10965-007-9122-x]
[63]
Kuzina MA, Kartsev DD, Stratonovich AV, Levkin PA. Organogels versus hydrogels: Advantages, challenges, and applications. Adv Funct Mater 2023; 33(27): 2301421.
[http://dx.doi.org/10.1002/adfm.202301421]
[64]
Ayarza J, Wang Z, Wang J, Esser-Kahn AP. Mechanically promoted synthesis of polymer organogels via disulfide bond cross-linking. ACS Macro Lett 2021; 10(7): 799-804.
[http://dx.doi.org/10.1021/acsmacrolett.1c00337] [PMID: 35549197]
[65]
Ding Q, Wu Z, Tao K, et al. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater Horiz 2022; 9(5): 1356-86.
[http://dx.doi.org/10.1039/D1MH01871J] [PMID: 35156986]
[66]
Bartocci S, Morbioli I, Maggini M, Mba M. Solvent-tunable morphology and emission of pyrene-dipeptide organogels. J Pept Sci 2015; 21(12): 871-8.
[http://dx.doi.org/10.1002/psc.2829] [PMID: 26767742]
[67]
Lai WC, Tseng SJ, Chao YS. Effect of hydrophobicity of monomers on the structures and properties of 1,3:2,4-dibenzylidene-D-sorbitol organogels and polymers prepared by templating the gels. Langmuir 2011; 27(20): 12630-5.
[http://dx.doi.org/10.1021/la2023055] [PMID: 21919442]
[68]
Luboradzki R, Gronwald O, Ikeda A, Shinkai S. Sugar-integrated “Supergelators” which can form organogels with 0.03-0.05% [g mL−1]. Chem Lett 2000; 29(10): 1148-9.
[http://dx.doi.org/10.1246/cl.2000.1148]
[69]
Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chemistry 2001; 7(20): 4328-34.
[PMID: 11695665]
[70]
Zhang L, Jiao T, Ma K, et al. Self-assembly and drug release capacities of organogels via some amide compounds with aromatic substituent headgroups. Materials 2016; 9(7): 541.
[http://dx.doi.org/10.3390/ma9070541] [PMID: 28773663]
[71]
Jha S, Maurya SD. Organogels in drug delivery. J Biomed Pharm Res 2013; 2: 89-99.
[72]
Chaves KF, Barrera-Arellano D, Ribeiro APB. Potential application of lipid organogels for food industry. Food Res Int 2018; 105: 863-72.
[http://dx.doi.org/10.1016/j.foodres.2017.12.020] [PMID: 29433283]
[73]
Ozel B, Oztop MH. Rheology of food hydrogels, and organogels. Advances in Food Rheology and Its Applications. Elsevier 2023; pp. 661-88.
[http://dx.doi.org/10.1016/B978-0-12-823983-4.00018-2]
[74]
Martins AJ, Vicente AA, Cunha RL, Cerqueira MA. Edible oleogels: An opportunity for fat replacement in foods. Food Funct 2018; 9(2): 758-73.
[http://dx.doi.org/10.1039/C7FO01641G] [PMID: 29417124]
[75]
Sanches SCDC, Ré MI, Silva-Júnior JOC, Ribeiro-Costa RM. Organogel of acai oil in cosmetics: Microstructure, stability, rheology and mechanical properties. Gels 2023; 9(2): 150.
[http://dx.doi.org/10.3390/gels9020150] [PMID: 36826320]
[76]
Skilling KJ, Citossi F, Bradshaw TD, Ashford M, Kellam B, Marlow M. Insights into low molecular mass organic gelators: A focus on drug delivery and tissue engineering applications. Soft Matter 2014; 10(2): 237-56.
[http://dx.doi.org/10.1039/C3SM52244J] [PMID: 24651822]
[77]
Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 2019; 13(1): 55.
[http://dx.doi.org/10.1186/s13036-019-0177-0] [PMID: 31249615]
[78]
Kalcioglu ZI, Mrozek RA, Mahmoodian R, VanLandingham MR, Lenhart JL, Van Vliet KJ. Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants. J Biomech 2013; 46(9): 1583-91.
[http://dx.doi.org/10.1016/j.jbiomech.2013.03.011] [PMID: 23623681]
[79]
Kaczorowski M, Ronowicz M, Rokicki G. Organogels containing immobilized shear thickening fluid and their composites with polyurethane elastomer. Smart Mater Struct 2019; 28(3): 035034.
[http://dx.doi.org/10.1088/1361-665X/ab02a6]
[80]
Saifee DM, Gosavi PP. Organogels in topical drug delivery system: A systematic review. World J Pharm Res 2022: 1810-33.
[81]
Teepireddy T. Preparation and characterization of novel span 80: Tween-80 based organogels for food and pharmaceutical industries Agr Food Sci Chem 2011.
[82]
Sharma J, Agrawal D, Sharma AK, Khandelwal M, Aman S. New topical drug delivery system pharmaceutical organogel: A review. Asian J Pharmaceut Res Develop 2022; 10(1): 75-8.
[http://dx.doi.org/10.22270/ajprd.v10i1.1088]
[83]
Hamed R, Farhan A, Abu-Huwaij R, Mahmoud NN, Kamal A. Lidocaine microemulsion-laden organogels as lipid-based systems for topical delivery. J Pharm Innov 2020; 15(4): 521-34.
[http://dx.doi.org/10.1007/s12247-019-09399-z]
[84]
Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm 2016; 42(6): 985-97.
[http://dx.doi.org/10.3109/03639045.2015.1103746] [PMID: 26548427]
[85]
Assadpour E, Jafari SM. An overview of lipid-based nanostructures for encapsulation of food ingredients. Lipid-Based Nanostructures for Food Encapsulation Purposes. Academic Press 2019; pp. 1-34.
[http://dx.doi.org/10.1016/B978-0-12-815673-5.00001-5]
[86]
Bhattacharya C, Kumar N, Sagiri SS, Pal K, Ray SS. Development of span 80-tween 80 based fluid-filled organogels as a matrix for drug delivery. J Pharm Bioallied Sci 2012; 4(2): 155-63.
[http://dx.doi.org/10.4103/0975-7406.94822] [PMID: 22557927]
[87]
Murashova NM, Yurtov EV. Lecithin organogels as prospective functional nanomaterial. Nanotechnol Russ 2015; 10(7-8): 511-22.
[http://dx.doi.org/10.1134/S199507801504014X]
[88]
Vierros S, Sammalkorpi M. Role of hydration in phosphatidylcholine reverse micelle structure and gelation in cyclohexane: A molecular dynamics study. Phys Chem Chem Phys 2015; 17(22): 14951-60.
[http://dx.doi.org/10.1039/C5CP01799H] [PMID: 25982225]
[89]
Aggarwal G, Nagpal M. Pharmaceutical polymer gels in drug delivery. Polym Gels Perspect Appl 2018; 249-84.
[90]
Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: Review. J Mater Sci Mater Med 2020; 31(6): 50.
[http://dx.doi.org/10.1007/s10856-020-06390-w] [PMID: 32451785]
[91]
Lee WY, Asadujjaman M, Jee J-P. Long acting injectable formulations: The state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Investig 2019; 49(4): 459-76.
[http://dx.doi.org/10.1007/s40005-019-00449-9]
[92]
Carretti E, Dei L, Macherelli A, Weiss RG. Rheoreversible polymeric organogels: The art of science for art conservation. Langmuir 2004; 20(20): 8414-8.
[http://dx.doi.org/10.1021/la0495175] [PMID: 15379453]
[93]
Tokuyama H, Kato Y. Preparation of thermosensitive polymeric organogels and their drug release behaviors. Eur Polym J 2010; 46(2): 277-82.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.10.016]
[94]
Liu B, Yang J, Yang M, et al. Polyoxometalate cluster-contained hybrid gelator and hybrid organogel: A new concept of softenization of polyoxometalate clusters. Soft Matter 2011; 7(6): 2317-20.
[http://dx.doi.org/10.1039/c1sm05032j]
[95]
Lai WC, Huang PH. Self-assembly behaviors of dibenzylidene sorbitol hybrid organogels with inorganic silica. Soft Matter 2017; 13(17): 3107-15.
[http://dx.doi.org/10.1039/C6SM02853E] [PMID: 28393159]
[96]
Kumar V, Awasthi R, Single S. Pluronic lecithin organogel- A review. World J Pharm Pharm Sci 2021; 10(9): 2278-4357.
[97]
Lukyanova L, Franceschi-Messant S, Vicendo P, Perez E, Rico-Lattes I, Weinkamer R. Preparation and evaluation of microporous organogel scaffolds for cell viability and proliferation. Colloids Surf B Biointerfaces 2010; 79(1): 105-12.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.044] [PMID: 20427161]
[98]
Xuan XY, Cheng YL, Acosta E. Lecithin-linker microemulsion gelatin gels for extended drug delivery. Pharmaceutics 2012; 4(1): 104-29.
[http://dx.doi.org/10.3390/pharmaceutics4010104] [PMID: 24300183]
[99]
Häring G, Luisi PL, Meussdoerffer F. Solubilization of bacterial cells in organic solvents via reverse micelles. Biochem Biophys Res Commun 1985; 127(3): 911-5.
[http://dx.doi.org/10.1016/S0006-291X(85)80030-9] [PMID: 3921020]
[100]
Pavlidis IV, Tzafestas K, Stamatis H. Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization. Biotechnol J 2010; 5(8): 805-12.
[http://dx.doi.org/10.1002/biot.201000052] [PMID: 20449844]
[101]
Sagiri SS, Pal K, Basak P. Encapsulation of animal wax-based organogels in alginate microparticles. J Appl Polym Sci 2014; 131(20): app.40910.
[http://dx.doi.org/10.1002/app.40910]
[102]
Sagiri SS, Pal K, Basak P, Rana UA, Shakir I, Anis A. Encapsulation of sorbitan ester-based organogels in alginate microparticles. AAPS PharmSciTech 2014; 15(5): 1197-208.
[http://dx.doi.org/10.1208/s12249-014-0147-2] [PMID: 24889733]
[103]
Sagiri SS, Singh VK, Banerjee I, Pramanik K, Basak P, Pal K. Core-shell-type organogel-alginate hybrid microparticles: A controlled delivery vehicle. Chem Eng J 2015; 264: 134-45.
[http://dx.doi.org/10.1016/j.cej.2014.11.032]
[104]
Chou IC, Chen SI, Chiu WY. Surfactant-free dispersion polymerization as an efficient synthesis route to a successful encapsulation of nanoparticles. RSC Advances 2014; 4(88): 47436-47.
[http://dx.doi.org/10.1039/C4RA07475K]
[105]
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2022; 51(1): 128-52.
[http://dx.doi.org/10.1039/D1CS00686J] [PMID: 34762084]
[106]
Lu M, Cao Y, Ho CT, Huang Q. Development of organogel-derived capsaicin nanoemulsion with improved bioaccessibility and reduced gastric mucosa irritation. J Agric Food Chem 2016; 64(23): 4735-41.
[http://dx.doi.org/10.1021/acs.jafc.6b01095] [PMID: 27170269]
[107]
Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 2012; 60(21): 5373-9.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[108]
Martin B, Garrait G, Beyssac E, Goudouneche D, Perez E, Franceschi S. Organogel nanoparticles as a new way to improve oral bioavailability of poorly soluble compounds. Pharm Res 2020; 37(6): 92.
[http://dx.doi.org/10.1007/s11095-020-02808-w] [PMID: 32394200]
[109]
Kirilov P, Rum S, Gilbert E, et al. Aqueous dispersions of organogel nanoparticles - Potential systems for cosmetic and dermo-cosmetic applications. Int J Cosmet Sci 2014; 36(4): 336-46.
[http://dx.doi.org/10.1111/ics.12131] [PMID: 24749969]
[110]
Kirilov P, Gauffre F, Franceschi-Messant S, Perez E, Rico-Lattes I. Rheological characterization of a new type of colloidal dispersion based on nanoparticles of gelled oil. J Phys Chem B 2009; 113(32): 11101-8.
[http://dx.doi.org/10.1021/jp905260s] [PMID: 19621943]
[111]
Simmons B, Li S, John VT, et al. Spatial compartmentalization of nanoparticles into strands of a self-assembled organogel. Nano Lett 2002; 2(10): 1037-42.
[http://dx.doi.org/10.1021/nl015691r]
[112]
Banerjee S, Das RK, Terech P, et al. Hybrid organogels and aerogels from co-assembly of structurally different low molecular weight gelators. J Mater Chem C Mater Opt Electron Devices 2013; 1(20): 3305-16.
[http://dx.doi.org/10.1039/c3tc30104d]
[113]
Zhao T, Wang G, Hao D, Chen L, Liu K, Liu M. Macroscopic layered organogel-hydrogel hybrids with controllable wetting and swelling performance. Adv Funct Mater 2018; 28(49): 1800793.
[http://dx.doi.org/10.1002/adfm.201800793]
[114]
Ash D, Majee SB, Avlani D. Characterisation of novel topical olive oil oleohydrogel hybrid for controlled drug release. Int J Pharm Sci Rev Res 2020; 64(1): 128-32.
[http://dx.doi.org/10.47583/ijpsrr.2020.v64i01.024]
[115]
Li C, Feng S, Li C, et al. Synthesizing organo/hydrogel hybrids with diverse programmable patterns and ultrafast self-actuating ability via a site-specific “in situ” transformation strategy. Adv Funct Mater 2020; 30(32): 2002163.
[http://dx.doi.org/10.1002/adfm.202002163]
[116]
Wadhavane PD, Izquierdo MA, Galindo F, Burguete MI, Luis SV. Organogel-quantum dots hybrid materials displaying fluorescence sensitivity and structural stability towards nitric oxide. Soft Matter 2012; 8(16): 4373-81.
[http://dx.doi.org/10.1039/c2sm07175d]
[117]
Wadhavane PD, Galian RE, Izquierdo MA, et al. Photoluminescence enhancement of CdSe quantum dots: A case of organogel- nanoparticle symbiosis. J Am Chem Soc 2012; 134(50): 20554-63.
[http://dx.doi.org/10.1021/ja310508r] [PMID: 23214451]
[118]
Dos Santos MC, Kroetz T, Dora CL, et al. Elucidating Bauhinia variegata lectin/phosphatidylcholine interactions in lectin-containing liposomes. J Colloid Interface Sci 2018; 519: 232-41.
[http://dx.doi.org/10.1016/j.jcis.2018.02.028] [PMID: 29501995]
[119]
Chakrabarty A, Maitra U. Organogels from dimeric bile acid esters: In situ formation of gold nanoparticles. J Phys Chem B 2013; 117(26): 8039-46.
[http://dx.doi.org/10.1021/jp4029497] [PMID: 23751127]
[120]
Peveler WJ, Bear JC, Southern P, Parkin IP. Organic-inorganic hybrid materials: Nanoparticle containing organogels with myriad applications. Chem Commun 2014; 50(92): 14418-20.
[http://dx.doi.org/10.1039/C4CC05745G] [PMID: 25302345]
[121]
Shakeel A, Farooq U, Gabriele D, Marangoni AG, Lupi FR. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocoll 2021; 111: 106190.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106190]
[122]
Behera B, Sagiri SS, Pal K, et al. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications-characterization and in vitro antimicrobial efficiency. Polym Plast Technol Eng 2015; 54(8): 837-50.
[http://dx.doi.org/10.1080/03602559.2014.974268]
[123]
Patel AR, Mankoč B, Bin Sintang MD, Lesaffer A, Dewettinck K. Fumed silica-based organogels and ‘aqueous-organic’ bigels. RSC Advances 2015; 5(13): 9703-8.
[http://dx.doi.org/10.1039/C4RA15437A]
[124]
Gökçe EH, Yurdasiper A, Korkmaz E, Özer Ö. A novel preparation method for organogels: High-speed homogenization and micro-irradiation. AAPS PharmSciTech 2013; 14(1): 391-7.
[http://dx.doi.org/10.1208/s12249-013-9922-8] [PMID: 23344854]
[125]
Bedse A, Singh D, Raut S, Baviskar K, Wable A, Pagare P. Organogel: A propitious carman in drug delivery system. Advances in Drug Delivery Methods. IntechOpen 2022.
[126]
Banaś K, Harasym J. Natural gums as oleogelators. Int J Mol Sci 2021; 22(23): 12977.
[http://dx.doi.org/10.3390/ijms222312977] [PMID: 34884775]
[127]
Harris L, Rosen-Kligvasser J, Davidovich-Pinhas M. Gelation of oil using combination of different free fatty acids. Food Struct 2019; 21: 100121.
[http://dx.doi.org/10.1016/j.foostr.2019.100121]
[128]
Pal KB, Mukhopadhyay B. Carbohydrate-basedsafe fuel gel with significant self-healing property. ChemistrySelect 2017; 2(3): 967-74.
[http://dx.doi.org/10.1002/slct.201601776]
[129]
Nostro PL, Ramsch R, Fratini E, et al. Organogels from a vitamin C-based surfactant. J Phys Chem B 2007; 111(40): 11714-21.
[http://dx.doi.org/10.1021/jp0730085] [PMID: 17880125]
[130]
Vigato AA, Querobino SM, de Faria NC, et al. Physico-chemical characterization and biopharmaceutical evaluation of lipid-poloxamer-based organogels for curcumin skin delivery. Front Pharmacol 2019; 10: 1006.
[http://dx.doi.org/10.3389/fphar.2019.01006] [PMID: 31572185]
[131]
Rogers M, Wright AJ, Marangoni A. Ceramide oleogels. Edible Oleogels. AOCS Press 2011.
[http://dx.doi.org/10.1016/B978-0-9830791-1-8.50013-9]
[132]
Rogers MA, Wright AJ, Marangoni AG. Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr Opin Colloid Interface Sci 2009; 14(1): 33-42.
[http://dx.doi.org/10.1016/j.cocis.2008.02.004]
[133]
Motulsky A, Lafleur M, Couffin-Hoarau AC, et al. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 2005; 26(31): 6242-53.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.004] [PMID: 15916802]
[134]
Murdan S, Gregoriadis G, Florence AT. Novel sorbitan monostearate organogels. J Pharm Sci 1999; 88(6): 608-14.
[http://dx.doi.org/10.1021/js980342r] [PMID: 10350496]
[135]
Meng Z, Guo Y, Wang Y, Liu Y. Organogels based on the polyglyceryl fatty acid ester and sunflower oil: Macroscopic property, microstructure, interaction force, and application. Lebensm Wiss Technol 2019; 116: 108590.
[http://dx.doi.org/10.1016/j.lwt.2019.108590]
[136]
Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K. L-lysine based gemini organogelators: Their organogelation properties and thermally stable organogels. Org Biomol Chem 2003; 1(22): 4124-31.
[http://dx.doi.org/10.1039/b308371c] [PMID: 14664402]
[137]
Mitra A, Sarkar V, Mukhopadhyay B. Simple carbohydrate-derived multifunctional gels. ChemistrySelect 2017; 2(31): 9958-61.
[http://dx.doi.org/10.1002/slct.201701495]
[138]
Agrawal V, Gupta V, Ramteke S, Trivedi P. Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan. AAPS PharmSciTech 2010; 11(4): 1718-25.
[http://dx.doi.org/10.1208/s12249-010-9540-7] [PMID: 21128126]
[139]
Shchipunov YA. Lecithin organogel. Colloids Surf A Physicochem Eng Asp 2001; 183-185(183–185): 541-54.
[http://dx.doi.org/10.1016/S0927-7757(01)00511-8]
[140]
Jadhav KR, Kadam VJ, Pisal SS. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr Drug Deliv 2009; 6(2): 174-83.
[http://dx.doi.org/10.2174/156720109787846252] [PMID: 19450224]
[141]
Lim PFC, Liu XY, Kang L, Ho PCL, Chan YW, Chan SY. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm 2006; 311(1-2): 157-64.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.042] [PMID: 16451823]
[142]
Charoensumran P, Ajiro H. Controlled release of testosterone by polymer-polymer interaction enriched organogel as a novel transdermal drug delivery system: Effect of limonene/PG and carbon-chain length on drug permeability. React Funct Polym 2020; 148: 104461.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104461]
[143]
Zahi MR, Wan P, Liang H, Yuan Q. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer. J Agric Food Chem 2014; 62(52): 12563-9.
[http://dx.doi.org/10.1021/jf5032108] [PMID: 25514199]
[144]
Liu H, Wang Y, Han F, Yao H, Li S. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of Cyclosporin A in vitro and dermal pharmacokinetics in vivo. J Pharm Sci 2007; 96(11): 3000-9.
[http://dx.doi.org/10.1002/jps.20898] [PMID: 17705159]
[145]
Kantaria S, Rees GD, Lawrence MJ. Gelatin-stabilised microemulsion-based organogels: Rheology and application in iontophoretic transdermal drug delivery. J Control Release 1999; 60(2-3): 355-65.
[http://dx.doi.org/10.1016/S0168-3659(99)00092-9] [PMID: 10425340]
[146]
Sagiri SS, Behera B, Pal K, Basak P. Lanolin-based organogels as a matrix for topical drug delivery. J Appl Polym Sci 2013; 128(6): 3831-9.
[http://dx.doi.org/10.1002/app.38590]
[147]
Nazali NNM, Nordin NN, Khalit MI, Manan NFA. Finite element analysis of animal skin under different temperatures. AIP Conference Proceedings. AIP Publishing 2023.
[http://dx.doi.org/10.1063/5.0118580]
[148]
Sharma G, Devi N, Thakur K, Jain A, Katare OP. Lanolin-based organogel of salicylic acid: Evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res 2018; 8(2): 398-413.
[http://dx.doi.org/10.1007/s13346-017-0364-9] [PMID: 28224375]
[149]
Kaplan S, Colak M, Hosgoren H, Pirinccioglu N. Design of L-lysine-based organogelators and their applications in drug release processes. ACS Omega 2019; 4(7): 12342-56.
[http://dx.doi.org/10.1021/acsomega.9b01086] [PMID: 31460352]
[150]
Aguilar-Zárate M, Macias-Rodriguez BA, Toro-Vazquez JF, Marangoni AG. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr Polym 2019; 205: 98-105.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.032] [PMID: 30446154]
[151]
Bin Sintang MD, Danthine S, Brown A, et al. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res Int 2017; 100(Pt 1): 832-40.
[http://dx.doi.org/10.1016/j.foodres.2017.07.079] [PMID: 28873756]
[152]
Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K. Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. J Colloid Interface Sci 2017; 504: 387-96.
[http://dx.doi.org/10.1016/j.jcis.2017.05.114] [PMID: 28586736]
[153]
Tang C, Wan Z, Chen Y, et al. Structure and properties of organogels prepared from rapeseed oil with stigmasterol. Foods 2022; 11(7): 939.
[http://dx.doi.org/10.3390/foods11070939] [PMID: 35407025]
[154]
Giuri D, Zanna N, Tomasini C. Low molecular weight gelators based on functionalized l-dopa promote organogels formation. Gels 2019; 5(2): 27.
[http://dx.doi.org/10.3390/gels5020027] [PMID: 31091701]
[155]
Suzuki M, Hanabusa K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self- assembly. Chem Soc Rev 2010; 39(2): 455-63.
[http://dx.doi.org/10.1039/B910604A] [PMID: 20111770]
[156]
Marui Y, Kikuzawa A, Kida T, Akashi M. Unique organogel formation with macroporous materials constructed by the freeze-drying of aqueous cyclodextrin solutions. Langmuir 2010; 26(13): 11441-5.
[http://dx.doi.org/10.1021/la1009434] [PMID: 20524684]
[157]
Godoi KRR, Basso RC, Ming CC, et al. Physicochemical and rheological properties of soybean organogels: Interactions between different structuring agents. Food Res Int 2019; 124: 108475.
[http://dx.doi.org/10.1016/j.foodres.2019.05.023] [PMID: 31466657]
[158]
Martins AJ, Cerqueira MA, Cunha RL, Vicente AA. Fortified beeswax oleogels: Effect of β-carotene on the gel structure and oxidative stability. Food Funct 2017; 8(11): 4241-50.
[http://dx.doi.org/10.1039/C7FO00953D] [PMID: 29051941]
[159]
Lu J, Deegan AJ, Cheng Y, et al. Application of OCT-derived attenuation coefficient in acute burn-damaged skin. Lasers Surg Med 2021; 53(9): 1192-200.
[http://dx.doi.org/10.1002/lsm.23415] [PMID: 33998012]
[160]
Del-Valle M, Lins E, Ana P. Assessment of simulated osteoporosis in alveolar bone using optical coherence tomography. J Biophotonics 2019; 12(12): e201900171.
[http://dx.doi.org/10.1002/jbio.201900171] [PMID: 31483943]
[161]
Vigato AA, Machado IP, Del Valle M, et al. Monoketonic curcuminoid-lidocaine co-deliver using thermosensitive organogels: From drug synthesis to epidermis structural studies. Pharmaceutics 2022; 14(2): 293.
[http://dx.doi.org/10.3390/pharmaceutics14020293] [PMID: 35214026]
[162]
Yu Y, Chu N, Pan Q, et al. Solvent effects on gelation behavior of the organogelator based on l-phenylalanine dihydrazide derivatives. Materials 2019; 12(12): 1890.
[http://dx.doi.org/10.3390/ma12121890] [PMID: 31212767]
[163]
Guenet JM. Physical aspects of organogelation: A point of view. Gels 2021; 7(2): 65.
[http://dx.doi.org/10.3390/gels7020065] [PMID: 34205955]
[164]
Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive gels. Gels 2017; 3(1): 4.
[http://dx.doi.org/10.3390/gels3010004] [PMID: 30920501]
[165]
Okesola BO, Smith DK. Applying low-molecular weight supramolecular gelators in an environmental setting - self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 2016; 45(15): 4226-51.
[http://dx.doi.org/10.1039/C6CS00124F] [PMID: 27241027]
[166]
Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev 2014; 114(4): 1973-2129.
[http://dx.doi.org/10.1021/cr400195e] [PMID: 24400783]
[167]
Yang R, Peng S, Hughes TC. Multistimuli responsive organogels based on a reactive azobenzene gelator. Soft Matter 2014; 10(13): 2188-96.
[http://dx.doi.org/10.1039/C3SM53145G] [PMID: 24652628]
[168]
Kumar S, Wu L, Sharma N, et al. Theoretical and experimental studies of an oseltamivir-triazole-based thermoresponsive organogel. RSC Advances 2019; 9(36): 21031-41.
[http://dx.doi.org/10.1039/C9RA02463H] [PMID: 35515532]
[169]
Li JL, Wang RY, Liu XY, Pan HH. Nanoengineering of a biocompatible organogel by thermal processing. J Phys Chem B 2009; 113(15): 5011-5.
[http://dx.doi.org/10.1021/jp811215t] [PMID: 19309102]
[170]
Khuphe M, Mukonoweshuro B, Kazlauciunas A, Thornton PD. A vegetable oil-based organogel for use in pH-mediated drug delivery. Soft Matter 2015; 11(47): 9160-7.
[http://dx.doi.org/10.1039/C5SM02176F] [PMID: 26414286]
[171]
Li Z, Cao J, Hu B, et al. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels. Drug Dev Ind Pharm 2016; 42(11): 1732-41.
[http://dx.doi.org/10.3109/03639045.2016.1171333] [PMID: 27018332]
[172]
Raza A, Hayat U, Zhang X, Wang JY. Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink. Int J Pharm 2022; 627: 122206.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122206] [PMID: 36126824]
[173]
Yetiskin B, Okay O. Silk fibroin cryogel building adaptive organohydrogels with switching mechanics and viscoelasticity. ACS Appl Polym Mater 2022; 4(7): 5234-45.
[http://dx.doi.org/10.1021/acsapm.2c00741]
[174]
Sagiri SS, Sethy J, Pal K, Banerjee I, Pramanik K, Maiti TK. Encapsulation of vegetable organogels for controlled delivery applications. Des Monomers Polym 2013; 16(4): 366-76.
[http://dx.doi.org/10.1080/15685551.2012.747154]
[175]
Chang CE, Hsieh CM, Chen LC, et al. Novel application of pluronic lecithin organogels (PLOs) for local delivery of synergistic combination of docetaxel and cisplatin to improve therapeutic efficacy against ovarian cancer. Drug Deliv 2018; 25(1): 632-43.
[http://dx.doi.org/10.1080/10717544.2018.1440444] [PMID: 29463123]
[176]
Fardous J, Omoso Y, Joshi A, et al. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. Mater Sci Eng C 2021; 124: 112076.
[http://dx.doi.org/10.1016/j.msec.2021.112076] [PMID: 33947568]
[177]
Balaguru S, Ramya Devi D, Vedha Hari BN. Organogel: An ideal drug delivery carrier for non steroidal anti-inflammatory drugs through topical route. Int J Pharm Qual Assur 2015; 6: 32-7.
[178]
Esposito E, Drechsler M, Huang N, et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices 2016; 18(6): 108.
[http://dx.doi.org/10.1007/s10544-016-0134-3] [PMID: 27830454]
[179]
Yadav E, Khatana AK, Sebastian S, Gupta MK. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. New J Chem 2021; 45(1): 415-22.
[http://dx.doi.org/10.1039/D0NJ04611F]
[180]
Iwanaga K, Sumizawa T, Miyazaki M, Kakemi M. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds. Int J Pharm 2010; 388(1-2): 123-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.045] [PMID: 20045041]
[181]
Fetih G. Meloxicam formulations for transdermal delivery: Hydrogels versus organogels. J Drug Deliv Sci Technol 2010; 20(6): 451-6.
[http://dx.doi.org/10.1016/S1773-2247(10)50078-9]
[182]
Zheng H, Deng L, Que F, Feng F, Zhang H. Physical characterization and antimicrobial evaluation of glycerol monolaurate organogels. Colloids Surf A Physicochem Eng Asp 2016; 502: 19-25.
[http://dx.doi.org/10.1016/j.colsurfa.2016.05.001]
[183]
Rowley JV, Wall P, Yu H, et al. Antimicrobial dye-conjugated polyglobalide-based organogels. ACS Appl Polym Mater 2020; 2(7): 2927-33.
[http://dx.doi.org/10.1021/acsapm.0c00422]
[184]
Satapathy D, Sagiri SS, Pal K, Pramanik K. Development of mustard oil- and groundnut oil-based span 40 organogels as matrices for controlled drug delivery. Des Monomers Polym 2014; 17(6): 545-56.
[http://dx.doi.org/10.1080/15685551.2013.869652]
[185]
Sagiri SS, Behera B, Sudheep T, Pal K. Effect of composition on the properties of tween-80-span-80-based organogels. Des Monomers Polym 2012; 15(3): 253-73.
[http://dx.doi.org/10.1163/156855511X615669]
[186]
Behera B, Patil V, Sagiri SS, Pal K, Ray SS. Span-60-based organogels as probable matrices for transdermal/topical delivery systems. J Appl Polym Sci 2012; 125(2): 852-63.
[http://dx.doi.org/10.1002/app.35674]
[187]
Satapathy D, Biswas D, Behera B, Sagiri SS, Pal K, Pramanik K. Sunflower-oil-based lecithin organogels as matrices for controlled drug delivery. J Appl Polym Sci 2013; 129(2): 585-94.
[http://dx.doi.org/10.1002/app.38498]
[188]
Singh VK, Pal K, Pradhan DK, Pramanik K. Castor oil and sorbitan monopalmitate based organogel as a probable matrix for controlled drug delivery. J Appl Polym Sci 2013; 130(3): 1503-15.
[http://dx.doi.org/10.1002/app.39315]
[189]
Shah DK, Sagiri SS, Behera B, Pal K, Pramanik K. Development of olive oil based organogels using sorbitan monopalmitate and sorbitan monostearate: A comparative study. J Appl Polym Sci 2013; 129(2): 793-805.
[http://dx.doi.org/10.1002/app.38834]
[190]
Pradhan S, Sagiri SS, Singh VK, Pal K, Ray SS, Pradhan DK. Palm oil-based organogels and microemulsions for delivery of antimicrobial drugs. J Appl Polym Sci 2014; 131(6): app.39979.
[http://dx.doi.org/10.1002/app.39979]
[191]
Liu DE, Chen Q, Long YB, Ma J, Gao H. A thermo-responsive polyurethane organogel for norfloxacin delivery. Polym Chem 2018; 9(2): 228-35.
[http://dx.doi.org/10.1039/C7PY01803G]
[192]
Mishra M. Handbook of encapsulation and controlled release. CRC Press 2015.
[http://dx.doi.org/10.1201/b19038]
[193]
Ribeiro AR, Silva SS, Reis RL. Challenges and opportunities on vegetable oils derived systems for biomedical applications. Biomaterials Advances 2022; 134: 112720.
[http://dx.doi.org/10.1016/j.msec.2022.112720] [PMID: 35589472]
[194]
Mukherjee S, Majee SB, Biswas GR. Formulation and in vitro characterisation of soybean oil-hpmck4m based bigel matrix for topical drug delivery. Int J Appl Pharm 2019; 7: 33-8.
[195]
Sagiri SS, Behera B, Rafanan RR, et al. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater 2014; 12(1): 47-72.
[http://dx.doi.org/10.1080/1539445X.2012.756016]
[196]
Paquete-Ferreira J, Leisico F, Correia MA, Engrola FS, Santos-Silva T, Santos MF. Using small-angle X-ray scattering to characterize biological systems: A general overview and practical tips. Adv Methods Struct Biol 2023; 381-403.
[197]
Braggin G. Effect of Surfactant Architecture on Conformational Transitions of Conjugated Polyelectrolytes. California Polytechnic State University 2015.
[http://dx.doi.org/10.15368/theses.2015.70]
[198]
Kirilov P, Le Cong AK, Denis A, Rabehi H, Rum S, Villa C. Organogels for cosmetic and dermocosmetic applications. Evaluation 2015; 6: 30-6.
[199]
Newbloom GM, Weigandt KM, Pozzo DC. Structure and property development of poly(3-hexylthiophene) organogels probed with combined rheology, conductivity and small angle neutron scattering. Soft Matter 2012; 8(34): 8854-64.
[http://dx.doi.org/10.1039/c2sm26114f]
[200]
Terech P, Friol S. Rheometry of an androstanol steroid derivative paramagnetic organogel. Methodology for a comparison with a fatty acid organogel. Tetrahedron 2007; 63(31): 7366-74.
[http://dx.doi.org/10.1016/j.tet.2007.02.067]
[201]
Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels 2021; 7(4): 255.
[http://dx.doi.org/10.3390/gels7040255] [PMID: 34940315]
[202]
Echeverría C, Mijangos C. Rheology applied to microgels: Brief (revision of the) state of the art. Polymers 2022; 14(7): 1279.
[http://dx.doi.org/10.3390/polym14071279] [PMID: 35406152]
[203]
Larson RG, Wei Y. A review of thixotropy and its rheological modeling. J Rheol 2019; 63(3): 477-501.
[http://dx.doi.org/10.1122/1.5055031]
[204]
Rajpoot K. Acyclovir-loaded sorbitan esters-based organogel: Development and rheological characterization. Artif Cells Nanomed Biotechnol 2017; 45(3): 551-9.
[http://dx.doi.org/10.3109/21691401.2016.1161639] [PMID: 27019055]
[205]
Kandanelli R, Maitra U. Charge-transfer interaction mediated organogels from bile acid appended anthracenes: Rheological and microscopic studies. Photochem Photobiol Sci 2012; 11(11): 1724-9.
[http://dx.doi.org/10.1039/c2pp25088h] [PMID: 22895532]
[206]
Toro-Vazquez JF, Morales-Rueda J, Torres-Martínez A, Charó-Alonso MA, Mallia VA, Weiss RG. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil. Langmuir 2013; 29(25): 7642-54.
[http://dx.doi.org/10.1021/la400809a] [PMID: 23697446]
[207]
Fox CH, ter Hurrne GM, Wojtecki RJ, et al. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nat Commun 2015; 6(1): 7417.
[http://dx.doi.org/10.1038/ncomms8417] [PMID: 26174864]
[208]
Allen L, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins 2013.
[209]
Dassanayake LSK, Kodali DR, Ueno S, Sato K. Crystallization kinetics of organogels prepared by rice bran wax and vegetable oils. J Oleo Sci 2012; 61(1): 1-9.
[http://dx.doi.org/10.5650/jos.61.1] [PMID: 22188800]
[210]
Sagiri SS, Kumar U, Champaty B, Singh VK, Pal K. Thermal, electrical, and mechanical properties of tween 80/span 80–based organogels and its application in iontophoretic drug delivery. J Appl Polym Sci 2015; 132(6): app.41419.
[http://dx.doi.org/10.1002/app.41419]
[211]
Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res Int 2013; 50(1): 318-23.
[http://dx.doi.org/10.1016/j.foodres.2012.10.043]
[212]
Christ E, Blanc C, Al Ouahabi A, et al. Origin of invariant gel melting temperatures in the C-T phase diagram of an Organogel. Langmuir 2016; 32(19): 4975-82.
[http://dx.doi.org/10.1021/acs.langmuir.6b00995] [PMID: 27088451]
[213]
Nippe S, General S. Investigation of injectable drospirenone organogels with regard to their rheology and comparison to non-stabilized oil-based drospirenone suspensions. Drug Dev Ind Pharm 2015; 41(4): 681-91.
[http://dx.doi.org/10.3109/03639045.2014.895375] [PMID: 24621345]
[214]
Lupi FR, Gabriele D, Baldino N, Mijovic P, Parisi OI, Puoci F. Olive oil/policosanol organogels for nutraceutical and drug delivery purposes. Food Funct 2013; 4(10): 1512-20.
[http://dx.doi.org/10.1039/c3fo60259a] [PMID: 24056806]
[215]
Flo A, Calpena AC, Halbaut L, Araya EI, Fernández F, Clares B. Melatonin delivery: Transdermal and transbuccal evaluation in different vehicles. Pharm Res 2016; 33(7): 1615-27.
[http://dx.doi.org/10.1007/s11095-016-1901-9] [PMID: 26956459]
[216]
Iwanaga K, Kawai M, Miyazaki M, Kakemi M. Application of organogels as oral controlled release formulations of hydrophilic drugs. Int J Pharm 2012; 436(1-2): 869-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.041] [PMID: 22766444]
[217]
Lee PI. Kinetics of drug release from hydrogel matrices. J Control Release 1985; 2: 277-88.
[http://dx.doi.org/10.1016/0168-3659(85)90051-3]
[218]
Abrami M, Marizza P, Zecchin F, et al. Theoretical importance of pvp-alginate hydrogels structure on drug release kinetics. Gels 2019; 5(2): 22.
[http://dx.doi.org/10.3390/gels5020022] [PMID: 31003517]
[219]
Esposito CL, Tardif V, Sarrazin M, Kirilov P, Roullin VG. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. Mater Sci Eng C 2020; 114: 110999.
[http://dx.doi.org/10.1016/j.msec.2020.110999] [PMID: 32993979]
[220]
Salmon D, Gilbert E, Gioia B, et al. New easy handling and sampling device for bioavailability screening of topical formulations. Eur J Dermatol 2015; 25(S1): 23-9.
[http://dx.doi.org/10.1684/ejd.2015.2551] [PMID: 26083671]
[221]
Bastiat G, Plourde F, Motulsky A, et al. Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials 2010; 31(23): 6031-8.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.009] [PMID: 20472283]
[222]
Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release 2017; 266: 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[223]
Dai M, Bai L, Zhang H, et al. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection. Int J Pharm 2020; 576: 119027.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119027] [PMID: 31953090]
[224]
Guenet JM. Organogels: Thermodynamics, structure, solvent role, and properties. Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-33178-2]
[225]
Su X, Wang H, Tian Z, et al. A solvent co-cross-linked organogel with fast self-healing capability and reversible adhesiveness at extreme temperatures. ACS Appl Mater Interfaces 2020; 12(26): 29757-66.
[http://dx.doi.org/10.1021/acsami.0c04933] [PMID: 32515578]
[226]
Zhang Z, Wang L, Yu H, et al. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl Mater Interfaces 2020; 12(13): 15657-66.
[http://dx.doi.org/10.1021/acsami.9b22707] [PMID: 32141727]
[227]
Fardous J, Omoso Y, Yoshida K, Ono F, Patwary MKA, Ijima H. Gel-in-water nanodispersion for potential application in intravenous delivery of anticancer drugs. J Biosci Bioeng 2022; 133(2): 174-80.
[http://dx.doi.org/10.1016/j.jbiosc.2021.10.001] [PMID: 34789413]
[228]
Angelico R, Ceglie A, Colafemmina G, et al. Biocompatible lecithin organogels: Structure and phase equilibria. Langmuir 2005; 21(1): 140-8.
[http://dx.doi.org/10.1021/la047974f] [PMID: 15620295]
[229]
Bhasha SA, Khalid SA, Duraivel S, Bhowmik D, Kumar KS. Recent trends in usage of polymers in the formulation of dermatological gels. Indian J Res Pharm Biotechnol 2013; 1(2): 161-8.
[230]
Yoshii Y, Hoshino N, Takeda T, et al. The formation of organogels and helical nanofibers from simple organic salts. Chemistry 2014; 20(49): 16279-85.
[http://dx.doi.org/10.1002/chem.201404043] [PMID: 25308219]
[231]
Zhu L, Li X, Wu S, et al. Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator. J Am Chem Soc 2013; 135(24): 9174-80.
[http://dx.doi.org/10.1021/ja403722t] [PMID: 23705828]
[232]
Würthner F, Hanke B, Lysetska M, Lambright G, Harms GS. Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. Org Lett 2005; 7(6): 967-70.
[http://dx.doi.org/10.1021/ol0475820] [PMID: 15760115]
[233]
Hawk JL. Structure Activity Relationships in the Fracture of Hybrid Covalent/Metallosupramolecular Organogels. Duke University 2014.
[234]
Cerqueira MA, Valoppi F, Pal K. Oleogels and organogels: A promising tool for new functionalities. Gels MDPI 2022; 8(6): 349.
[235]
Lazrag M, Steiner E, Lemaitre C, et al. Experimental and thermodynamic comparison of the separation of CO2/toluene and CO2/tetralin mixtures in the process of organogel supercritical drying for aerogels production. J Sol-Gel Sci Technol 2017; 84(3): 453-65.
[http://dx.doi.org/10.1007/s10971-017-4465-1]
[236]
Mishra M. Handbook of encapsulation and controlled release. CRC Press 2015.
[http://dx.doi.org/10.1201/b19038]
[237]
Perez E, Franceschi-messant S, Rico-Lattes I. Absorbent/solubilizing materials based on microporous organogels. Google Patents 2016.
[238]
Perez E, Franceschi-messant S, Rico-Lattes I. Microporous organogel absorbing/solubilising materials. Google Patents 2016.
[239]
Yang J, Yan H, Niu F, Zhang H. Probing of the magnetic responsive behavior of magnetorheological organogel under step field perturbation. Colloid Polym Sci 2018; 296(2): 309-17.
[http://dx.doi.org/10.1007/s00396-017-4249-8]
[240]
Zhang H, Yan H, Hu Z, Yang J, Niu F. Magnetorheological fluid based on thixotropic PTFE-oil organogel. J Magn Magn Mater 2018; 451: 102-9.
[http://dx.doi.org/10.1016/j.jmmm.2017.11.005]
[241]
Duncan TT, Berrie BH, Weiss RG. Soft, peelable organogels from partially hydrolyzed poly (vinyl acetate) and benzene-1,4-diboronic acid: Applications to clean works of art. ACS Appl Mater Interfaces 2017; 9(33): 28069-78.
[http://dx.doi.org/10.1021/acsami.7b09473] [PMID: 28787129]
[242]
Xia H, Liu G, Zhao C, et al. Fluorescence sensing of amine vapours based on ZnS-supramolecular organogel hybrid films. RSC Advances 2017; 7(28): 17264-70.
[http://dx.doi.org/10.1039/C7RA00556C]
[243]
Smith NL, Coukouma AE, Wilson DC, Ho B, Gray V, Asher SA. Stimuli-responsive pure protein organogel sensors and biocatalytic materials. ACS Appl Mater Interfaces 2020; 12(1): 238-49.
[http://dx.doi.org/10.1021/acsami.9b18191] [PMID: 31820639]
[244]
Ávila-Niño JA, Olvera LI. Ionic self-assembled organogel polyelectrolytes for energy storage applications. RSC Advances 2020; 10(20): 11743-9.
[http://dx.doi.org/10.1039/D0RA00825G] [PMID: 35496594]
[245]
Jing T, Xu B, Yang Y, Li M, Gao Y. Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 2020; 78: 105373.
[http://dx.doi.org/10.1016/j.nanoen.2020.105373]
[246]
Zhang W, Feng P, Chen J, Sun Z, Zhao B. Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 2019; 88: 220-40.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.001]
[247]
Zhang Y, Zhao Y, Peng Z, et al. Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity. ACS Mater Lett 2021; 3(10): 1477-83.
[http://dx.doi.org/10.1021/acsmaterialslett.1c00368]
[248]
Gao Y, Shi L, Lu S, et al. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem Mater 2019; 31(9): 3257-64.
[http://dx.doi.org/10.1021/acs.chemmater.9b00170]
[249]
Zhang H, Niu W, Zhang S. Extremely stretchable and self-healable electrical skin with mechanical adaptability, an ultrawide linear response range, and excellent temperature tolerance. ACS Appl Mater Interfaces 2019; 11(27): 24639-47.
[http://dx.doi.org/10.1021/acsami.9b09430] [PMID: 31257840]
[250]
Sun Y, Wu Q, Shi G. Supercapacitors based on self-assembled graphene organogel. Phys Chem Chem Phys 2011; 13(38): 17249-54.
[http://dx.doi.org/10.1039/c1cp22409c] [PMID: 21879072]
[251]
Ahmad MU, Ali SM, Ahmad I. Applications of nanotechnology in pharmaceutical development. Lipids in nanotechnology. Elsevier 2012; pp. 171-90.
[http://dx.doi.org/10.1016/B978-0-9818936-7-9.50010-X]
[252]
Ajayaghosh A, Vijayakumar C, Praveen VK. White light emitting organogel and process thereof. Google Patents 2013.
[253]
Ma Y, Ma H, Yang Z, et al. Methyl cinnamate-derived fluorescent rigid organogels based on cooperative π-π stacking and C═O···π interactions instead of H-bonding and alkyl chains. Langmuir 2015; 31(17): 4916-23.
[http://dx.doi.org/10.1021/acs.langmuir.5b00275] [PMID: 25876135]
[254]
Jiao T, Huang Q, Zhang Q, Xiao D, Zhou J, Gao F. Self-assembly of organogels via new luminol imide derivatives: Diverse nanostructures and substituent chain effect. Nanoscale Res Lett 2013; 8(1): 278.
[http://dx.doi.org/10.1186/1556-276X-8-278] [PMID: 23758979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy