Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

P-coumaric Acid: Advances in Pharmacological Research Based on Oxidative Stress

Author(s): Feixiang Chen, Xinxin Zhang, Junxiang Wang, Fukai Wang and Jinlong Mao*

Volume 24, Issue 5, 2024

Published on: 25 January, 2024

Page: [416 - 436] Pages: 21

DOI: 10.2174/0115680266276823231230183519

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

P-coumaric acid is an important phenolic compound that is mainly found in fruits, vegetables, grains, and fungi and is also abundant in Chinese herbal medicines. In this review, the pharmacological research progress of p-coumaric acid in recent years was reviewed, with emphasis on its role and mechanism in oxidative stress-related diseases, such as inflammation, cardiovascular diseases, diabetes, and nervous system diseases. Studies have shown that p-coumaric acid has a positive effect on the prevention and treatment of these diseases by inhibiting oxidative stress. In addition, p-coumaric acid also has anti-tumor, antibacterial, anti-aging skin and other pharmacological effects. This review will provide reference and inspiration for further research on the pharmacological effects of p-coumaric acid.

Keywords: P-coumaric acid, Antioxidatives, Anti-inflammation, Cardioprotective, Neuroprotective, Diabetes.

Graphical Abstract
[1]
El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem., 2012, 60(44), 10877-10895.
[http://dx.doi.org/10.1021/jf301807g] [PMID: 22931195]
[2]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p -Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[3]
Gong, E.S.; Liu, C.; Li, B.; Zhou, W.; Chen, H.; Li, T.; Wu, J.; Zeng, Z.; Wang, Y.; Si, X.; Lang, Y.; Zhang, Y.; Zhang, W.; Zhang, G.; Luo, S.; Liu, R.H. Phytochemical profiles of rice and their cellular antioxidant activity against ABAP induced oxidative stress in human hepatocellular carcinoma HepG2 cells. Food Chem., 2020, 318, 126484.
[http://dx.doi.org/10.1016/j.foodchem.2020.126484] [PMID: 32151923]
[4]
Bodoira, R.; Maestri, D. Phenolic compounds from nuts: Extraction, chemical profiles, and bioactivity. J. Agric. Food Chem., 2020, 68(4), 927-942.
[http://dx.doi.org/10.1021/acs.jafc.9b07160] [PMID: 31910006]
[5]
de Mendonça, I.C.G.; Porto, I.C.C.M.; do Nascimento, T.G.; de Souza, N.S.; Oliveira, J.M.S.; Arruda, R.E.S.; Mousinho, K.C.; dos Santos, A.F.; Basílio-Júnior, I.D.; Parolia, A.; Barreto, F.S. Brazilian red propolis: Phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complement. Altern. Med., 2015, 15(1), 357.
[http://dx.doi.org/10.1186/s12906-015-0888-9] [PMID: 26467757]
[6]
Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods, 2020, 64, 103681.
[http://dx.doi.org/10.1016/j.jff.2019.103681]
[7]
Zhang, L.; Liang, H.; Liu, W. Detection and analysis of ten monomeric phenolic acids in fermented soy sauce. Anhui Nongye Kexue, 2018, 46(25), 172-175.
[8]
Melov, S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann. N. Y. Acad. Sci., 2000, 908(1), 219-225.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06649.x] [PMID: 10911961]
[9]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[10]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[11]
Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 719-724.
[http://dx.doi.org/10.1016/j.saa.2013.06.110] [PMID: 23892112]
[12]
Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol., 2015, 52(9), 5790-5798.
[http://dx.doi.org/10.1007/s13197-014-1704-0] [PMID: 26344993]
[13]
Cheng, J.C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z-L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem., 2007, 104(1), 132-139.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.012]
[14]
Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p -coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol., 2000, 279(4), C954-C960.
[http://dx.doi.org/10.1152/ajpcell.2000.279.4.C954] [PMID: 11003575]
[15]
Guglielmi, F.; Luceri, C.; Giovannelli, L.; Dolara, P.; Lodovici, M. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br. J. Nutr., 2003, 89(5), 581-587.
[http://dx.doi.org/10.1079/BJN2003849] [PMID: 12720578]
[16]
Lodovici, M.; Guglielmi, F.; Meoni, M.; Dolara, P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol., 2001, 39(12), 1205-1210.
[http://dx.doi.org/10.1016/S0278-6915(01)00067-9] [PMID: 11696394]
[17]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[18]
Li, X.; Zhao, J.; Liu, J.; Li, G.; Zhao, Y.; Zeng, X. Systematic analysis of absorbed anti-inflammatory constituents and metabolites of sarcandra glabra in rat plasma using ultra-high-pressure liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. PLoS One, 2016, 11(3), e0150063.
[http://dx.doi.org/10.1371/journal.pone.0150063] [PMID: 26974321]
[19]
Kheiry, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V. p-Coumaric acid attenuates lipopolysaccharide-induced lung inflammation in rats by scavenging ROS production: An in vivo and in vitro study. Inflammation, 2019, 42(6), 1939-1950.
[http://dx.doi.org/10.1007/s10753-019-01054-6] [PMID: 31267276]
[20]
Zhu, H.; Liang, Q.; Xiong, X.; Wang, Y.; Zhang, Z.; Sun, M.; Lu, X.; Wu, D. Anti-Inflammatory effects of p-coumaric acid, a natural compound of oldenlandia diffusa, on arthritis model rats. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5198594] [PMID: 29681976]
[21]
Sunitha, M.C.; Dhanyakrishnan, R.; PrakashKumar, B.; Nevin, K.G. p-Coumaric acid mediated protection of H9c2 cells from Doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomed. Pharmacother., 2018, 102, 823-832.
[http://dx.doi.org/10.1016/j.biopha.2018.03.089] [PMID: 29605770]
[22]
Shen, Y.; Song, X.; Li, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Liu, C.; Yang, W.; Williams, L.; Zhang, H.; Guan, Y. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother., 2019, 111, 579-587.
[http://dx.doi.org/10.1016/j.biopha.2018.12.074] [PMID: 30599319]
[23]
Stanely Mainzen Prince, P.; Roy, A.J. p-Coumaric acid attenuates apoptosis in isoproterenol-induced myocardial infarcted rats by inhibiting oxidative stress. Int. J. Cardiol., 2013, 168(4), 3259-3266.
[http://dx.doi.org/10.1016/j.ijcard.2013.04.138] [PMID: 23684599]
[24]
Prasanna, N.; Krishnan, D.N.; Rasool, M. Sodium arsenite-induced cardiotoxicity in rats: Protective role of p-coumaric acid, a common dietary polyphenol. Toxicol. Mech. Methods, 2013, 23(4), 255-262.
[http://dx.doi.org/10.3109/15376516.2012.748116] [PMID: 23194016]
[25]
Abdel-Wahab, M.; El-Mahdy, M.A.; Abd-Ellah, M.F.; Helal, G.K.; Khalifa, F.; Hamada, F.M. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart. Pharmacol. Res., 2003, 48(5), 461-465.
[http://dx.doi.org/10.1016/S1043-6618(03)00214-7] [PMID: 12967591]
[26]
Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p -Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr., 2007, 97(3), 458-463.
[http://dx.doi.org/10.1017/S0007114507657882] [PMID: 17313706]
[27]
Prasanna, N.; Rasool, M. Modulation of gene-expression profiles associated with sodium arsenite-induced cardiotoxicity by p-coumaric acid, a common dietary polyphenol. J. Biochem. Mol. Toxicol., 2014, 28(4), 174-180.
[http://dx.doi.org/10.1002/jbt.21550] [PMID: 24497207]
[28]
Shiromwar, S.; Chidrawar, V. Combined effects of p-coumaric acid and naringenin against doxorubicin-induced cardiotoxicity in rats. Pharmacognosy Res., 2011, 3(3), 214-219.
[http://dx.doi.org/10.4103/0974-8490.85012] [PMID: 22022172]
[29]
Roy, A.J.; Stanely, M.P.P. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Food Chem. Toxicol., 2013, 60, 348-354.
[http://dx.doi.org/10.1016/j.fct.2013.04.052] [PMID: 23669407]
[30]
Guven, M.; Sehitoglu, M.H.; Yuksel, Y.; Tokmak, M.; Aras, A.B.; Akman, T.; Golge, U.H.; Karavelioglu, E.; Bal, E.; Cosar, M. The neuroprotective effect of coumaric acid on spinal cord ischemia/reperfusion injury in rats. Inflammation, 2015, 38(5), 1986-1995.
[http://dx.doi.org/10.1007/s10753-015-0179-0] [PMID: 25943038]
[31]
Guven, M.; Yuksel, Y.; Sehitoglu, M.H.; Tokmak, M.; Aras, A.B.; Akman, T.; Golge, U.H.; Goksel, F.; Karavelioglu, E.; Cosar, M. The effect of coumaric acid on ischemia-reperfusion injury of sciatic nerve in rats. Inflammation, 2015, 38(6), 2124-2132.
[http://dx.doi.org/10.1007/s10753-015-0195-0] [PMID: 26049410]
[32]
Guven, M.; Aras, A.B.; Akman, T.; Sen, H.M.; Ozkan, A.; Salis, O.; Sehitoglu, I.; Kalkan, Y.; Silan, C.; Deniz, M.; Cosar, M. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia. Iran. J. Basic Med. Sci., 2015, 18(4), 356-363.
[PMID: 26019798]
[33]
Shailasree, S.; Venkataramana, M.; Niranjana, S.R.; Prakash, H.S. Cytotoxic effect of p-Coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Mol. Neurobiol., 2015, 51(1), 119-130.
[http://dx.doi.org/10.1007/s12035-014-8700-2] [PMID: 24760364]
[34]
Bhattarai, G.; Min, C.K.; Jeon, Y.M.; Bashyal, R.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Oral supplementation with p -coumaric acid protects mice against diabetes-associated spontaneous destruction of periodontal tissue. J. Periodontal Res., 2019, 54(6), 690-701.
[http://dx.doi.org/10.1111/jre.12678] [PMID: 31328274]
[35]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 2003, 52(1), 1-8.
[http://dx.doi.org/10.2337/diabetes.52.1.1] [PMID: 12502486]
[36]
Chu, B.; Li, Y.; Li, J. Preventive effects of p-coumaric acid on acute hypoxia-induced cerebral edema in mice. Zhongguo Xin Yao Zazhi, 2019, 28(11), 1378-1384.
[37]
Zhao, C.; Zhang, L.; Wang, H. Study on anti-oxidation effects of cinnamic acid and its derivants. Shipin Kexue, 2005, 26(01), 218-222.
[38]
Lodovici, M.; Raimondi, L.; Guglielmi, F.; Gemignani, S.; Dolara, P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology, 2003, 184(2-3), 141-147.
[http://dx.doi.org/10.1016/S0300-483X(02)00572-3] [PMID: 12499117]
[39]
Wang, C.; Tian, L.; Zhang, J. Five kinds of traditional chinese medicine (TCM) phenolic acid compounds in vitro DNA damage resistance. Zhongguo Yaolixue Yu Dulixue Zazhi, 2012, 26(04), 529-533.
[40]
Pragasam, S.J.; Rasool, M. Dietary component p-coumaric acid suppresses monosodium urate crystal-induced inflammation in rats. Inflamm. Res., 2013, 62(5), 489-498.
[http://dx.doi.org/10.1007/s00011-013-0602-7] [PMID: 23420453]
[41]
Kilani-Jaziri, S.; Mokdad-Bzeouich, I.; Krifa, M.; Nasr, N.; Ghedira, K.; Chekir-Ghedira, L. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p -coumaric phenolic acids: A structure–activity relationship study. Drug Chem. Toxicol., 2017, 40(4), 416-424.
[http://dx.doi.org/10.1080/01480545.2016.1252919] [PMID: 27855523]
[42]
Yen, G.C.; Chen, Y.C.; Chang, W.T.; Hsu, C.L. Effects of polyphenolic compounds on tumor necrosis factor-α (TNF-α)-induced changes of adipokines and oxidative stress in 3T3-L1 adipocytes. J. Agric. Food Chem., 2011, 59(2), 546-551.
[http://dx.doi.org/10.1021/jf1036992] [PMID: 21186817]
[43]
Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 2013, 36(1), 169-176.
[http://dx.doi.org/10.1007/s10753-012-9532-8] [PMID: 22923003]
[44]
Han, N.R.; Kim, K.C.; Kim, J.S.; Ko, S.G.; Park, H.J.; Moon, P.D. A mixture of Panax ginseng and Scrophularia buergeriana improves immune function in an immunosuppressed murine model. Phytomedicine, 2022, 99, 153984.
[http://dx.doi.org/10.1016/j.phymed.2022.153984] [PMID: 35189478]
[45]
Kim, W.; Lim, D.; Kim, J. p-Coumaric acid, a major active compound of bambusae caulis in taeniam, suppresses cigarette smoke-induced pulmonary inflammation. Am. J. Chin. Med., 2018, 46(2), 407-421.
[http://dx.doi.org/10.1142/S0192415X18500209] [PMID: 29433391]
[46]
Pragasam, S.J.; Murunikkara, V.; Sabina, E.P.; Rasool, M. Ameliorative effect of p-coumaric acid, a common dietary phenol, on adjuvant-induced arthritis in rats. Rheumatol. Int., 2013, 33(2), 325-334.
[http://dx.doi.org/10.1007/s00296-012-2394-4] [PMID: 22447332]
[47]
Moon, P.D.; Han, N.R.; Lee, J.S.; Kim, H.M.; Jeong, H.J. p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice. J. Ginseng Res., 2021, 45(1), 176-182.
[http://dx.doi.org/10.1016/j.jgr.2020.06.004] [PMID: 33437169]
[48]
Ferreira, J.C.; Reis, M.B.; Coelho, G.D.P.; Gastaldello, G.H.; Peti, A.P.F.; Rodrigues, D.M.; Bastos, J.K.; Campo, V.L.; Sorgi, C.A.; Faccioli, L.H.; Gardinassi, L.G.; Tefé-Silva, C.; Zoccal, K.F. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids. J. Ethnopharmacol., 2021, 278, 114255.
[http://dx.doi.org/10.1016/j.jep.2021.114255] [PMID: 34062248]
[49]
Kim, E.O.; Min, K.J.; Kwon, T.K.; Um, B.H.; Moreau, R.A.; Choi, S.W. Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages. Food Chem. Toxicol., 2012, 50(5), 1309-1316.
[http://dx.doi.org/10.1016/j.fct.2012.02.011] [PMID: 22366099]
[50]
Mankhong, S.; Iawsipo, P.; Srisook, E.; Srisook, K. 4-methoxycinnamyl p-coumarate isolated from Etlingera pavieana rhizomes inhibits inflammatory response via suppression of NF-κB, Akt and AP-1 signaling in LPS-stimulated RAW 264.7 macrophages. Phytomedicine, 2019, 54, 89-97.
[http://dx.doi.org/10.1016/j.phymed.2018.09.193] [PMID: 30668386]
[51]
Cha, H.; Lee, S.; Lee, J.H.; Park, J.W. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. Food Chem. Toxicol., 2018, 121, 131-139.
[http://dx.doi.org/10.1016/j.fct.2018.08.060] [PMID: 30149109]
[52]
Bal, S.S.; Leishangthem, G.D.; Sethi, R.S.; Singh, A. P-coumaric acid ameliorates fipronil induced liver injury in mice through attenuation of structural changes, oxidative stress and inflammation. Pestic. Biochem. Physiol., 2022, 180, 104997.
[http://dx.doi.org/10.1016/j.pestbp.2021.104997] [PMID: 34955181]
[53]
Goodarzi, G.; Tehrani, S.S.; Panahi, G.; Bahramzadeh, A.; Meshkani, R. Combination therapy of metformin and p-coumaric acid mitigates metabolic dysfunction associated with obesity and nonalcoholic fatty liver disease in high-fat diet obese C57BL/6 mice. J. Nutr. Biochem., 2023, 118, 109369.
[http://dx.doi.org/10.1016/j.jnutbio.2023.109369] [PMID: 37100305]
[54]
Truong, T.M.T.; Seo, S.H.; Chung, S.; Kang, I. Attenuation of hepatic fibrosis by p-Coumaric acid via modulation of NLRP3 inflammasome activation in C57BL/6 mice. J. Nutr. Biochem., 2023, 112, 109204.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109204] [PMID: 36400112]
[55]
Gurevich, K.G.; Urakov, A.L.; Purygin, P.P.; Abzalilov, T.A.; Garaev, T.M.; Zarubin, Y.P.; Afanasiev, V.A.; Sakaev, V.E.; Samoredov, A.V.; Pavlov, V.N.; Lovtsova, L.V. Synthesis and antiaggregant and anticoagulant activity of amino-acid salts and computer simulation of the interaction of their structures with the surface of cyclooxygenase. Pharm. Chem. J., 2023, 56(11), 1451-1456.
[http://dx.doi.org/10.1007/s11094-023-02812-5]
[56]
Yang, Y.; Yu, K.; Zhang, Y.M. The cardioprotective effects of 4-O-(2”-O-acetyl-6”-O- P-coumaroyl-beta-D-glucopyranosyl)-p-coumaric acid (4-ACGC) on chronic heart failure. Iran. J. Pharm. Res., 2018, 17(2), 593-600.
[PMID: 29881417]
[57]
Yuan, Z.; Lu, X.; Lei, F.; Sun, H.; Jiang, J.; Xing, D.; Du, L. Novel effect of p-coumaric acid on hepatic lipolysis: Inhibition of hepatic lipid-droplets. Molecules, 2023, 28(12), 4641.
[http://dx.doi.org/10.3390/molecules28124641] [PMID: 37375195]
[58]
Yoon, D.S.; Cho, S.Y.; Yoon, H.J.; Kim, S.R.; Jung, U.J. Protective effects of p-coumaric acid against high-fat diet-induced metabolic dysregulation in mice. Biomed. Pharmacother., 2021, 142, 111969.
[http://dx.doi.org/10.1016/j.biopha.2021.111969] [PMID: 34333285]
[59]
Simonyi, A.; Wang, Q.; Miller, R.L.; Yusof, M.; Shelat, P.B.; Sun, A.Y.; Sun, G.Y. Polyphenols in cerebral ischemia: Novel targets for neuroprotection. Mol. Neurobiol., 2005, 31(1-3), 135-148.
[http://dx.doi.org/10.1385/MN:31:1-3:135] [PMID: 15953817]
[60]
Sakamula, R.; Thong-asa, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis., 2018, 33(3), 765-773.
[http://dx.doi.org/10.1007/s11011-018-0185-7] [PMID: 29344828]
[61]
Tanzi, R.E.; Bertram, L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 2005, 120(4), 545-555.
[http://dx.doi.org/10.1016/j.cell.2005.02.008] [PMID: 15734686]
[62]
Yan, Y.; Wang, C. Abeta42 is more rigid than Abeta40 at the C terminus: Implications for Abeta aggregation and toxicity. J. Mol. Biol., 2006, 364(5), 853-862.
[http://dx.doi.org/10.1016/j.jmb.2006.09.046] [PMID: 17046788]
[63]
Tan, F.H.P.; Najimudin, N.; Watanabe, N.; Shamsuddin, S.; Azzam, G. p-Coumaric acid attenuates the effects of Aβ42 in vitro and in a Drosophila Alzheimer’s disease model. Behav. Brain Res., 2023, 452, 114568.
[http://dx.doi.org/10.1016/j.bbr.2023.114568] [PMID: 37414223]
[64]
Ghaderi, S.; Gholipour, P.; Komaki, A.; Salehi, I.; Rashidi, K.; Esmaeil Khoshnam, S.; Rashno, M. p-Coumaric acid ameliorates cognitive and non-cognitive disturbances in a rat model of Alzheimer’s disease: The role of oxidative stress and inflammation. Int. Immunopharmacol., 2022, 112, 109295.
[http://dx.doi.org/10.1016/j.intimp.2022.109295] [PMID: 36194986]
[65]
Ueda, T.; Inden, M.; Shirai, K.; Sekine, S.; Masaki, Y.; Kurita, H.; Ichihara, K.; Inuzuka, T.; Hozumi, I. The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity. Sci. Rep., 2017, 7(1), 2882.
[http://dx.doi.org/10.1038/s41598-017-03115-y] [PMID: 28588226]
[66]
Ueda, T.; Ito, T.; Kurita, H.; Inden, M.; Hozumi, I. p-Coumaric acid has protective effects against mutant copper-zinc superoxide dismutase 1 via the activation of autophagy in N2a cells. Int. J. Mol. Sci., 2019, 20(12), 2942.
[http://dx.doi.org/10.3390/ijms20122942] [PMID: 31208129]
[67]
Kim, H.B.; Lee, S.; Hwang, E.S.; Maeng, S.; Park, J.H. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments. Biochem. Biophys. Res. Commun., 2017, 492(3), 493-499.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.068] [PMID: 28830814]
[68]
He, Y.; Chen, S.; Tsoi, B.; Qi, S.; Gu, B.; Wang, Z.; Peng, C.; Shen, J. Alpinia oxyphylla Miq. and its active compound P-coumaric acid promote brain-derived neurotrophic factor signaling for inducing hippocampal neurogenesis and improving post-cerebral ischemic spatial cognitive functions. Front. Cell Dev. Biol., 2021, 8, 577790.
[http://dx.doi.org/10.3389/fcell.2020.577790] [PMID: 33537297]
[69]
Xiao, C.L.; Li, J.C.; Li, B.L. p-coumaric acid ameliorates acute stress induced memory retrieval deficit. Chin. Pharm. J., 2019, 36(09), 1248-1253.
[70]
Lee, S.; Kim, H.B.; Hwang, E.S.; Kim, E.; Kim, S.S.; Jeon, T.D.; Song, M.; Lee, J.S.; Chung, M.C.; Maeng, S.; Park, J.H. Antidepressant-like effects of p-coumaric acid on LPS-induced depressive and inflammatory changes in rats. Exp. Neurobiol., 2018, 27(3), 189-199.
[http://dx.doi.org/10.5607/en.2018.27.3.189] [PMID: 30022870]
[71]
Oh, D.R.; Choi, C.; Kim, M.J.; Mun, B.Y.; Ko, H.; Oh, K.N.; Jo, A.; Kim, J.Y.; Bae, D. Antidepressant effects of p-coumaric acid isolated from Vaccinium bracteatum leaves extract on chronic restraint stress mouse model and antagonism of serotonin 6 receptor in vitro. Phytomedicine, 2023, 116, 154871.
[http://dx.doi.org/10.1016/j.phymed.2023.154871] [PMID: 37270968]
[72]
Xiao, C.L.; Teng, L.; Li, J.C.; Xiao, X.H.; Yu, X.D. [p-Coumaric acid ameliorates depression-like behaviors induced by chronic restraint stress in mice]. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2020, 36(5), 485-488.
[PMID: 33634646]
[73]
Yu, X.D.; Zhang, D.; Xiao, C.L.; Zhou, Y.; Li, X.; Wang, L.; He, Z.; Reilly, J.; Xiao, Z.Y.; Shu, X. P-coumaric acid reverses depression-like behavior and memory deficit via inhibiting age-rage-mediated neuroinflammation. Cells, 2022, 11(10), 1594.
[http://dx.doi.org/10.3390/cells11101594] [PMID: 35626632]
[74]
Xiao, X.H.; Li, H.R.; Xiao, Z.Y. Effect of p-coumaric acid on olfactory bulbectomy induced depression-like behaviors and its AMPA receptor mechanism in mice. Chin. Pharm. J., 2021, 37(08), 1099-1103.
[75]
Yoon, S.A.; Kang, S.I.; Shin, H.S.; Kang, S.W.; Kim, J.H.; Ko, H.C.; Kim, S.J. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun., 2013, 432(4), 553-557.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.067] [PMID: 23485470]
[76]
Nguyen, L.V.; Nguyen, K.D.A.; Ma, C.T.; Nguyen, Q.T.; Nguyen, H.T.H.; Yang, D.J.; Tran, T.L.; Kim, K.W.; Doan, K.V. p-Coumaric acid enhances hypothalamic leptin signaling and glucose homeostasis in mice via differential effects on AMPK activation. Int. J. Mol. Sci., 2021, 22(3), 1431.
[http://dx.doi.org/10.3390/ijms22031431] [PMID: 33572687]
[77]
Abdel-Moneim, A.; El-Twab, S.M.A.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARγ. Biomed. Pharmacother., 2018, 105, 1091-1097.
[http://dx.doi.org/10.1016/j.biopha.2018.06.096] [PMID: 30021345]
[78]
Chung, S.T.; Hsia, D.S.; Chacko, S.K.; Rodriguez, L.M.; Haymond, M.W. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. Diabetologia, 2015, 58(3), 596-603.
[http://dx.doi.org/10.1007/s00125-014-3455-x] [PMID: 25447079]
[79]
Lima, L.C.N.; Buss, G.D.; Ishii-Iwamoto, E.L.; Salgueiro-Pagadigorria, C.; Comar, J.F.; Bracht, A.; Constantin, J. Metabolic effects of p -coumaric acid in the perfused rat liver. J. Biochem. Mol. Toxicol., 2006, 20(1), 18-26.
[http://dx.doi.org/10.1002/jbt.20114] [PMID: 16498635]
[80]
Adisakwattana, S.; Sookkongwaree, K.; Roengsumran, S.; Petsom, A.; Ngamrojnavanich, N.; Chavasiri, W.; Deesamer, S.; Yibchok-anun, S. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg. Med. Chem. Lett., 2004, 14(11), 2893-2896.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.037] [PMID: 15125954]
[81]
Selvakumar, G.; Venu, D.; Kuttalam, I.; Lonchin, S. Inhibition of advanced glycation end product formation in rat tail tendons by polydatin and p-coumaric acid: An in vitro study. Appl. Biochem. Biotechnol., 2022, 194(1), 339-353.
[http://dx.doi.org/10.1007/s12010-021-03762-y] [PMID: 34855112]
[82]
Moselhy, S.S.; Razvi, S.S.; ALshibili, F.A.; Kuerban, A.; Hasan, M.N.; Balamash, K.S.; Huwait, E.A.; Abdulaal, W.H.; Al-Ghamdi, M.A.; Kumosani, T.A.; Abulnaja, K.O.; Al-Malki, A.L.; Asami, T.; Ismail, I.M. <i>m</i>-Coumaric acid attenuates non-catalytic protein glycosylation in the retinas of diabetic rats. J. Pestic. Sci., 2018, 43(3), 180-185.
[http://dx.doi.org/10.1584/jpestics.D17-091] [PMID: 30363123]
[83]
Mani, A.; Kushwaha, K.; Khurana, N.; Gupta, J. p-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats. J. Anim. Physiol. Anim. Nutr., 2022, 106(4), 872-880.
[http://dx.doi.org/10.1111/jpn.13645] [PMID: 34596925]
[84]
Venkatesan, A.; Roy, A.; Kulandaivel, S.; Natesan, V.; Kim, S.J. p-Coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in streptozotocin-induced diabetic rats. Metabolites, 2022, 12(12), 1166.
[http://dx.doi.org/10.3390/metabo12121166] [PMID: 36557204]
[85]
Selvakumar, G.; Lonchin, S. A bio-polymeric scaffold incorporated with p-Coumaric acid enhances diabetic wound healing by modulating MMP-9 and TGF-β3 expression. Colloids Surf. B Biointerfaces, 2023, 225, 113280.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113280] [PMID: 36989817]
[86]
Bouzaiene, N.N.; Kilani Jaziri, S.; Kovacic, H.; Chekir-Ghedira, L.; Ghedira, K.; Luis, J. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol., 2015, 766, 99-105.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.044] [PMID: 26432689]
[87]
Jaganathan, S.K.; Supriyanto, E.; Mandal, M. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol., 2013, 19(43), 7726-7734.
[http://dx.doi.org/10.3748/wjg.v19.i43.7726] [PMID: 24282361]
[88]
Peng, Y.B.; Li, T.T.; Zhu, X.F. The mechanisms of coumaric acid inhibiting proliferation, migration and inducing apoptosis of lung cancer cells. J. Cent. South Univ., 2023, 42(02), 180-186.
[89]
Hu, X. The mechanism of p-Coumaric Acid-induced cell cycle arrest and apoptosis in melanoma B16 and A375 cells. Binzhou Medical College,
[90]
Hou, Z.F.; Zhao, B.J.; Che, H. Induction of endoplasmic reticulum stress-mediated apoptosis in diffuse large B-cell lymphoma cells by p-coumaric acid. Chinese J. Comp. Med., 2022, 32(10), 98-103.
[91]
Hou, Z.F.; Zhao, B.J.; Liu, S.S.; Yi, W.J.; Che, H. Effect of p-coumaric acid on apoptosis of multiple myeloma cells based on oxidative stress. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2023, 31(2), 435-441.
[PMID: 37096516]
[92]
Zheng, Y.L.; Yao, X.R.; Xin, S.B. Determination of p-coumaric acid in Shuang Bailian mixture and its mechanism of inhibiting the growth of esophageal carcinoma cells. Xian Jiaotong Daxue Xuebao (Yixue Ban), 2022, 43(06), 918-925.
[93]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact., 2018, 291, 16-28.
[http://dx.doi.org/10.1016/j.cbi.2018.06.001] [PMID: 29879413]
[94]
Na, H.J.; Hwang, J.Y.; Lee, K.S.; Choi, Y.K.; Choe, J.; Kim, J.Y.; Moon, H.E.; Kim, K.W.; Koh, G.Y.; Lee, H.; Jeoung, D.; Won, M.H.; Ha, K.S.; Kwon, Y.G.; Kim, Y.M. TRAIL negatively regulates VEGF-induced angiogenesis via caspase-8-mediated enzymatic and non-enzymatic functions. Angiogenesis, 2014, 17(1), 179-194.
[http://dx.doi.org/10.1007/s10456-013-9387-0] [PMID: 24097299]
[95]
Kong, C.S.; Jeong, C.H.; Choi, J.S.; Kim, K.J.; Jeong, J.W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res., 2013, 27(3), 317-323.
[http://dx.doi.org/10.1002/ptr.4718] [PMID: 22585412]
[96]
Li, Y.H.; He, Q.; Chen, Y.Z.; Du, Y.F.; Guo, Y.X.; Xu, J.Y.; Qin, L.Q. p-Coumaric acid ameliorates ionizing radiation-induced intestinal injury through modulation of oxidative stress and pyroptosis. Life Sci., 2021, 278, 119546.
[http://dx.doi.org/10.1016/j.lfs.2021.119546] [PMID: 33915129]
[97]
Boeing, T.; Costa, P.; Venzon, L.; Meurer, M.; Mariano, L.N.B.; França, T.C.S.; Gouveia, L.; de Bassi, A.C.; Steimbach, V.; de Souza, P.; de Almeida, M.O.; Arruda, C.; de Andrade, S.F.; Bastos, J.K.; da Silva, L.M. Gastric healing effect of p-coumaric acid isolated from Baccharis dracunculifolia DC on animal model. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(1), 49-57.
[http://dx.doi.org/10.1007/s00210-020-01928-9] [PMID: 32780226]
[98]
Costa, P.; Boeing, T.; Somensi, L.B.; Cury, B.J.; Espíndola, V.L.; França, T.C.S.; de Almeida, M.O.; Arruda, C.; Bastos, J.K.; da Silva, L.M.; de Andrade, S.F. Hydroalcoholic extract from Baccharis dracunculifolia recovers the gastric ulcerated tissue, and p -coumaric acid is a pivotal bioactive compound to this action. Biofactors, 2019, 45(3), 479-489.
[http://dx.doi.org/10.1002/biof.1503] [PMID: 30974027]
[99]
Sharma, A.; Gour, A.; Bhatt, S.; Rath, S.K.; Malik, T.A.; Dogra, A.; Sangwan, P.L.; Koul, S.; Abdullah, S.T.; Singh, G.; Nandi, U. Effect of IS01957, a para-coumaric acid derivative on pharmacokinetic modulation of diclofenac through oral route for augmented efficacy. Drug Dev. Res., 2019, 80(7), 948-957.
[http://dx.doi.org/10.1002/ddr.21574] [PMID: 31318064]
[100]
Zabka, M.; Pavela, R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 2013, 93(6), 1051-1056.
[http://dx.doi.org/10.1016/j.chemosphere.2013.05.076] [PMID: 23800587]
[101]
Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 2012, 25(2), 550-554.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.022]
[102]
Chauhan, R.; Azmi, W.; Bansal, S.; Goel, G. Multivariate analysis of adaptive response to ferulic acid and p -coumaric acid after physiological stresses in Cronobacter sakazakii. J. Appl. Microbiol., 2021, 131(6), 3069-3080.
[http://dx.doi.org/10.1111/jam.15164] [PMID: 34048109]
[103]
Chu, B.; Li, Y.; Li, J. Effects of p-coumaric acid on preventing acute hypoxia-induced pulmonary edema mice. Chung Kuo Yao Hsueh Tsa Chih, 2018, 53(17), 1463-1469.
[104]
Li, Y.; Han, J.; Zhang, Y.; Chen, Y.; Zhang, Y. Prophylactic effect and mechanism of p-coumaric acid against hypoxic cerebral edema in mice. Respir. Physiol. Neurobiol., 2019, 260, 95-104.
[http://dx.doi.org/10.1016/j.resp.2018.11.004] [PMID: 30447305]
[105]
Li, Y.; Han, J.; Chen, Y.; Chen, C.; Chu, B.; Zhang, Y. p-Coumaric acid as a prophylactic measure against normobaric hypoxia induced pulmonary edema in mice. Life Sci., 2018, 211, 215-223.
[http://dx.doi.org/10.1016/j.lfs.2018.09.039] [PMID: 30248349]
[106]
Lee, J.H.; Chung, Y.H.; Kim, H.H.; Bang, J.S.; Jung, T.W.; Park, T.; Park, J.; Kim, U.; Lee, S.H.; Jeong, J.H. p-Coumaric acid stimulates longitudinal bone growth through increasing the serum production and expression levels of insulin-like growth factor 1 in rats. Biochem. Biophys. Res. Commun., 2018, 505(4), 1103-1106.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.046] [PMID: 30318120]
[107]
Seok, J.K.; Boo, Y.C. p-Coumaric acid attenuates UVB-induced release of stratifin from keratinocytes and indirectly regulates matrix metalloproteinase 1 release from fibroblasts. Korean J. Physiol. Pharmacol., 2015, 19(3), 241-247.
[http://dx.doi.org/10.4196/kjpp.2015.19.3.241] [PMID: 25954129]
[108]
Boo, Y.C. p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants, 2019, 8(8), 275.
[http://dx.doi.org/10.3390/antiox8080275] [PMID: 31382682]
[109]
Lee, J.Y.; Cho, Y.R.; Park, J.H.; Ahn, E.K.; Jeong, W.; Shin, H.S.; Kim, M.S.; Yang, S.H.; Oh, J.S. Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression. Toxicol. Rep., 2019, 6, 10-17.
[http://dx.doi.org/10.1016/j.toxrep.2018.11.005] [PMID: 30510908]
[110]
An, S.M.; Koh, J.S.; Boo, Y.C. p -coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res., 2010, 24(8), 1175-1180.
[http://dx.doi.org/10.1002/ptr.3095] [PMID: 20077437]
[111]
Ayazoglu Demir, E.; Mentese, A.; Kucuk, H.; Turkmen Alemdar, N.; Demir, S. P -COUMARIC acid alleviates CISPLATIN-INDUCED ovarian toxicity in rats. J. Obstet. Gynaecol. Res., 2022, 48(2), 411-419.
[http://dx.doi.org/10.1111/jog.15119] [PMID: 34877753]
[112]
Yang, J.; Zhu, X.; Li, C. Caffeic acid and its derivatives caffeic acid ethyl benzene pharmacological activity research progress. Chung Kuo Yao Hsueh Tsa Chih, 2013, 48(08), 577-582.
[113]
Wu, Z. Studies on the synthesis and bioactivities of cinnamic acid derivatives. LANZHOU UNIVERSITY, 2013.
[114]
Wang, L.; Wang, F.; Chen, X. Pharmacological research progress of sodium ferulate in cardio-cerebral vascular disease. Zhong Cao Yao, 2019, 50(03), 772-777.
[115]
Las’kova, Y.N.; Serdyukov, A.A.; Sivaev, I.B. Boron-containing coumarins. Russ. J. Inorg. Chem., 2023.
[http://dx.doi.org/10.1134/S0036023623600612]
[116]
Goeva, L.V.; Zhuchkova, A.F.; Malinina, E.A.; Korolenko, S.E.; Avdeeva, V.V.; Kuznetsov, N.T. Radiation-chemical transformations of 7-NH3-4-CH3-coumarin decahydro-closo-decaborate as a potential inhibitor of free radicals. Russ. J. Inorg. Chem., 2022, 67(8), 1144-1150.
[http://dx.doi.org/10.1134/S0036023622080149]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy