Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Glp-1 Mimetics and Autophagy in Diabetic Milieu: State-of-the-Art

Author(s): Habib Yaribeygi*, Mina Maleki, Raul D. Santos, Tannaz Jamialahmadi and Amirhossein Sahebkar*

Volume 20, Issue 10, 2024

Published on: 25 January, 2024

Article ID: e250124226181 Pages: 9

DOI: 10.2174/0115733998276570231222105959

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The diabetic milieu is associated with cascades of pathophysiological pathways that culminate in diabetic complications and tissue injuries. Autophagy is an essential process mandatory for cell survival and tissue homeostasis by degrading damaged organelles and removing injured cells. However, it may turn into a pathological process in an aberrant mode in the diabetic and/or malignant milieu. Moreover, autophagy could serve as a promising therapeutic target for many complications related to tissue injury. Glp-1 mimetics are a class of newer antidiabetic agents that reduce blood glucose through several pathways. However, some evidence suggests that they can provide extra glycemic benefits by modulating autophagy, although there is no complete understanding of this mechanism and its underlying molecular pathways. Hence, in the current review, we aimed to provide new insights on the possible impact of Glp-1 mimetics on autophagy and consequent benefits as well as mediating pathways.

Keywords: Diabetes mellitus, Glucagon-like peptide-1, Glp-1 mimetic, autophagy, sitagliptin, molecular pathways.

[1]
Rathmann W, Kuss O, Kostev K. Incidence of newly diagnosed diabetes after COVID-19. Diabetologia 2022; 65(6): 949-54.
[http://dx.doi.org/10.1007/s00125-022-05670-0] [PMID: 35292829]
[2]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[3]
Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease. Nature Aging 2021; 1(8): 634-50.
[http://dx.doi.org/10.1038/s43587-021-00098-4] [PMID: 34901876]
[4]
Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J 2021; 40(19): e108863.
[http://dx.doi.org/10.15252/embj.2021108863] [PMID: 34459017]
[5]
Piffoux M, Eriau E, Cassier PA. Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer 2021; 124(2): 333-44.
[http://dx.doi.org/10.1038/s41416-020-01039-5] [PMID: 32929194]
[6]
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers 2020; 12(3): 562.
[http://dx.doi.org/10.3390/cancers12030562] [PMID: 32121322]
[7]
Zhao H, Wang Y, Qiu T, Liu W, Yao P. Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta 2020; 502: 139-47.
[http://dx.doi.org/10.1016/j.cca.2019.12.016] [PMID: 31877297]
[8]
Zhang W, Li X, Wang S, Chen Y, Liu H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov 2020; 6(1): 32.
[http://dx.doi.org/10.1038/s41420-020-0265-4] [PMID: 32377395]
[9]
Phadwal K, Feng D, Zhu D, MacRae VE. Autophagy as a novel therapeutic target in vascular calcification. Pharmacol Ther 2020; 206: 107430.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107430] [PMID: 31647975]
[10]
Yaribeygi H, Rashidy-Pour A, Atkin SL, Jamialahmadi T, Sahebkar A. GLP-1 mimetics and cognition. Life Sci 2021; 264: 118645.
[http://dx.doi.org/10.1016/j.lfs.2020.118645] [PMID: 33121988]
[11]
Barnett AH. The role of GLP‐1 mimetics and basal insulin analogues in type 2 diabetes mellitus: Guidance from studies of liraglutide. Diabetes Obes Metab 2012; 14(4): 304-14.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01523.x] [PMID: 22051096]
[12]
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci 2020; 241: 117152.
[http://dx.doi.org/10.1016/j.lfs.2019.117152]
[13]
Rezaei S, Tabrizi R, Nowrouzi-Sohrabi P, et al. GLP-1 Receptor agonist effects on lipid and liver profiles in patients with nonalcoholic fatty liver disease: Systematic review and meta-analysis. Canadian Journal of Gastroenterology and Hepatology 2021; 2021
[14]
Yaribeygi H, Katsiki N, Butler AE, Sahebkar A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov Today 2019; 24(1): 256-62.
[http://dx.doi.org/10.1016/j.drudis.2018.08.005]
[15]
Yaribeygi H, Maleki M, Nasimi F, Jamialahmadi T, Stanford FC, Sahebkar A. Benefits of GLP-1 mimetics on epicardial adiposity. Curr Med Chem 2023; 30(37): 4256-65.
[http://dx.doi.org/10.2174/0929867330666230113110431] [PMID: 36642880]
[16]
Yaribeygi H, Sathyapalan T, Sahebkar A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sci 2019; 234: 116776.
[http://dx.doi.org/10.1016/j.lfs.2019.116776] [PMID: 31425698]
[17]
Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 2021; 9(10): 653-62.
[http://dx.doi.org/10.1016/S2213-8587(21)00203-5] [PMID: 34425083]
[18]
Candeias E, Sebastião I, Cardoso S, et al. Brain GLP-1/IGF-1 signaling and autophagy mediate exendin-4 protection against apoptosis in type 2 diabetic rats. Mol Neurobiol 2018; 55(5): 4030-50.
[PMID: 28573460]
[19]
Ashrafizadeh M, Yaribeygi H, Atkin SL, Sahebkar A. Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr 2019; 13(4): 2445-9.
[http://dx.doi.org/10.1016/j.dsx.2019.06.028] [PMID: 31405658]
[20]
Cai X, She M, Xu M, et al. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J Biol Sci 2018; 14(12): 1696-708.
[http://dx.doi.org/10.7150/ijbs.27774] [PMID: 30416384]
[21]
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19(1): 1-16.
[http://dx.doi.org/10.1186/s12943-019-1085-0] [PMID: 31901224]
[22]
Deter RL, de Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33(2): 437-49.
[http://dx.doi.org/10.1083/jcb.33.2.437] [PMID: 4292315]
[23]
Yim WWY, Mizushima N. Lysosome biology in autophagy. Cell Discov 2020; 6(1): 6.
[http://dx.doi.org/10.1038/s41421-020-0141-7] [PMID: 32047650]
[24]
Moruno F, Pérez-Jiménez E, Knecht E. Regulation of autophagy by glucose in Mammalian cells. Cells 2012; 1(3): 372-95.
[http://dx.doi.org/10.3390/cells1030372] [PMID: 24710481]
[25]
Di Malta C, Cinque L, Settembre C. Transcriptional regulation of autophagy: Mechanisms and diseases. Front Cell Dev Biol 2019; 7: 114.
[http://dx.doi.org/10.3389/fcell.2019.00114] [PMID: 31312633]
[26]
Ge X, Wang L, Fei A, Ye S, Zhang Q. Research progress on the relationship between autophagy and chronic complications of diabetes. Front Physiol 2022; 13: 956344.
[http://dx.doi.org/10.3389/fphys.2022.956344] [PMID: 36003645]
[27]
Tasset I, Cuervo AM. Role of chaperone‐mediated autophagy in metabolism. FEBS J 2016; 283(13): 2403-13.
[http://dx.doi.org/10.1111/febs.13677] [PMID: 26854402]
[28]
Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J 2018; 17: 709-20.
[PMID: 30190661]
[29]
Frendo-Cumbo S, Tokarz VL, Bilan PJ, Brumell JH, Klip A. Communication between autophagy and insulin action: At the crux of insulin action-insulin resistance? Frontiers in Cell and Developmental Biology 2021; 1918
[http://dx.doi.org/10.3389/fcell.2021.708431]
[30]
Riahi Y, Wikstrom JD, Bachar-Wikstrom E, et al. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 2016; 59(7): 1480-91.
[http://dx.doi.org/10.1007/s00125-016-3868-9] [PMID: 26831301]
[31]
Chen Z, Li YB, Han J, et al. The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy 2011; 7(1): 12-6.
[http://dx.doi.org/10.4161/auto.7.1.13607] [PMID: 20935505]
[32]
Wang Y, He D, Ni C, et al. Vitamin D induces autophagy of pancreatic β-cells and enhances insulin secretion. Mol Med Rep 2016; 14(3): 2644-50.
[http://dx.doi.org/10.3892/mmr.2016.5531] [PMID: 27430408]
[33]
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[34]
Bharath LP, Rockhold JD, Conway R. Selective autophagy in hyperglycemia-induced microvascular and macrovascular diseases. Cells 2021; 10(8): 2114.
[http://dx.doi.org/10.3390/cells10082114] [PMID: 34440882]
[35]
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184: 106408.
[http://dx.doi.org/10.1016/j.phrs.2022.106408] [PMID: 35988870]
[36]
Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res 2017; 120(11): 1812-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311082] [PMID: 28546358]
[37]
Di Rosa M, Distefano G, Gagliano C, Rusciano D, Malaguarnera L. Autophagy in diabetic retinopathy. Curr Neuropharmacol 2016; 14(8): 810-25.
[http://dx.doi.org/10.2174/1570159X14666160321122900] [PMID: 26997506]
[38]
Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol 2015; 224(1): R15-30.
[http://dx.doi.org/10.1530/JOE-14-0437] [PMID: 25349246]
[39]
Yerra VG, Gundu C, Bachewal P, Kumar A. Autophagy: The missing link in diabetic neuropathy? Med Hypotheses 2016; 86: 120-8.
[http://dx.doi.org/10.1016/j.mehy.2015.11.004] [PMID: 26554509]
[40]
Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193: 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[41]
Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2015; 1852(2): 252-61.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.020]
[42]
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54(11): e14602.
[http://dx.doi.org/10.1111/and.14602] [PMID: 36161318]
[43]
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11(9): 709-30.
[http://dx.doi.org/10.1038/nrd3802] [PMID: 22935804]
[44]
Towers CG, Thorburn A. Therapeutic targeting of autophagy. EBioMedicine 2016; 14: 15-23.
[http://dx.doi.org/10.1016/j.ebiom.2016.10.034] [PMID: 28029600]
[45]
Drucker DJ, Nauck MA. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696-705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[46]
Islam M. Insulinotropic effect of herbal drugs for management of diabetes mellitus: A congregational approach. Biosens J 2016; 5(142): 2.
[47]
Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8(12): 728-42.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[48]
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132(6): 2131-57.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[49]
Wootten D, Simms J, Koole C, et al. Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J Pharmacol Exp Ther 2011; 336(2): 540-50.
[http://dx.doi.org/10.1124/jpet.110.176362] [PMID: 21075839]
[50]
Association AD. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2018. Diabetes Care 2018; 41 (Suppl. 1): S13-27.
[http://dx.doi.org/10.2337/dc18-S002] [PMID: 29222373]
[51]
Ahrén B. DPP-4 inhibitors. Best Pract Res Clin Endocrinol Metab 2007; 21(4): 517-33.
[http://dx.doi.org/10.1016/j.beem.2007.07.005] [PMID: 18054733]
[52]
Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 2021; 398(10295): 143-55.
[http://dx.doi.org/10.1016/S0140-6736(21)01324-6] [PMID: 34186022]
[53]
Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int J Mol Med 2015; 35(3): 684-92.
[http://dx.doi.org/10.3892/ijmm.2014.2052] [PMID: 25573030]
[54]
Chang CC, Lin TC, Ho HL, et al. GLP-1 analogue liraglutide attenuates mutant huntingtin-induced neurotoxicity by restoration of neuronal insulin signaling. Int J Mol Sci 2018; 19(9): 2505.
[http://dx.doi.org/10.3390/ijms19092505] [PMID: 30149534]
[55]
Yang Y, Fang H, Xu G, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats. Mol Med Rep 2018; 18(2): 2449-57.
[http://dx.doi.org/10.3892/mmr.2018.9180] [PMID: 29916537]
[56]
Yu W, Zha W, Ren J. Exendin-4 and liraglutide attenuate glucose toxicity-induced cardiac injury through mTOR/ULK1-dependent autophagy. Oxidative medicine and cellular longevity 2018; 2018
[57]
Shao N, Yu X-Y, Ma X-F, Lin W-J, Hao M, Kuang H-Y. Exenatide delays the progression of nonalcoholic fatty liver disease in c57bl/6 mice, which may involve inhibition of the nlrp3 inflammasome through the mitophagy pathway. Gastroenterology research and practice 2018; 2018
[58]
Gu Y, Ma CT, Gu HL, Shi L, Tian XT, Xu WQ. Sitagliptin improves cardiac function after myocardial infarction through activation of autophagy in streptozotocin-induced diabetic mice. Eur Rev Med Pharmacol Sci 2018; 22(24): 8973-83.
[PMID: 30575942]
[59]
Zhou Y, Wang H, Man F, et al. Sitagliptin protects cardiac function by reducing nitroxidative stress and promoting autophagy in zucker diabetic fatty (ZDF) rats. Cardiovasc Drugs Ther 2018; 32(6): 541-52.
[http://dx.doi.org/10.1007/s10557-018-6831-9] [PMID: 30328028]
[60]
Zheng W, Zhou J, Song S, et al. Dipeptidyl-Peptidase 4 inhibitor sitagliptin ameliorates hepatic insulin resistance by modulating inflammation and autophagy in ob/ob Mice. International journal of endocrinology 2018; 2018
[61]
Bayrami G, Alihemmati A, Karimi P, et al. Combination of vildagliptin and ischemic postconditioning in diabetic hearts as a working strategy to reduce myocardial reperfusion injury by restoring mitochondrial function and autophagic activity. Adv Pharm Bull 2018; 8(2): 319-29.
[http://dx.doi.org/10.15171/apb.2018.037] [PMID: 30023334]
[62]
Kong FJ, Wu JH, Sun SY, Ma LL, Zhou JQ. Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes. Neuropharmacology 2018; 131: 316-25.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.001] [PMID: 29305122]
[63]
Miao X, Gu Z, Liu Y, et al. The glucagon-like peptide-1 analogue liraglutide promotes autophagy through the modulation of 5′-AMP-activated protein kinase in INS-1 β-cells under high glucose conditions. Peptides 2018; 100: 127-39.
[http://dx.doi.org/10.1016/j.peptides.2017.07.006] [PMID: 28712893]
[64]
Su Y, Lin B, Chen Y, Liu Z, Gan L, Xu W. 1518-PUB: Role of PPARd in regulating autophagy pathway in improving islet ß-cell function with GLP-1 receptor agonist. Diabetes 2022; 71
[65]
Zhang Y, Ling Y, Yang L, et al. Liraglutide relieves myocardial damage by promoting autophagy via AMPK-mTOR signaling pathway in zucker diabetic fatty rat. Mol Cell Endocrinol 2017; 448: 98-107.
[http://dx.doi.org/10.1016/j.mce.2017.03.029] [PMID: 28363742]
[66]
Cai X, Li J, Wang M, et al. GLP-1 treatment improves diabetic retinopathy by alleviating autophagy through GLP-1R-ERK1/2-HDAC6 signaling pathway. Int J Med Sci 2017; 14(12): 1203-12.
[http://dx.doi.org/10.7150/ijms.20962] [PMID: 29104476]
[67]
Zummo FP, Cullen KS, Honkanen-Scott M, Shaw JAM, Lovat PE, Arden C. Glucagon-like peptide 1 protects pancreatic β-cells from death by increasing autophagic flux and restoring lysosomal function. Diabetes 2017; 66(5): 1272-85.
[http://dx.doi.org/10.2337/db16-1009] [PMID: 28232493]
[68]
Hendawy M, Ramy A, Mohie I. Autophagy promotion and fibrosis inhibition by combination of GLP1 analogue and metformin decreasing the progression of type II diabetic cardiomyopathy of albino rats: Immunohistochemical study. Bullet Egypt Soc Physiol Sci 2022; 0(0): 202-12.
[http://dx.doi.org/10.21608/besps.2021.103465.1113]
[69]
Yu H-H, Wang H-C, Hsieh M-C, Lee M-C, Su B-C, Shan Y-S. Exendin-4 attenuates hepatic steatosis by promoting the autophagy-lysosomal pathway. BioMed Research International 2022; 2022
[http://dx.doi.org/10.1155/2022/4246086]
[70]
Elsaeed E, Hamad A, Erfan O, El-Shahat M, Ebrahim F. Effect of exenatide on apoptosis, autophagy, and necroptosis in the hippocampus of STZ-induced diabetic female rats: an immunohistochemical study. Egypt Acad J Biol Sci D Histol Histochem 2022; 14(1): 1-25.
[http://dx.doi.org/10.21608/eajbsd.2022.214866]
[71]
Dai X, Zeng J, Yan X, et al. Sitagliptin‐mediated preservation of endothelial progenitor cell function via augmenting autophagy enhances ischaemic angiogenesis in diabetes. J Cell Mol Med 2018; 22(1): 89-100.
[http://dx.doi.org/10.1111/jcmm.13296] [PMID: 28799229]
[72]
Liu D-x, Zhao C-s, Wei X-n, Ma Y-p, Wu J-k. Semaglutide protects against 6-OHDA toxicity by enhancing autophagy and inhibiting oxidative stress. Parkinson’s Disease 2022; 2022
[73]
Meurot C, Jacques C, Martin C, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat 2022; 32: 121-9.
[http://dx.doi.org/10.1016/j.jot.2022.02.001] [PMID: 35280931]
[74]
Liu H, Cheng Y. Identification of autophagy-related long non-coding RNAs in endometrial cancer via comprehensive bioinformatics analysis. BMC Womens Health 2022; 22(1): 85.
[http://dx.doi.org/10.1186/s12905-022-01667-4] [PMID: 35321716]
[75]
Guan T, Xiao Y, Xie X, et al. Dulaglutide improves gliosis and suppresses apoptosis/autophagy through the PI3K/Akt/mTOR signaling pathway in vascular dementia rats. Neurochem Res 2022; 1-19.
[PMID: 36571662]
[76]
Kanda R, Hiraike H, Wada-Hiraike O, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer 2018; 18(1): 657.
[http://dx.doi.org/10.1186/s12885-018-4570-8] [PMID: 29907137]
[77]
Arden C. A role for glucagon-like peptide-1 in the regulation of β-cell autophagy. Peptides 2018; 100: 85-93.
[http://dx.doi.org/10.1016/j.peptides.2017.12.002] [PMID: 29412836]
[78]
Li Y, Chen Y. AMPK and autophagy biology and diseases. Basic Science 2019; 85-108.
[http://dx.doi.org/10.1007/978-981-15-0602-4_4]
[79]
Kong Z, Yao T. Role for autophagy-related markers Beclin-1 and LC3 in endometriosis. BMC Womens Health 2022; 22(1): 264.
[http://dx.doi.org/10.1186/s12905-022-01850-7] [PMID: 35768796]
[80]
Wang H, Li H, Chen X, Huang K. ERK1/2-mediated autophagy is essential for cell survival under Ochratoxin A exposure in IPEC-J2 cells. Toxicol Appl Pharmacol 2018; 360: 38-44.
[http://dx.doi.org/10.1016/j.taap.2018.09.027] [PMID: 30248419]
[81]
Prakash R, Fauzia E, Siddiqui AJ, et al. Oxidative stress enhances autophagy-mediated death of stem cells through Erk1/2 signaling pathway – implications for neurotransplantations. Stem Cell Rev Rep 2021; 17(6): 2347-58.
[http://dx.doi.org/10.1007/s12015-021-10212-z] [PMID: 34487308]
[82]
Zhu Q, Luo Y, Wen Y, Wang D, Li J, Fan Z. Semaglutide inhibits ischemia/reperfusion-induced cardiomyocyte apoptosis through activating PKG/PKCε/ERK1/2 pathway. Biochem Biophys Res Commun 2023; 647: 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2023.01.049]
[83]
Madhu D, Khadir A, Hammad M, et al. The GLP-1 analog exendin-4 modulates HSP72 expression and ERK1/2 activity in BTC6 mouse pancreatic cells. Biochim Biophys Acta Proteins Proteomics 2020; 1868(7): 140426.
[http://dx.doi.org/10.1016/j.bbapap.2020.140426] [PMID: 32272193]
[84]
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[85]
Li Z, Chen X, Vong JSL, et al. Systemic GLP-1R agonist treatment reverses mouse glial and neurovascular cell transcriptomic aging signatures in a genome-wide manner. Commun Biol 2021; 4(1): 656.
[http://dx.doi.org/10.1038/s42003-021-02208-9] [PMID: 34079050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy