Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Mini-Review Article

Exploring the Therapeutic Potential of Phytoconstituents for Addressing Neurodegenerative Disorders

Author(s): Sweta Kamboj, Prerna Sharma, Rohit Kamboj, Shikha Kamboj, Hariom, Girija, Kumar Guarve, Rohit Dutt*, Inderjeet Verma, Kamal Dua and Nidhi Rani*

Volume 24, Issue 2, 2024

Published on: 23 January, 2024

Page: [129 - 144] Pages: 16

DOI: 10.2174/0118715249273015231225091339

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Neurodegenerative disorder is a serious condition that is caused by abnormal or no neurological function. Neurodegenerative disease is a major growing cause of mortality and morbidity worldwide, especially in the elderly. After World War Ⅱ, eugenics term was exterminated from medicines. Neurodegenerative disease is a genetically inherited disease. Lifestyle changes, environmental factors, and genetic modification, together or alone, are involved in the occurrence of this disorder. The major examples of neurodegenerative disorders are Alzheimer's and Parkinson’s disease, in which apoptosis and necrosis are the two major death pathways for neurons. It has been determined from various studies that the etiology of the neurodegenerative disease involves the role of oxidative stress and anti-oxidant defence system, which are prime factors associated with the activation of signal transduction pathway that is responsible for the formation of synuclein in the brain and manifestation of toxic reactions in the form of functional abnormality, which ultimately leads to the dysfunction of neuronal pathway or cell. There has not been much success in the discovery of effective therapy to treat neurodegenerative diseases because the main cause of abnormal functioning or death of neurons is not well known. However, the use of natural products that are derived from plants has effective therapeutic potential against neurodegenerative disease. The natural compounds with medicinal properties to prevent neurological dysfunction are curcumin, wolfberry, ginseng, and Withania somnifera. The selection and use of natural compounds are based on their strong anti-inflammatory and anti-oxidant properties against neurodegenerative disease. Herbal products have active constituents that play an important role in the prevention of communication errors between neurons and neurotransmitters and their respective receptors in the brain, which influence their function. Considering this, natural products have great potential against neurodegenerative diseases. This article reviews the natural compounds used to treat neurodegenerative diseases and their mechanisms of action.

Keywords: Neurodegenerative diseases (NGDs), natural product, neurological dysfunction, patient, plants, genetic, neuroprotective.

Graphical Abstract
[1]
Checkoway, H.; Lundin, J.L.; Kelada, S.N. Application of biomarkers to disease: Neurodegenerative disease; , 2011, 22, pp. (5)407-420.
[2]
Amin, M.M. Handbook of research on critical examinations of neurodegenerative disorder. In: National research centre; Egypt, 2019; pp. 1-22.
[3]
Kovacs, G.G. Current concept of neurodegenerative disease. Institute of neurology, medical university of Vienna, Austria. EMJ Neuronal., 2014, 1, 78-86.
[4]
Srivastava, P.; Yadav, R.S. Efficacy of natural compounds in neurodegenerative disorders. Adv. Neurobiol., 2016, 12, 107-123.
[http://dx.doi.org/10.1007/978-3-319-28383-8_7] [PMID: 27651251]
[5]
Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative disease: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170.
[http://dx.doi.org/10.3390/ijms20205170] [PMID: 31635296]
[6]
Devranis, P.; Vassilopoulou, E.; Aivaliotis, M.; Chourdakis, M.; Tsolaki, M. Natural product against neurodegenerative disease progression. ICONSD, 2022, 2(1A), 21.
[7]
What is Alzheimer’s disease: Cause, diagnosis, treatment. Available from: https://www.nia.nih.gov/health/what-alzheimers-disease
[8]
Parkinson's disease: What it is, causes, symptoms & treatment Available from: https://my.clevelandclinic.org/health/diseases/8525-parkinsons-disease-an-overview
[9]
Parkinson’s disease: Causes, symptoms, and treatments. 2022. Available from: http://www.nia.nih.goc/gov/health/parkinson-disease
[10]
Wijesekera, L.C.; Leigh, P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4(4), 3.
[11]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[12]
Kauffman, J.S.; Zinovyeva, A.; Yagi, K.; Makabe, K.W.; Raff, R.A. Neural expression of the Huntington’s disease gene as a chordate evolutionary novelty. J. Exp. Zool. B Mol. Dev. Evol., 2003, 297(1), 57-64.
[13]
Aarsland, D. Epidemiology and pathophysiology of dementia-related psychosis. J. Clin. Psychiatry, 2020, 81(5)
[14]
Kolb, S.J.; Kissel, J.T. Spinal muscular atrophy. Neurol. Clin., 2015, 33(4), 831-846.
[http://dx.doi.org/10.1016/j.ncl.2015.07.004] [PMID: 26515624]
[15]
Fanciulli, A.; Stankovic, I.; Krismer, F.; Seppi, K.; Levin, J.; Wenning, G.K. Multiple system atrophy. Int. Rev. Neurobiol., 2019, 149, 137-192.
[http://dx.doi.org/10.1016/bs.irn.2019.10.004] [PMID: 31779811]
[16]
Sullivan, R.; Yau, W.Y.; O’Connor, E.; Houlden, H. Spinocerebellar ataxia: An update. J. Neurol., 2019, 266(2), 533-544.
[http://dx.doi.org/10.1007/s00415-018-9076-4] [PMID: 30284037]
[17]
García Morales, L.; Mustelier Bécquer, R.G.; Pérez Joglar, L.; Zaldívar Vaillant, T. Sandhoff disease in the elderly: A case study. Amyotroph. Lateral Scler. Frontotemporal Degener., 2022, 23(1-2), 137-138.
[http://dx.doi.org/10.1080/21678421.2021.1892146] [PMID: 33650927]
[18]
Hayashi, T.; Mori, N. Subacute combined degeneration of the spinal cord. Intern. Med., 2022, 10.
[PMID: 35945006]
[19]
Lakhan, S. what are neurodegenerative disease? Toketemu ohwovoriole. 2022.
[20]
Kovacs, G.G.; Budka, H. Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin. Neuropathol., 2010, 29(9), 271-288.
[http://dx.doi.org/10.5414/NPP29271] [PMID: 20860890]
[21]
Nijholt, D.A.; De Kimpe, L.; Elfrink, H.L.; Hoozemans, J.J.; Scheper, W. Removing protein aggregates: The role of proteolysis in neurodegeneration. Curr. Med. Chem., 2011, 18(16), 2459-2476.
[http://dx.doi.org/10.2174/092986711795843236] [PMID: 21568912]
[22]
Murugaiyah, V.; Mattson, M.P. Neurohormetic phytochemicals: An evolutionary–bioenergetic perspective. Neurochem. Int., 2015, 89, 271-280.
[http://dx.doi.org/10.1016/j.neuint.2015.03.009] [PMID: 25861940]
[23]
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10, S10-S17.
[http://dx.doi.org/10.1038/nm1066]
[24]
Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[25]
Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett., 2018, 592(5), 728-742.
[http://dx.doi.org/10.1002/1873-3468.12956] [PMID: 29281123]
[26]
Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci., 2012, 322(1-2), 254-262.
[http://dx.doi.org/10.1016/j.jns.2012.05.030] [PMID: 22669122]
[27]
Armstrong, Richard What causes neurodegenerative disease? Folia neuropathological, 2020, 58(2), 93-112.
[http://dx.doi.org/10.5114/fn.2020.96707]
[28]
Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673.
[http://dx.doi.org/10.1038/s41577-022-00684-6] [PMID: 35246670]
[29]
Carrell, R.W.; Lomas, D.A. Conformational disease. Lancet, 1997, 350(9071), 134-138.
[http://dx.doi.org/10.1016/S0140-6736(97)02073-4] [PMID: 9228977]
[30]
Mbongwe, B.; Nkatogang, M.; Tapera, R.; Erick, P.; Tumoyagae, T.; Molefe, T.; Letsholo, B. Self-reported respiratory symptoms among students exposed to second hand smoke (SHS) in academic instituions in Gaborone: Implications for public health interventions. Pub Health Tox, 2022, 2(4), 1-8.
[http://dx.doi.org/10.18332/pht/157596]
[31]
Ibara, M. Early sign of neurodegenerative disease., 2016, 22 Available from: www.healthline.com/health/brain-disorders#types
[32]
Dawsan, R. The short list of the neurodegenerative disease’s symptoms. In: Most Common Symptoms of Neurodegenerative Disease; , 2021.
[33]
Doudet, D.J. Neurodegenerative disease. Mol. Imaging Biol., 2007, 9(4), 159-160.
[http://dx.doi.org/10.1007/s11307-007-0099-y] [PMID: 17447108]
[34]
Levenson, R.W.; Sturm, V.E.; Haase, C.M. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annu. Rev. Clin. Psychol., 2014, 10(1), 581-606.
[http://dx.doi.org/10.1146/annurev-clinpsy-032813-153653] [PMID: 24437433]
[35]
Lovergne, L.; Ghosh, D.; Schuck, R.; Polyzos, A.A.; Chen, A.D.; Martin, M.C.; Barnard, E.S.; Brown, J.B.; McMurray, C.T. An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms. Sci. Rep., 2021, 11(1), 15598.
[http://dx.doi.org/10.1038/s41598-021-93686-8]
[36]
Westfall, S.; Lomis, N.; Kahouli, I.; Dia, S.Y.; Singh, S.P.; Prakash, S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell. Mol. Life Sci., 2017, 74(20), 3769-3787.
[http://dx.doi.org/10.1007/s00018-017-2550-9] [PMID: 28643167]
[37]
Heemels, M.T. Neurodegenerative diseases. Nature, 2016, 539(7628), 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[38]
Berman, T.; Bayati, A. What are neurodegenerative diseases and how do they affect the brain? Front. Young Minds, 2018, 6, 70.
[http://dx.doi.org/10.3389/frym.2018.00070]
[39]
Balthazar, M.L.; Pereira, F.R.; Lopes, T.M.; Silva, E.L.; Coan, A.C. Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Hum. Brain Mapp., 2013.
[PMID: 23418130]
[40]
Apostolova, L.G.; Cummings, J.L. Neuropsychiatric manifestations in mild cognitive impairment: A systematic review of the literature. Dement. Geriatr. Cogn. Disord., 2008, 25(2), 115-126.
[http://dx.doi.org/10.1159/000112509] [PMID: 18087152]
[41]
Aron, A.R.; Friston, K.J. The neural basis of inhibition in cognitive control. Neuroscientist, 2007, 13(3), 214-228.
[http://dx.doi.org/10.1177/1073858407299288] [PMID: 17519365]
[42]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[43]
Sheikh, N. Top Risk Factors for Neurodegenerative Disease; Top Risk Factors for Neurodegenerative Disease - Altoida, 2021.
[44]
Emard, J.F.; Thouez, J.P.; Gauvreau, D. Neurodegenerative diseases and risk factors: A literature review. Soc. Sci. Med., 1995, 40(6), 847-858.
[http://dx.doi.org/10.1016/0277-9536(94)00138-J] [PMID: 7747220]
[45]
Khachaturian, A.S.; Khachaturian, Z.S. Military risk factors for Alzheimer’s dementia and neurodegenerative disease. Alzheimers Dement., 2014, 10(3S)(Suppl.), S90-S91.
[http://dx.doi.org/10.1016/j.jalz.2014.05.1085] [PMID: 24924677]
[46]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[47]
Rose, M.R. Adaptation, aging, and genomic information. Aging, 2009, 1(5), 444-450.
[http://dx.doi.org/10.18632/aging.100053] [PMID: 20157529]
[48]
Dean, D.C., III; Jerskey, B.A.; Chen, K.; Protas, H.; Thiyyagura, P.; Roontiva, A.; O’Muircheartaigh, J.; Dirks, H.; Waskiewicz, N.; Lehman, K.; Siniard, A.L.; Turk, M.N.; Hua, X.; Madsen, S.K.; Thompson, P.M.; Fleisher, A.S.; Huentelman, M.J.; Deoni, S.C.L.; Reiman, E.M. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: A cross-sectional imaging study. JAMA Neurol., 2014, 71(1), 11-22.
[http://dx.doi.org/10.1001/jamaneurol.2013.4544] [PMID: 24276092]
[49]
Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2008, 30(1), 2-10.
[http://dx.doi.org/10.1093/carcin/bgn250] [PMID: 18978338]
[50]
Tell, G.; Demple, B. Base excision DNA repair and cancer. Oncotarget, 2015, 6(2), 584-585.
[http://dx.doi.org/10.18632/oncotarget.2705] [PMID: 25655644]
[51]
Mohd Sairazi, N.S.; Sirajudeen, K.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative disease. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-30.
[http://dx.doi.org/10.1155/2020/6565396]
[52]
Pohl, F.; Kong, T.L.P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/ treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. In: Molecules; , 2018; 23, p. (12)3283.
[53]
Hu, S.; Maiti, P.; Ma, Q.; Zuo, X.; Jones, M.R.; Cole, G.M.; Frautschy, S.A. Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother., 2015, 15(6), 629-637.
[http://dx.doi.org/10.1586/14737175.2015.1044981] [PMID: 26035622]
[54]
Dar, N.J.; Ahmad, M. Neurodegenerative disease and withania somifera (L.). An update., 2020, 112769.
[55]
Ho, Shan Y. 2020, 112769. [55] Ho, Shan Y.; Y.M., Shan Neuroprotective effects of polysaccharides from wolfberry: The fruit of Lcium barbarum, against Homocysteine- induced toxicity in rat cortical neurons. 2010.
[56]
Limbocker, R.; Errico, S.; Barbut, D.; Knowles, T.P.J.; Vendruscolo, M.; Chiti, F.; Zasloff, M. Squalamine and trodusquemine: Two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat. Prod. Rep., 2022, 39(4), 742-753.
[http://dx.doi.org/10.1039/D1NP00042J] [PMID: 34698757]
[57]
Christen, Y. Ginkgo biloba and neurodegenerative disorders. Front. Biosci., 2004, 9(1-3), 3091-3104.
[http://dx.doi.org/10.2741/1462] [PMID: 15353340]
[58]
Ong, W.Y.; Farooqui, T.; Koh, H.L.; Farooqui, A.A.; Ling, E.A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci., 2015, 7, 129.
[http://dx.doi.org/10.3389/fnagi.2015.00129] [PMID: 26236231]
[59]
Hadrich, F.; Chamkha, M.; Sayadi, S. Protective effect of olive leaves phenolic compounds against neurodegenerative disorders: Promising alternative for Alzheimer’s and Parkinson’s disease modulation. Food Chem. Toxicol., 2022, 159.
[http://dx.doi.org/10.1016/j.fct.2021.112752]
[60]
Giacoppo, S.; Galuppo, M.; Lombardo, G.E.; Ulaszewska, M.M.; Mattivi, F.; Bramanti, P.; Mazzon, E.; Navarra, M. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia, 2015, 103, 171-186.
[http://dx.doi.org/10.1016/j.fitote.2015.04.003] [PMID: 25863350]
[61]
Zhang, N.; Dou, D.; Ran, X.; Kang, T. Neuroprotective effect of arctigenin against neuroinflammation and oxidative stress induced by rotenone. RSC Advances, 2018, 8(5), 2280-2292.
[http://dx.doi.org/10.1039/C7RA10906G] [PMID: 35541453]
[62]
Shabgah, A.G.; Suksatan, W.; Achmad, M.H.; Bokov, D.O.; Abdelbasset, W.K.; Ezzatifar, F.; Hemmati, S.; Mohammadi, H.; Soleimani, D.; Jadidi-Niaragh, F.; Ahmadi, M.; Navashenaq, J.G. Arctigenin, an anti-tumor agent; A cutting-edge topic and up-to-the-minute approach in cancer treatment. Eur. J. Pharmacol., 2021, 909, 174419.
[http://dx.doi.org/10.1016/j.ejphar.2021.174419] [PMID: 34391770]
[63]
Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet, 2009, 374(9696), 1196-1208.
[http://dx.doi.org/10.1016/S0140-6736(09)61460-4] [PMID: 19801098]
[64]
Mbongwe, B.; Nkatogang, M.; Tapera, R.; Erick, P.; Tumoyagae, T.; Molefe, T.; Letsholo, B. Self-reported respiratory symptoms among students exposed to second hand smoke (SHS) in academic instituions in Gaborone: Implications for public health interventions. Public Health and Toxicology, 2022, 2(4), 1-8.
[http://dx.doi.org/10.18332/pht/157596]
[65]
Kaur, M. Olive oil: Sources, preparation, and uses. Available from: http://www.yourarticlelibrary.com/biology//lipids/olive-oil-sources-preparation-and-uses/49569
[66]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]
[67]
Friedli, M.J.; Inestrosa, N.C. Huperzine A and its neuroprotective molecular signalling in Alzheimer’s disease. Nat. Prod. Chem. Mol., 2021, 26(21), 6531.
[http://dx.doi.org/10.3390/molecules26216531] [PMID: 34770940]
[68]
Lim, M.K.; Lee, S.; Kim, J.Y.; Jeong, J.; Han, E.H.; Lee, S.H.; Ryu, J.H.; Lee, J. Neuroprotective and anti-neuroinflammatory effects of ethanolic extract from leaves and stems of Aster glehni. J. Funct. Foods, 2021, 79, 104400.
[http://dx.doi.org/10.1016/j.jff.2021.104400]
[69]
Sayad-Fathi, S.; Zaminy, A.; Babaei, P.; Yousefbeyk, F.; Azizi, N.; Nasiri, E. The methanolic extract of Cinnamomum zeylanicum bark improves formaldehyde-induced neurotoxicity through reduction of phospho-tau (Thr231), inflammation, and apoptosis. EXCLI J., 2020, 19, 671-686.
[PMID: 32536837]
[70]
Shah, S.A.; Lee, H.Y.; Bressan, R.A.; Yun, D.J.; Kim, M.O. Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis., 2014, 5(1), e1026-e1026.
[http://dx.doi.org/10.1038/cddis.2013.538] [PMID: 24481440]
[71]
Lee, W.; Fujihashi, A.; Govindarajulu, M.; Ramesh, S.; Deruiter, J.; Majrashi, M. Role of mushrooms in neurodegenerative disease. Med. Mushrooms, 2019, 223-249.
[http://dx.doi.org/10.1007/978-981-13-6382-5_8]
[72]
van der Eijk, Y.; Porter, G. Human rights and ethical considerations for a tobacco-free generation. Tob. Control, 2015, 24(3), 238-242.
[http://dx.doi.org/10.1136/tobaccocontrol-2013-051125] [PMID: 24114564]
[73]
Ma, Q.L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Teng, E.; Hu, S.; Chen, P.P.; Maiti, P.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem., 2013, 288(6), 4056-4065.
[http://dx.doi.org/10.1074/jbc.M112.393751] [PMID: 23264626]
[74]
Tucker, J.S.; Rodriguez, A.; Dunbar, M.S.; Pedersen, E.R.; Davis, J.P.; Shih, R.A.; D’Amico, E.J. Cannabis and tobacco use and co-use: Trajectories and correlates from early adolescence to emerging adulthood. Drug Alcohol Depend., 2019, 204, 107499.
[http://dx.doi.org/10.1016/j.drugalcdep.2019.06.004] [PMID: 31479864]
[75]
Cabrera, O.A.; Gostin, L.O. Human rights and the framework convention on tobacco control: Mutually reinforcing systems. Int. J. Law Context, 2011, 7(3), 285-303.
[http://dx.doi.org/10.1017/S1744552311000139]
[76]
Chen, Y.F.; Wang, Y.W.; Huang, W.S.; Lee, M.M.; Wood, W.G.; Leung, Y.M.; Tsai, H.Y. Trans-cinnamaldehyde: An essential oil in cinnamon powder, ameliorates cerebral ischemia-induced brain injury via inhibition of neuroinflammation through attenuation of iNOS, COX-2 expression and NFκ-B signaling pathway. Neuromolecular Med., 2016, 18(3), 322-333.
[http://dx.doi.org/10.1007/s12017-016-8395-9] [PMID: 27087648]
[77]
Calcul, L.; Zhang, B.; Jinwal, U.K.; Dickey, C.A.; Baker, B.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med. Chem., 2012, 4(13), 1751-1761.
[http://dx.doi.org/10.4155/fmc.12.124] [PMID: 22924511]
[78]
Pyo, J.H.; Jeong, Y.K.; Yeo, S.; Lee, J.H.; Jeong, M.Y.; Kim, S.H.; Choi, Y.G.; Lim, S. Neuroprotective effect of trans-cinnamaldehyde on the 6-hydroxydopamine-induced dopaminergic injury. Biol. Pharm. Bull., 2013, 36(12), 1928-1935.
[http://dx.doi.org/10.1248/bpb.b13-00537] [PMID: 24292051]
[79]
Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep., 2011, 63(5), 1101-1108.
[http://dx.doi.org/10.1016/S1734-1140(11)70629-6] [PMID: 22180352]
[80]
Tapia-Rojas, C.; Burgos, P.V.; Inestrosa, N.C. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-β (Aβ) 42 peptides. J. Neurochem., 2016, 139(6), 1175-1191.
[http://dx.doi.org/10.1111/jnc.13873] [PMID: 27778356]
[81]
Leone, P.; Comoletti, D.; Taylor, P.; Bourne, Y.; Marchot, P. Structure–function relationships of the α/β-hydrolase fold domain of neuroligin: A comparison with acetylcholinesterase. Chem. Biol. Interact., 2010, 187(1-3), 49-55.
[http://dx.doi.org/10.1016/j.cbi.2010.01.030] [PMID: 20100470]
[82]
Carvajal, F.J.; Inestrosa, N.C. Interactions of AChE with A? Aggregates in Alzheimer?s brain: Therapeutic relevance of IDN 5706. Front. Mol. Neurosci., 2011, 4, 19.
[http://dx.doi.org/10.3389/fnmol.2011.00019] [PMID: 21949501]
[83]
Thakur, P.; Nehru, B. Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience, 2013, 231, 420-431.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.006] [PMID: 23159314]
[84]
Brunden, K.R.; Ballatore, C.; Crowe, A.; Smith, A.B., III; Lee, V.M.Y.; Trojanowski, J.Q. Tau-directed drug discovery for Alzheimer’s disease and related tauopathies: A focus on tau assembly inhibitors. Exp. Neurol., 2010, 223(2), 304-310.
[http://dx.doi.org/10.1016/j.expneurol.2009.08.031] [PMID: 19744482]
[85]
Luheshi, L.M.; Dobson, C.M. Bridging the gap: From protein misfolding to protein misfolding diseases. FEBS Lett., 2009, 583(16), 2581-2586.
[http://dx.doi.org/10.1016/j.febslet.2009.06.030] [PMID: 19545568]
[86]
Abramov, A.Y.; Berezhnov, A.V.; Fedotova, E.I.; Zinchenko, V.P.; Dolgacheva, L.P. Interaction of misfolded proteins and mitochondria in neurodegenerative disorders. Biochem. Soc. Trans., 2017, 45(4), 1025-1033.
[http://dx.doi.org/10.1042/BST20170024] [PMID: 28733489]
[87]
Zempel, H.; Mandelkow, E. Lost after translation: Missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci., 2014, 37(12), 721-732.
[http://dx.doi.org/10.1016/j.tins.2014.08.004] [PMID: 25223701]
[88]
Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[89]
McNaught, K.S.P.; Olanow, C.W.; Halliwell, B.; Isacson, O.; Jenner, P. Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat. Rev. Neurosci., 2001, 2(8), 589-594.
[http://dx.doi.org/10.1038/35086067] [PMID: 11484002]
[90]
Okamoto, M.; Gray, J.D.; Larson, C.S.; Kazim, S.F.; Soya, H.; McEwen, B.S.; Pereira, A.C. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer’s disease. Transl. Psychiatry, 2018, 8(1), 153.
[http://dx.doi.org/10.1038/s41398-018-0201-z] [PMID: 30108205]
[91]
Bogie, J.; Hoeks, C.; Schepers, M.; Tiane, A.; Cuypers, A.; Leijten, F.; Chintapakorn, Y.; Suttiyut, T.; Pornpakakul, S.; Struik, D.; Kerksiek, A.; Liu, H.B.; Hellings, N.; Martinez-Martinez, P.; Jonker, J.W.; Dewachter, I.; Sijbrands, E.; Walter, J.; Hendriks, J.; Groen, A.; Staels, B.; Lütjohann, D.; Vanmierlo, T.; Mulder, M. Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. Sci. Rep., 2019, 9(1), 4908.
[http://dx.doi.org/10.1038/s41598-019-41399-4] [PMID: 30894635]
[92]
Patil, P.; Thakur, A.; Sharma, A.; Flora, S.J.S. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev. Res., 2020, 81(2), 165-183.
[http://dx.doi.org/10.1002/ddr.21587] [PMID: 31820476]
[93]
Ahmed, T.; Gilani, A.H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav., 2009, 91(4), 554-559.
[http://dx.doi.org/10.1016/j.pbb.2008.09.010]
[94]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[95]
Küpeli, E. Koşar, M.; Yeşilada, E.; Başer, K.H.C.; Başer, C. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci., 2002, 72(6), 645-657.
[http://dx.doi.org/10.1016/S0024-3205(02)02200-2] [PMID: 12467905]
[96]
Xu, J.; Wang, H.; Ding, K.; Zhang, L.; Wang, C.; Li, T.; Wei, W.; Lu, X. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2–ARE pathway. Free Radic. Biol. Med., 2014, 71, 186-195.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.009] [PMID: 24642087]
[97]
Yanagisawa, D.; Taguchi, H.; Morikawa, S.; Kato, T.; Hirao, K.; Shirai, N.; Tooyama, I. Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem. Biophys. Rep., 2015, 4, 357-368.
[http://dx.doi.org/10.1016/j.bbrep.2015.10.009] [PMID: 29124225]
[98]
Zhuo, J.M.; Portugal, G.; Kruger, W.; Wang, H.; Gould, T.; Pratico, D. Diet-induced hyperhomocysteinemia increases amyloid-β formation and deposition in a mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2010, 7(2), 140-149.
[http://dx.doi.org/10.2174/156720510790691326] [PMID: 19939226]
[99]
Schaafsma, J.D.; Balash, Y.; Gurevich, T.; Bartels, A.L.; Hausdorff, J.M.; Giladi, N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol., 2003, 10(4), 391-398.
[http://dx.doi.org/10.1046/j.1468-1331.2003.00611.x] [PMID: 12823491]
[100]
Conradsson, D.; Nero, H.; Löfgren, N.; Hagströmer, M.; Franzén, E. Monitoring training activity during gait-related balance exercise in individuals with Parkinson’s disease: A proof-of-concept-study. BMC Neurol., 2017, 17(1), 19.
[http://dx.doi.org/10.1186/s12883-017-0804-7] [PMID: 28143463]
[101]
Natbony, L.R.; Zimmer, A.; Ivanco, L.S.; Studenski, S.A.; Jain, S. Perceptions of a videogame-based dance exercise program among individuals with Parkinson’s disease. Games Health J., 2013, 2(4), 235-239.
[http://dx.doi.org/10.1089/g4h.2013.0011] [PMID: 24761325]
[102]
Lee, N.Y.; Lee, D.K.; Song, H.S. Effect of virtual reality dance exercise on the balance, activities of daily living, and depressive disorder status of Parkinson’s disease patients. J. Phys. Ther. Sci., 2015, 27(1), 145-147.
[http://dx.doi.org/10.1589/jpts.27.145] [PMID: 25642060]
[103]
Schoene, D.; Wu, S.M.S.; Mikolaizak, A.S.; Menant, J.C.; Smith, S.T.; Delbaere, K.; Lord, S.R. Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: systematic review and meta-analysis. J. Am. Geriatr. Soc., 2013, 61(2), 202-208.
[http://dx.doi.org/10.1111/jgs.12106] [PMID: 23350947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy