Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review

Author(s): Wen-Zhe Nie, Qing-Kun Shen, Zhe-Shan Quan*, Hong-Yan Guo* and Ya-Mei Li*

Volume 24, Issue 14, 2024

Published on: 23 January, 2024

Page: [1368 - 1384] Pages: 17

DOI: 10.2174/0113895575277085231123165546

Price: $65

conference banner
Abstract

Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.

Keywords: Usnic acid, biological activity, structural modifications, phenolic compounds, signaling pathways, nuclear translocation.

« Previous
Graphical Abstract
[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[2]
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr., 2004, 134(12), 3479S-3485S.
[http://dx.doi.org/10.1093/jn/134.12.3479S] [PMID: 15570057]
[3]
Papandreou, M.A.; Dimakopoulou, A.; Linardaki, Z.I.; Cordopatis, P.; Klimis-Zacas, D.; Margarity, M.; Lamari, F.N. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav. Brain Res., 2009, 198(2), 352-358.
[http://dx.doi.org/10.1016/j.bbr.2008.11.013] [PMID: 19056430]
[4]
Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 2006, 41(5), 1523-1542.
[http://dx.doi.org/10.1016/j.jpba.2006.04.002] [PMID: 16753277]
[5]
Seiquer, I.; Rueda, A.; Olalla, M.; Cabrera-Vique, C. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem., 2015, 188, 496-503.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.006] [PMID: 26041223]
[6]
Kacem, M.; Kacem, I.; Simon, G.; Ben Mansour, A.; Chaabouni, S.; Elfeki, A.; Bouaziz, M. Phytochemicals and biological activities of Ruta chalepensis L. growing in Tunisia. Food Biosci., 2015, 12, 73-83.
[http://dx.doi.org/10.1016/j.fbio.2015.08.001]
[7]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[8]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[9]
Mol, J.; Grotewold, E.; Koes, R. How genes paint flowers and seeds. Trends Plant Sci., 1998, 3(6), 212-217.
[http://dx.doi.org/10.1016/S1360-1385(98)01242-4]
[10]
Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 2001, 126(2), 485-493.
[http://dx.doi.org/10.1104/pp.126.2.485] [PMID: 11402179]
[11]
Roopchand, D.E.; Kuhn, P.; Rojo, L.E.; Lila, M.A.; Raskin, I. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacol. Res., 2013, 68(1), 59-67.
[http://dx.doi.org/10.1016/j.phrs.2012.11.008] [PMID: 23220243]
[12]
Serra, A.T.; Duarte, R.O.; Bronze, M.R.; Duarte, C.M.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem., 2011, 125(2), 318-325.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.088]
[13]
Usenik, V.; Fajt, N.; Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. Sweet cherry pomological and biochemical characteristics influenced by rootstock. J. Agric. Food Chem., 2010, 58(8), 4928-4933.
[http://dx.doi.org/10.1021/jf903755b] [PMID: 20337477]
[14]
Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: a review. Z. Naturforsch. C J. Biosci., 2010, 65(3-4), 157-173.
[http://dx.doi.org/10.1515/znc-2010-3-401] [PMID: 20469633]
[15]
Bjerke, J.; Elvebakk, A.; Domínguez, E.; Dahlback, A. Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen. Phytochemistry, 2005, 66(3), 337-344.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.007] [PMID: 15680990]
[16]
Schnedermann, G.; Knop, W. Chemisch-physiologische Untersuchungen über die Flechten. Justus Liebigs Ann. Chem., 1845, 55(2), 144-166.
[http://dx.doi.org/10.1002/jlac.18450550203]
[17]
Huneck, S.; Akinniyi, J.A.; Cameron, A.F.; Connolly, J.D.; Mulholland, A.G. The absolute configurations of (+)-usnic and (+)-isousnic acid. X-ray analyses of the (−)-α-phenylethylamine derivative of (+)-usnic acid and of (-)-pseudoplacodiolic acid, a new dibenzofuran, from the lichen. Tetrahedron Lett., 1981, 22(4), 351-352.
[http://dx.doi.org/10.1016/0040-4039(81)80095-0]
[18]
Shou, Q.; Banbury, L.K.; Renshaw, D.E.; Lambley, E.H.; Mon, H.; Macfarlane, G.A.; Griesser, H.J.; Heinrich, M.M.; Wohlmuth, H. Biologically active dibenzofurans from pilidiostigma glabrum, an endemic australian myrtaceae. J. Nat. Prod., 2012, 75(9), 1612-1617.
[http://dx.doi.org/10.1021/np300433r] [PMID: 22934671]
[19]
Asplund, J.; Siegenthaler, A.; Gauslaa, Y. Simulated global warming increases usnic acid but reduces perlatolic acid in the mat-forming terricolous lichen Cladonia stellaris. Lichenologist, 2017, 49(3), 269-274.
[http://dx.doi.org/10.1017/S0024282917000159]
[20]
Neupane, B.P.; Malla, K.P.; Gautam, A.; Chaudhary, D.; Paudel, S.; Timsina, S.; Jamarkattel, N. Elevational trends in usnic acid concentration of lichen parmelia flexilis in relation to temperature and precipitation. Climate, 2017, 5(2), 40.
[http://dx.doi.org/10.3390/cli5020040]
[21]
Koparal, A.T.; Ayaz Tüylü, B.; Türk, H. In vitro cytotoxic activities of ( + )-usnic acid and (-)-usnic acid on V79, A549, and human lymphocyte cells and their non-genotoxicity on human lymphocytes. Nat. Prod. Res., 2006, 20(14), 1300-1307.
[http://dx.doi.org/10.1080/14786410601101910] [PMID: 17393655]
[22]
Safak, B.; Ciftci, I.H.; Ozdemir, M.; Kiyildi, N.; Cetinkaya, Z.; Aktepe, O.C.; Altindis, M.; Asik, G. In vitro anti- Helicobacter pylori activity of usnic acid. Phytother. Res., 2009, 23(7), 955-957.
[http://dx.doi.org/10.1002/ptr.2690] [PMID: 19367654]
[23]
Blanco, O.; Crespo, A.; Ree, R.H.; Lumbsch, H.T. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol. Phylogenet. Evol., 2006, 39(1), 52-69.
[http://dx.doi.org/10.1016/j.ympev.2005.12.015] [PMID: 16481204]
[24]
Bazin, M.A.; Lamer, A-C.L.; Delcros, J.G.; Rouaud, I.; Uriac, P.; Boustie, J.; Corbel, J.C.; Tomasi, S. Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg. Med. Chem., 2008, 16(14), 6860-6866.
[http://dx.doi.org/10.1016/j.bmc.2008.05.069] [PMID: 18558490]
[25]
Correche, E.R.; Carrasco, M.; Escudero, M.E.; Velazquez, L.; De Guzman, A.M.S.; Giannini, F.; Enriz, R.D.; Jauregui, E.A.; Cenal, J.P.; Giordano, O.S. Study of the cytotoxic and antimicrobial activities of usnic acid and derivatives. Fitoterapia, 1998, 69(6), 493-501.
[26]
Sharma, R.K.; Jannke, P.J. Acidity of usnic acid. Indian J. Chem., 1966, 4(1), 16-18.
[27]
Sokolov, D.N.; Luzina, O.A.; Salakhutdinov, N.F. Usnic acid: preparation, structure, properties and chemical transformations. Russ. Chem. Rev., 2012, 81(8), 747-768.
[http://dx.doi.org/10.1070/RC2012v081n08ABEH004245]
[28]
Plichet, A. Usnic acid from lichens in therapy of tuberculosis Presse Med., 1955, 63(17), 350.
[PMID: 14371514]
[29]
Cocchietto, M.; Skert, N.; Nimis, P.; Sava, G. A review on usnic acid, an interesting natural compound. Naturwissenschaften, 2002, 89(4), 137-146.
[http://dx.doi.org/10.1007/s00114-002-0305-3] [PMID: 12061397]
[30]
Cardarelli, M.; Serino, G.; Campanella, L.; Ercole, P.; De Cicco Nardone, F.; Alesiani, O.; Rossiello, F. Antimitotic effects of usnic acid on different biological systems. Cell. Mol. Life Sci., 1997, 53(8), 667-672.
[http://dx.doi.org/10.1007/s000180050086] [PMID: 9351470]
[31]
Okuyama, E.; Umeyama, K.; Yamazaki, M.; Kinoshita, Y.; Yamamoto, Y. Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med., 1995, 61(2), 113-115.
[http://dx.doi.org/10.1055/s-2006-958027] [PMID: 7753915]
[32]
Vijayakumar, C.S.; Viswanathan, S.; Kannappa Reddy, M.; Parvathavarthini, S.; Kundu, A.B.; Sukumar, E. Anti-inflammatory activity of (+)-usnic acid. Fitoterapia, 2000, 71(5), 564-566.
[http://dx.doi.org/10.1016/S0367-326X(00)00209-4] [PMID: 11449509]
[33]
Campanella, L.; Delfini, M.; Ercole, P.; Iacoangeli, A.; Risuleo, G. Molecular characterization and action of usnic acid: A drug that inhibits proliferation of mouse polyomavirus in vitro and whose main target is RNA transcription. Biochimie, 2002, 84(4), 329-334.
[http://dx.doi.org/10.1016/S0300-9084(02)01386-X] [PMID: 12106911]
[34]
Scirpa, P.; Scambia, G.; Masciullo, V.; Battaglia, F.; Foti, E.; Lopez, R.; Villa, P.; Malecore, M.; Mancuso, S. [A zinc sulfate and usnic acid preparation used as post-surgical adjuvant therapy in genital lesions by Human Papillomavirus] Minerva Ginecol., 1999, 51(6), 255-260.
[PMID: 10479878]
[35]
Zakharenko, A.; Sokolov, D.; Luzina, O.; Sukhanova, M.; Khodyreva, S.; Zakharova, O.; Salakhutdinov, N.; Lavrik, O. Influence of usnic acid and its derivatives on the activity of mammalian poly(ADP-ribose)polymerase 1 and DNA polymeraseβ. Med. Chem., 2012, 8(5), 883-893.
[http://dx.doi.org/10.2174/157340612802084225] [PMID: 22741606]
[36]
De Carvalho, E.A.B.; Andrade, P.P.; Silva, N.H.; Pereira, E.C.; Figueiredo, R.C.B.Q. Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: An ultrastructural study. Micron, 2005, 36(2), 155-161.
[http://dx.doi.org/10.1016/j.micron.2004.09.003] [PMID: 15629646]
[37]
Santos, L.C.; Honda, N.K.; Carlos, I.Z.; Vilegas, W. Intermediate reactive oxygen and nitrogen from macrophages induced by Brazilian lichens. Fitoterapia, 2004, 75(5), 473-479.
[http://dx.doi.org/10.1016/j.fitote.2004.04.002] [PMID: 15261385]
[38]
Takai, M.; Uehara, Y.; Beisler, J.A. Usnic acid derivatives as potential antineoplastic agents. J. Med. Chem., 1979, 22(11), 1380-1384.
[http://dx.doi.org/10.1021/jm00197a019] [PMID: 160461]
[39]
Burlando, B.; Ranzato, E.; Volante, A.; Appendino, G.; Pollastro, F.; Verotta, L. Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Med., 2009, 75(6), 607-613.
[http://dx.doi.org/10.1055/s-0029-1185329] [PMID: 19199230]
[40]
Bézivin, C.; Tomasi, S.; Rouaud, I.; Delcros, J.G.; Boustie, J. Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med., 2004, 70(9), 874-877.
[http://dx.doi.org/10.1055/s-2004-827240] [PMID: 15386197]
[41]
Kumar KC, S.; Müller, K. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J. Nat. Prod., 1999, 62(6), 821-823.
[http://dx.doi.org/10.1021/np980378z] [PMID: 10395495]
[42]
Ögmundsdóttir, H.M.; Zoëga, G.M.; Gissurarson, S.R.; Ingólfsdóttir, K. Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J. Pharm. Pharmacol., 2011, 50(1), 107-115.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03312.x] [PMID: 9504441]
[43]
Al-Bekairi, A.M.; Qureshi, S.; Chaudhry, M.A.; Krishna, D.R.; Shah, A.H. Mitodepressive, clastogenic and biochemical effects of (+)-usnic acid in mice. J. Ethnopharmacol., 1991, 33(3), 217-220.
[http://dx.doi.org/10.1016/0378-8741(91)90079-S] [PMID: 1833591]
[44]
Bucar, F.; Schneider, I.; Ögmundsdóttir, H.; Ingólfsdóttir, K. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine, 2004, 11(7-8), 602-606.
[http://dx.doi.org/10.1016/j.phymed.2004.03.004] [PMID: 15636173]
[45]
Yamamoto, Y.; Miura, Y.; Kinoshita, Y.; Higuchi, M.; Yamada, Y.; Murakami, A.; Ohigashi, H.; Koshimizu, K. Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chem. Pharm. Bull., 1995, 43(8), 1388-1390.
[http://dx.doi.org/10.1248/cpb.43.1388] [PMID: 7553984]
[46]
Einarsdóttir, E.; Groeneweg, J.; Björnsdóttir, G.; Harðardottir, G.; Omarsdóttir, S.; Ingólfsdóttir, K.; Ögmundsdóttir, H. Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med., 2010, 76(10), 969-974.
[http://dx.doi.org/10.1055/s-0029-1240851] [PMID: 20143294]
[47]
O’Neill, M.A.; Mayer, M.; Murray, K.E.; Rolim-Santos, H.M.L.; Santos-Magalhães, N.S.; Thompson, A.M.; Appleyard, V.C.L. Does usnic acid affect microtubules in human cancer cells? Braz. J. Biol., 2010, 70(3), 659-664.
[http://dx.doi.org/10.1590/S1519-69842010005000013] [PMID: 20379653]
[48]
Nguyen, T.T.; Yoon, S.; Yang, Y.; Lee, H.B.; Oh, S.; Jeong, M.H.; Kim, J.J.; Yee, S.T.; Crişan, F.; Moon, C.; Lee, K.Y.; Kim, K.K.; Hur, J.S.; Kim, H. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS One, 2014, 9(10), e111575.
[http://dx.doi.org/10.1371/journal.pone.0111575] [PMID: 25360754]
[49]
Morris Kupchan, S.; Kopperman, H.L. l-Usnic acid: Tumor inhibitor isolated from lichens. Experientia, 1975, 31(6), 625.
[http://dx.doi.org/10.1007/BF01944592] [PMID: 124660]
[50]
Mayer, M.; O’Neill, M.A.; Murray, K.E.; Santos-Magalhães, N.S.; Carneiro-Leão, A.M.A.; Thompson, A.M.; Appleyard, V.C.L. Usnic acid: A non-genotoxic compound with anti-cancer properties. Anticancer Drugs, 2005, 16(8), 805-809.
[http://dx.doi.org/10.1097/01.cad.0000175588.09070.77] [PMID: 16096427]
[51]
Bačkorová, M.; Bačkor, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. In vitro, 2011, 25(1), 37-44.
[http://dx.doi.org/10.1016/j.tiv.2010.09.004] [PMID: 20837130]
[52]
Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172.
[http://dx.doi.org/10.1016/j.phymed.2012.07.012] [PMID: 22921748]
[53]
Galanty, A.; Koczurkiewicz, P.; Wnuk, D.; Paw, M.; Karnas, E.; Podolak, I.; Węgrzyn, M.; Borusiewicz, M.; Madeja, Z.; Czyż, J.; Michalik, M. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol. In vitro, 2017, 40, 161-169.
[http://dx.doi.org/10.1016/j.tiv.2017.01.008] [PMID: 28095330]
[54]
Behera, B.C.; Mahadik, N.; Morey, M. Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharm. Biol., 2012, 50(8), 968-979.
[http://dx.doi.org/10.3109/13880209.2012.654396] [PMID: 22775414]
[55]
Kumari, M.; Kamat, S.; Jayabaskaran, C. Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 274, 121098.
[http://dx.doi.org/10.1016/j.saa.2022.121098] [PMID: 35257985]
[56]
Singh, N.; Nambiar, D.; Kale, R.K.; Singh, R.P. Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutr. Cancer, 2013, 65(sup1), 36-43.
[http://dx.doi.org/10.1080/01635581.2013.785007] [PMID: 23682781]
[57]
Qi, W.; Lu, C.; Huang, H.; Zhang, W.; Song, S.; Liu, B. Usnic acid induces ROS-dependent apoptosis via inhibition of mitochondria respiratory chain complexes and Nrf2 expression in lung squamous cell carcinoma. Int. J. Mol. Sci., 2020, 21(3), 876.
[http://dx.doi.org/10.3390/ijms21030876] [PMID: 32013250]
[58]
Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432.
[http://dx.doi.org/10.1007/s10456-012-9270-4] [PMID: 22669534]
[59]
Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD-L1 expression and enhancing T-lymphocyte tumorkilling activity. Phytother. Res., 2021, 35(7), 3916-3935.
[http://dx.doi.org/10.1002/ptr.7103] [PMID: 33970512]
[60]
Yang, Y.; Nguyen, T.T.; Jeong, M.H.; Crişan, F.; Yu, Y.H.; Ha, H.H.; Choi, K.H.; Jeong, H.G.; Jeong, T.C.; Lee, K.Y.; Kim, K.K.; Hur, J.S.; Kim, H. Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One, 2016, 11(1), e0146575.
[http://dx.doi.org/10.1371/journal.pone.0146575] [PMID: 26751081]
[61]
da Silva Santos, N.P.; Nascimento, S.C.; Wanderley, M.S.O.; Pontes-Filho, N.T.; da Silva, J.F.; de Castro, C.M.M.B.; Pereira, E.C.; da Silva, N.H.; Honda, N.K.; Santos-Magalhães, N.S. Nanoencapsulation of usnic acid: An attempt to improve antitumour activity and reduce hepatotoxicity. Eur. J. Pharm. Biopharm., 2006, 64(2), 154-160.
[http://dx.doi.org/10.1016/j.ejpb.2006.05.018] [PMID: 16899355]
[62]
Yurdacan, B.; Egeli, U.; Guney Eskiler, G.; Eryilmaz, I.E.; Cecener, G.; Tunca, B. Investigation of new treatment option for hepatocellular carcinoma: A combination of sorafenib with usnic acid. J. Pharm. Pharmacol., 2019, 71(7), 1119-1132.
[http://dx.doi.org/10.1111/jphp.13097] [PMID: 31025377]
[63]
Su, Z.Q.; Liu, Y.H.; Guo, H.Z.; Sun, C.Y.; Xie, J.H.; Li, Y.C.; Chen, J.N.; Lai, X.P.; Su, Z.R.; Chen, H.M. Effect-enhancing and toxicity-reducing activity of usnic acid in ascitic tumor-bearing mice treated with bleomycin. Int. Immunopharmacol., 2017, 46, 146-155.
[http://dx.doi.org/10.1016/j.intimp.2017.03.004] [PMID: 28284148]
[64]
Erba, E.; Pocar, D.; Rossi, L.M. New esters of R-(+)-usnic acid. Farmaco, 1998, 53(10-11), 718-720.
[http://dx.doi.org/10.1016/S0014-827X(98)00113-X]
[65]
Han, D.; Matsumaru, K.; Rettori, D.; Kaplowitz, N. Usnic acid-induced necrosis of cultured mouse hepatocytes: Inhibition of mitochondrial function and oxidative stress. Biochem. Pharmacol., 2004, 67(3), 439-451.
[http://dx.doi.org/10.1016/j.bcp.2003.09.032] [PMID: 15037196]
[66]
Pramyothin, P.; Janthasoot, W.; Pongnimitprasert, N.; Phrukudom, S.; Ruangrungsi, N. Hepatotoxic effect of (+)usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes and isolated rat liver mitochondria. J. Ethnopharmacol., 2004, 90(2-3), 381-387.
[http://dx.doi.org/10.1016/j.jep.2003.10.019] [PMID: 15013205]
[67]
Favreau, J.T.; Ryu, M.L.; Braunstein, G.; Orshansky, G.; Park, S.S.; Coody, G.L.; Love, L.A.; Fong, T.L. Severe hepatotoxicity associated with the dietary supplement LipoKinetix. Ann. Intern. Med., 2002, 136(8), 590-595.
[http://dx.doi.org/10.7326/0003-4819-136-8-200204160-00008] [PMID: 11955027]
[68]
Venkata Mallavadhani, U.; Vanga, N.R.; Balabhaskara Rao, K.; Jain, N. Synthesis and antiproliferative activity of novel (+)- usnic acid analogues. J. Asian Nat. Prod. Res., 2020, 22(6), 562-577.
[http://dx.doi.org/10.1080/10286020.2019.1603220] [PMID: 31012737]
[69]
Zakharenko, A.; Luzina, O.; Koval, O.; Nilov, D.; Gushchina, I.; Dyrkheeva, N.; Švedas, V.; Salakhutdinov, N.; Lavrik, O. Tyrosyl-DNA phosphodiesterase 1 inhibitors: Usnic acid enamines enhance the cytotoxic effect of camptothecin. J. Nat. Prod., 2016, 79(11), 2961-2967.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00979] [PMID: 27933897]
[70]
Zakharenko, A.L.; Luzina, O.A.; Sokolov, D.N.; Zakharova, O.D.; Rakhmanova, M.E.; Chepanova, A.A.; Dyrkheeva, N.S.; Lavrik, O.I.; Salakhutdinov, N.F. Usnic acid derivatives are effective inhibitors of tyrosyl-DNA phosphodiesterase 1. Russ. J. Bioorganic Chem., 2017, 43(1), 84-90.
[http://dx.doi.org/10.1134/S1068162017010125]
[71]
Pyrczak-Felczykowska, A.; Narlawar, R.; Pawlik, A.; Guzow-Krzemińska, B.; Artymiuk, D.; Hać, A.; Ryś, K.; Rendina, L.M.; Reekie, T.A.; Herman-Antosiewicz, A.; Kassiou, M. synthesis of usnic acid derivatives and evaluation of their antiproliferative activity against cancer cells. J. Nat. Prod., 2019, 82(7), 1768-1778.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00980] [PMID: 31282672]
[72]
Nguyen, V.K.; Sichaem, J.; Nguyen, H.H.; Nguyen, X.H.; Huynh, T.T.L.; Nguyen, T.P.; Niamnont, N.; Mac, D.H.; Pham, D.D.; Chavasiri, W.; Nguyen, K.P.P.; Duong, T.H. Synthesis and cytotoxic evaluation of usnic acid benzylidene derivatives as potential anticancer agents. Nat. Prod. Res., 2021, 35(7), 1097-1106.
[http://dx.doi.org/10.1080/14786419.2019.1639176] [PMID: 31303058]
[73]
Ebrahim, H.Y.; Akl, M.R.; Elsayed, H.E.; Hill, R.A.; El Sayed, K.A. Usnic acid benzylidene analogues as potent mechanistic target of rapamycin inhibitors for the control of breast malignancies. J. Nat. Prod., 2017, 80(4), 932-952.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00917] [PMID: 28245124]
[74]
Rakhmanova, M.E.; Luzina, O.A.; Pokrovskii, M.A.; Pokrovskii, A.G.; Salakhutdinov, N.F. Synthesis and cytotoxic activity of usnic acid cyanoethyl derivatives. Russ. Chem. Bull., 2016, 65(2), 566-569.
[http://dx.doi.org/10.1007/s11172-016-1338-7]
[75]
Dyrkheeva, N.S.; Filimonov, A.S.; Luzina, O.A.; Orlova, K.A.; Chernyshova, I.A.; Kornienko, T.E.; Malakhova, A.A.; Medvedev, S.P.; Zakharenko, A.L.; Ilina, E.S.; Anarbaev, R.O.; Naumenko, K.N.; Klabenkova, K.V.; Burakova, E.A.; Stetsenko, D.A.; Zakian, S.M.; Salakhutdinov, N.F.; Lavrik, O.I. new hybrid compounds combining fragments of usnic acid and thioether are inhibitors of human enzymes TDP1, TDP2 and PARP1. Int. J. Mol. Sci., 2021, 22(21), 11336.
[http://dx.doi.org/10.3390/ijms222111336] [PMID: 34768766]
[76]
Zakharova, O.; Luzina, O.; Zakharenko, A.; Sokolov, D.; Filimonov, A.; Dyrkheeva, N.; Chepanova, A.; Ilina, E.; Ilyina, A.; Klabenkova, K.; Chelobanov, B.; Stetsenko, D.; Zafar, A.; Eurtivong, C.; Reynisson, J.; Volcho, K.; Salakhutdinov, N.; Lavrik, O. Synthesis and evaluation of aryliden- and hetarylidenfuranone derivatives of usnic acid as highly potent Tdp1 inhibitors. Bioorg. Med. Chem., 2018, 26(15), 4470-4480.
[http://dx.doi.org/10.1016/j.bmc.2018.07.039] [PMID: 30076000]
[77]
Dyrkheeva, N.; Luzina, O.; Filimonov, A.; Zakharova, O.; Ilina, E.; Zakharenko, A.; Kuprushkin, M.; Nilov, D.; Gushchina, I.; Švedas, V.; Salakhutdinov, N.; Lavrik, O. Inhibitory effect of new semisynthetic usnic acid derivatives on human tyrosyl-DNA phosphodiesterase 1. Planta Med., 2019, 85(2), 103-111.
[http://dx.doi.org/10.1055/a-0681-7069] [PMID: 30142660]
[78]
Wang, S.; Zang, J.; Huang, M.; Guan, L.; Xing, K.; Zhang, J.; Liu, D.; Zhao, L. Discovery of novel (+)-Usnic acid derivatives as potential anti-leukemia agents with pan-Pim kinases inhibitory activity. Bioorg. Chem., 2019, 89, 102971.
[http://dx.doi.org/10.1016/j.bioorg.2019.102971] [PMID: 31200288]
[79]
Zakharenko, A.L.; Luzina, O.A.; Sokolov, D.N.; Kaledin, V.I.; Nikolin, V.P.; Popova, N.A.; Patel, J.; Zakharova, O.D.; Chepanova, A.A.; Zafar, A.; Reynisson, J.; Leung, E.; Leung, I.K.H.; Volcho, K.P.; Salakhutdinov, N.F.; Lavrik, O.I. Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topoteсan on in vivo tumor models. Eur. J. Med. Chem., 2019, 161, 581-593.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.055] [PMID: 30396105]
[80]
Luzina, O.; Filimonov, A.; Zakharenko, A.; Chepanova, A.; Zakharova, O.; Ilina, E.; Dyrkheeva, N.; Likhatskaya, G.; Salakhutdinov, N.; Lavrik, O. Usnic acid conjugates with monoterpenoids as potent tyrosyl-dna phosphodiesterase 1 inhibitors. J. Nat. Prod., 2020, 83(8), 2320-2329.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01089] [PMID: 32786885]
[81]
Filimonov, A.S.; Chepanova, A.A.; Luzina, O.A.; Zakharenko, A.L.; Zakharova, O.D.; Ilina, E.S.; Dyrkheeva, N.S.; Kuprushkin, M.S.; Kolotaev, A.V.; Khachatryan, D.S.; Patel, J.; Leung, I.K.H.; Chand, R.; Ayine-Tora, D.M.; Reynisson, J.; Volcho, K.P.; Salakhutdinov, N.F.; Lavrik, O.I. New hydrazinothiazole derivatives of usnic acid as potent Tdp1 inhibitors. Molecules, 2019, 24(20), 3711.
[http://dx.doi.org/10.3390/molecules24203711] [PMID: 31619021]
[82]
Samuelsen, L.; Hansen, P.E.; Vang, O. Derivatives of usnic acid cause cytostatic effect in Caco-2 cells. Nat. Prod. Res., 2021, 35(23), 4953-4959.
[http://dx.doi.org/10.1080/14786419.2020.1756796] [PMID: 32352327]
[83]
Nguyen, H. G. T.; Nguyen, N. V.; Vo, V. A.; Chun, W.; Kamounah, F. S.; Vang, O.; Hansen, P. E. Synthesis, structure elucidation and cytotoxicity of (+)-usnic acidderivatives on u87mg glioblastoma cells. Nat. Prod. Chem. Res., 2016, 4(3), 211-216.
[84]
Natic, M.; Tesic, Z.; Andelkovic, K.; Brceski, I.; Radulovic, S.; Manic, S.; Sladic, D. Synthesis and biological activity of Pd(II) and Cu(II) complexes with acylhydrazones of usnic acid. Synth. React. Inorg. Met.-Org. Chem., 2004, 34(1), 101-113.
[http://dx.doi.org/10.1081/SIM-120027320]
[85]
Saenz, M.T.; Garcia, M.D.; Rowe, J.G. Antimicrobial activity and phytochemical studies of some lichens from south of spain. Fitoterapia, 2006, 77(3), 156-159.
[http://dx.doi.org/10.1016/j.fitote.2005.12.001] [PMID: 16503098]
[86]
Maciąg-Dorszyńska, M.; Węgrzyn, G.; Guzow-Krzemińska, B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett., 2014, 353(1), 57-62.
[http://dx.doi.org/10.1111/1574-6968.12409] [PMID: 24571086]
[87]
Hanuš, L.O.; Temina, M.; Dembitsky, V.M. Antibacterial and antifungal activities of some phenolic metabolites isolated from the lichenized ascomycete Ramalina lacera. Nat. Prod. Commun, 2008, 3(2), 1934578X0800300.
[http://dx.doi.org/10.1177/1934578X0800300226]
[88]
Sisodia, R.; Geol, M.; Verma, S.; Rani, A.; Dureja, P. Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat. Prod. Res., 2013, 27(23), 2235-2239.
[http://dx.doi.org/10.1080/14786419.2013.811410] [PMID: 23822758]
[89]
Dieu, A.; Mambu, L.; Champavier, Y.; Chaleix, V.; Sol, V.; Gloaguen, V.; Millot, M. Antibacterial activity of the lichens Usnea Florida and Flavoparmelia caperata (Parmeliaceae). Nat. Prod. Res., 2020, 34(23), 3358-3362.
[http://dx.doi.org/10.1080/14786419.2018.1561678] [PMID: 30676068]
[90]
Freitas, L.S.; Caprara, C.S.C.; Volcão, L.M.; Brum, R.L.; Barbosa, I.; da Silva, F.M.R., Jr; Ramos, D.F. Usnic Acid (+) enantiomer in alternative in vitro control of burkholderia cepacia and allelopathic effect. Appl. In vitro Toxicol., 2022, 8(2), 58-63.
[http://dx.doi.org/10.1089/aivt.2021.0001]
[91]
Lee, J.; Lee, J.; Kim, G.J.; Yang, I.; Wang, W.; Nam, J.W.; Choi, H.; Nam, S.J.; Kang, H. Mycousfurans A and B, antibacterial usnic acid congeners from the fungus Mycosphaerella sp., isolated from a marine sediment. Mar. Drugs, 2019, 17(7), 422.
[http://dx.doi.org/10.3390/md17070422] [PMID: 31331101]
[92]
Victor, K.; Boris, L.; Athina, G.; Anthi, P.; Marija, S.; Marina, K.; Oliver, R.; Marina, S. Design, synthesis and antimicrobial activity of usnic acid derivatives. MedChemComm, 2018, 9(5), 870-882.
[http://dx.doi.org/10.1039/C8MD00076J] [PMID: 30108976]
[93]
Tomasi, S.; Picard, S.; Lainé, C.; Babonneau, V.; Goujeon, A.; Boustie, J.; Uriac, P. Solid-phase synthesis of polyfunctionalized natural products: Application to usnic acid, a bioactive lichen compound. J. Comb. Chem., 2006, 8(1), 11-14.
[http://dx.doi.org/10.1021/cc050122t] [PMID: 16398547]
[94]
Barrera Tomas, M.; Tomas Chota, G.E.; Sheen Cortavarría, P.; Fuentes Bonilla, P.; Inocente Camones, M.A.; Santiago Contreras, J.C. Synthesis of acyl-hydrazone from usnic acid and isoniazid and its anti-Mycobacterium tuberculosis activity. Rev. Colomb. Quim., 2017, 46(3), 17-21.
[http://dx.doi.org/10.15446/rev.colomb.quim.v46n3.61980]
[95]
Cirillo, D.; Borroni, E.; Festoso, I.; Monti, D.; Romeo, S.; Mazier, D.; Verotta, L.; Verotta, L. Synthesis and antimycobacterial activity of (+)-usnic acid conjugates. Arch. Pharm., 2018, 351(12), 1800177.
[http://dx.doi.org/10.1002/ardp.201800177] [PMID: 30407647]
[96]
Bangalore, P.K.; Pedapati, R.K.; Pranathi, A.N.; Batchu, U.R.; Misra, S.; Estharala, M.; Sriram, D.; Kantevari, S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol. Divers., 2022.
[PMID: 35608808]
[97]
Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic acid enaminone-coupled 1,2,3-triazoles as antibacterial and antitubercular agents. J. Nat. Prod., 2020, 83(1), 26-35.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00475] [PMID: 31858800]
[98]
Luzina, O.A.; Sokolov, D.N.; Pokrovskii, M.A.; Pokrovskii, A.G.; Bekker, O.B.; Danilenko, V.N.; Salakhutdinov, N.F. Synthesis and biological activity of usnic acid enamine derivatives. Chem. Nat. Compd., 2015, 51(4), 646-651.
[http://dx.doi.org/10.1007/s10600-015-1376-7]
[99]
Bekker, O.B.; Sokolov, D.N.; Luzina, O.A.; Komarova, N.I.; Gatilov, Y.V.; Andreevskaya, S.N.; Smirnova, T.G.; Maslov, D.A.; Chernousova, L.N.; Salakhutdinov, N.F.; Danilenko, V.N. Synthesis and activity of (+)-usnic acid and (-)-usnic acid derivatives containing 1,3-thiazole cycle against Mycobacterium tuberculosis. Med. Chem. Res., 2015, 24(7), 2926-2938.
[http://dx.doi.org/10.1007/s00044-015-1348-2]
[100]
Koçer, S.; Uruş, S.; Çakır, A.; Güllüce, M.; Dığrak, M.; Alan, Y.; Aslan, A.; Tümer, M.; Karadayı, M.; Kazaz, C.; Dal, H. The synthesis, characterization, antimicrobial and antimutagenic activities of hydroxyphenylimino ligands and their metal complexes of usnic acid isolated from Usnea longissima. Dalton Trans., 2014, 43(16), 6148-6164.
[http://dx.doi.org/10.1039/C3DT53624F] [PMID: 24589530]
[101]
Fournet, A.; Ferreira, M.E.; de Arias, A.R.; de Ortiz, S.T.; Inchausti, A.; Yalaff, G.; Quilhot, W.; Fernandez, E.; Hidalgo, M.E. Activity of compounds isolated from Chilean lichens against experimental cutaneous leishmaniasis. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol., 1997, 116(1), 51-54.
[http://dx.doi.org/10.1016/S0742-8413(96)00127-2] [PMID: 9080673]
[102]
Verotta, L.; Appendino, G.; Bombardelli, E.; Brun, R. In vitro antimalarial activity of hyperforin, a prenylated acylphloroglucinol. A structure-activity study. Bioorg. Med. Chem. Lett., 2007, 17(6), 1544-1548.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.100] [PMID: 17234416]
[103]
Lauinger, I.L.; Vivas, L.; Perozzo, R.; Stairiker, C.; Tarun, A.; Zloh, M.; Zhang, X.; Xu, H.; Tonge, P.J.; Franzblau, S.G.; Pham, D.H.; Esguerra, C.V.; Crawford, A.D.; Maes, L.; Tasdemir, D. Potential of lichen secondary metabolites against Plasmodium liver stage parasites with FAS-II as the potential target. J. Nat. Prod., 2013, 76(6), 1064-1070.
[http://dx.doi.org/10.1021/np400083k] [PMID: 23806111]
[104]
Si, K.; Wei, L.; Yu, X.; Wu, F.; Li, X.; Li, C.; Cheng, Y. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp. Parasitol., 2016, 166, 68-74.
[http://dx.doi.org/10.1016/j.exppara.2016.03.021] [PMID: 27004468]
[105]
Pastrana-Mena, R.; Mathias, D.K.; Delves, M.; Rajaram, K.; King, J.G.; Yee, R.; Trucchi, B.; Verotta, L.; Dinglasan, R.R. A malaria transmission-blocking (+)-usnic acid derivative prevents plasmodium zygote-to-ookinete maturation in the mosquito midgut. ACS Chem. Biol., 2016, 11(12), 3461-3472.
[http://dx.doi.org/10.1021/acschembio.6b00902] [PMID: 27978709]
[106]
Bruno, M.; Trucchi, B.; Monti, D.; Romeo, S.; Kaiser, M.; Verotta, L. Synthesis of a potent antimalarial agent through natural products conjugation. ChemMedChem, 2013, 8(2), 221-225.
[http://dx.doi.org/10.1002/cmdc.201200503] [PMID: 23307699]
[107]
Guo, H.Y.; Jin, C.; Zhang, H.M.; Jin, C.M.; Shen, Q.K.; Quan, Z.S. Synthesis and biological evaluation of (+)-usnic acid derivatives as potential anti- toxoplasma gondii agents. J. Agric. Food Chem., 2019, 67(34), 9630-9642.
[http://dx.doi.org/10.1021/acs.jafc.9b02173] [PMID: 31365255]
[108]
Susisthra, E.; Meena, R.; Chamundeeswari, D.; Rajasekhar, C.; Latha, J.N.L.; Rao, M.V.B. Low molecular weight non-peptidyl antimalarial leads: Lichen metabolite, usnic acid and its analogues. Polycycl. Aromat. Compd., 2022, 42(8), 5020-5028.
[http://dx.doi.org/10.1080/10406638.2021.1920985]
[109]
Cazarin, C.A.; Dalmagro, A.P.; Gonçalves, A.E.; Boeing, T.; Silva, L.M.; Corrêa, R.; Klein-Júnior, L.C.; Pinto, B.C.; Lorenzett, T.S.; Sobrinho, T.U.C.; Fátima, Â.; Lage, T.C.A.; Fernandes, S.A.; Souza, M.M. Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ1–42 in mice. Behav. Brain Res., 2021, 397, 112945.
[http://dx.doi.org/10.1016/j.bbr.2020.112945] [PMID: 33022354]
[110]
Shi, C.J.; Peng, W.; Zhao, J.H.; Yang, H.L.; Qu, L.L.; Wang, C.; Kong, L.Y.; Wang, X.B. Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur. J. Med. Chem., 2020, 187, 111961.
[http://dx.doi.org/10.1016/j.ejmech.2019.111961] [PMID: 31865017]
[111]
Yang, A.; Liu, W.; Li, X.; Wu, W.; Kou, X.; Shen, R. Study on the novel usnic acid derivatives: Design, synthesis, X-Ray crystal structure of Cu(II) complex and anti-AD activities. J. Mol. Struct., 2022, 1263, 133018.
[http://dx.doi.org/10.1016/j.molstruc.2022.133018]
[112]
Su, Z.Q.; Mo, Z.Z.; Liao, J.B.; Feng, X.X.; Liang, Y.Z.; Zhang, X.; Liu, Y.H.; Chen, X.Y.; Chen, Z.W.; Su, Z.R.; Lai, X.P. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. Int. Immunopharmacol., 2014, 22(2), 371-378.
[http://dx.doi.org/10.1016/j.intimp.2014.06.043] [PMID: 25068825]
[113]
Mendili, M.; Khadhri, A.; Mediouni-Ben Jemâa, J.; Andolfi, A.; Tufano, I.; Aschi-Smiti, S.; DellaGreca, M. Anti-inflammatory potential of compounds isolated from tunisian lichens species. Chem. Biodivers., 2022, 19(8), e202200134.
[http://dx.doi.org/10.1002/cbdv.202200134] [PMID: 35789537]
[114]
Huang, Z.; Tao, J.; Ruan, J.; Li, C.; Zheng, G. Anti-inflammatory effects and mechanisms of usnic acid, a compound firstly isolated from lichen Parmelia saxatilis. J. Med. Plants Res., 2014, 8(4), 197-207.
[115]
Jin, J.; Li, C.; He, L. Down-regulatory effect of usnic acid on nuclear factor- κ B-dependent tumor necrosis factor- α and inducible nitric oxide synthase expression in lipopolysaccharide-stimulated macrophages RAW 264.7. Phytother. Res., 2008, 22(12), 1605-1609.
[http://dx.doi.org/10.1002/ptr.2531] [PMID: 19003951]
[116]
Vanga, N.R.; Kota, A.; Sistla, R.; Uppuluri, M. Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima. Mol. Divers., 2017, 21(2), 273-282.
[http://dx.doi.org/10.1007/s11030-016-9716-5] [PMID: 28130662]
[117]
Somasekhar, T.; Javadi, M.; Sistla, R.; Mallavadhani, U.V. Synthesis of novel anti-inflammatory usnic acid-based imidazolium salts. Eur. Chem. Bull., 2021, 10(1), 67-72.
[http://dx.doi.org/10.17628/ecb.2021.10.67-72]
[118]
Wei, Y.; Yang, J.; Kishore Sakharkar, M.; Wang, X.; Liu, Q.; Du, J.; Zhang, J.J. Evaluating the inhibitory effect of eight compounds from Daphne papyracea against the NS3/4A protease of hepatitis C virus. Nat. Prod. Res., 2020, 34(11), 1607-1610.
[http://dx.doi.org/10.1080/14786419.2018.1519825] [PMID: 30449158]
[119]
Shtro, A.A.; Zarubaev, V.V.; Luzina, O.A.; Sokolov, D.N.; Kiselev, O.I.; Salakhutdinov, N.F. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorg. Med. Chem., 2014, 22(24), 6826-6836.
[http://dx.doi.org/10.1016/j.bmc.2014.10.033] [PMID: 25464881]
[120]
Sokolov, D.N.; Zarubaev, V.V.; Shtro, A.A.; Polovinka, M.P.; Luzina, O.A.; Komarova, N.I.; Salakhutdinov, N.F.; Kiselev, O.I. Anti-viral activity of (-)- and (+)-usnic acids and their derivatives against influenza virus A(H1N1)2009. Bioorg. Med. Chem. Lett., 2012, 22(23), 7060-7064.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.084] [PMID: 23099095]
[121]
Shtro, A.A.; Zarubaev, V.V.; Luzina, O.A.; Sokolov, D.N.; Salakhutdinov, N.F. Derivatives of usnic acid inhibit broad range of influenza viruses and protect mice from lethal influenza infection. Antivir. Chem. Chemother., 2015, 24(3-4), 92-98.
[http://dx.doi.org/10.1177/2040206616636992] [PMID: 27022094]
[122]
Zhang, Z.; Zheng, Y.; Li, Y.; Bai, H.; Ma, T.; Song, X.; Zhao, J.; Gao, L. The effects of sodium usnic acid by topical application on skin wound healing in rats. Biomed. Pharmacother., 2018, 97, 587-593.
[http://dx.doi.org/10.1016/j.biopha.2017.10.093] [PMID: 29101801]
[123]
Bruno, M.; Trucchi, B.; Burlando, B.; Ranzato, E.; Martinotti, S.; Akkol, E.K.; Süntar, I.; Keleş, H.; Verotta, L. (+)-Usnic acid enamines with remarkable cicatrizing properties. Bioorg. Med. Chem., 2013, 21(7), 1834-1843.
[http://dx.doi.org/10.1016/j.bmc.2013.01.045] [PMID: 23434134]
[124]
Nguyen, H.T.; Devi, A.P.; Nguyen, T.V.A.; Chavasiri, W.; Pham, D.D.; Sichaem, J.; Nguyen, N.H.; Huynh, B.L.C.; Nguyen, V.K.; Duong, T.H. α‐glucosidase inhibition by usnic acid derivatives. Chem. Biodivers., 2021, 18(4), e2000906.
[http://dx.doi.org/10.1002/cbdv.202000906] [PMID: 33538053]
[125]
Huang, X.; Deng, H.; Shen, Q.; Quan, Z.S. Tanshinone IIA: Pharmacology, Total Synthesis, and Progress in Structure-modifications. Curr. Med. Chem., 2022, 29(11), 1959-1989.
[http://dx.doi.org/10.2174/0929867328666211108110025] [PMID: 34749607]
[126]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[127]
Xu, Q.; Deng, H.; Li, X.; Quan, Z.S. Application of amino acids in the structural modification of natural products: A review. Front Chem., 2021, 9, 650569.
[http://dx.doi.org/10.3389/fchem.2021.650569] [PMID: 33996749]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy