Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Roles of Accelerated Molecular Dynamics Simulations in Predictions of Binding Kinetic Parameters

Author(s): Jianzhong Chen*, Wei Wang, Haibo Sun and Weikai He

Volume 24, Issue 14, 2024

Published on: 23 January, 2024

Page: [1323 - 1333] Pages: 11

DOI: 10.2174/0113895575252165231122095555

Price: $65

conference banner
Abstract

Rational predictions on binding kinetics parameters of drugs to targets play significant roles in future drug designs. Full conformational samplings of targets are requisite for accurate predictions of binding kinetic parameters. In this review, we mainly focus on the applications of enhanced sampling technologies in calculations of binding kinetics parameters and residence time of drugs. The methods involved in molecular dynamics simulations are applied to not only probe conformational changes of targets but also reveal calculations of residence time that is significant for drug efficiency. For this review, special attention are paid to accelerated molecular dynamics (aMD) and Gaussian aMD (GaMD) simulations that have been adopted to predict the association or disassociation rate constant. We also expect that this review can provide useful information for future drug design.

Keywords: Binding kinetics parameters, molecular dynamics simulations, accelerated molecular dynamics, Gaussian accelerated molecular dynamics, ligand-target identification.

Graphical Abstract
[1]
Tummino, P.J.; Copeland, R.A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry, 2008, 47(20), 5481-5492.
[http://dx.doi.org/10.1021/bi8002023] [PMID: 18412369]
[2]
Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug–target residence time and its implications for lead optimization. Nat. Rev. Drug Discov., 2006, 5(9), 730-739.
[http://dx.doi.org/10.1038/nrd2082] [PMID: 16888652]
[3]
Maschera, B.; Darby, G.; Palú, G.; Wright, L.L.; Tisdale, M.; Myers, R.; Blair, E.D.; Furfine, E.S. Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J. Biol. Chem., 1996, 271(52), 33231-33235.
[http://dx.doi.org/10.1074/jbc.271.52.33231] [PMID: 8969180]
[4]
Amaral, M.; Kokh, D.B.; Bomke, J.; Wegener, A.; Buchstaller, H.P.; Eggenweiler, H.M.; Matias, P.; Sirrenberg, C.; Wade, R.C.; Frech, M. Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat. Commun., 2017, 8(1), 2276.
[http://dx.doi.org/10.1038/s41467-017-02258-w] [PMID: 29273709]
[5]
Wang, J.; Do, H.N.; Koirala, K.; Miao, Y. Predicting biomolecular binding kinetics. J. Chem. Theory Comput., 2023, 19(8), 2135-2148.
[http://dx.doi.org/10.1021/acs.jctc.2c01085] [PMID: 36989090]
[6]
Swinney, D.C. Biochemical mechanisms of drug action: What does it take for success? Nat. Rev. Drug Discov., 2004, 3(9), 801-808.
[http://dx.doi.org/10.1038/nrd1500] [PMID: 15340390]
[7]
Decherchi, S.; Cavalli, A. Thermodynamics and kinetics of drug-target binding by molecular simulation. Chem. Rev., 2020, 120(23), 12788-12833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00534] [PMID: 33006893]
[8]
Zhang, Q.; Zhao, N.; Meng, X.; Yu, F.; Yao, X.; Liu, H. The prediction of protein–ligand unbinding for modern drug discovery. Expert Opin. Drug Discov., 2022, 17(2), 191-205.
[http://dx.doi.org/10.1080/17460441.2022.2002298] [PMID: 34731059]
[9]
Ansari, N.; Rizzi, V.; Parrinello, M. Water regulates the residence time of Benzamidine in Trypsin. Nat. Commun., 2022, 13(1), 5438.
[http://dx.doi.org/10.1038/s41467-022-33104-3] [PMID: 36114175]
[10]
Xue, W.; Wang, P.; Tu, G.; Yang, F.; Zheng, G.; Li, X.; Li, X.; Chen, Y.; Yao, X.; Zhu, F. Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 2018, 20(9), 6606-6616.
[http://dx.doi.org/10.1039/C7CP07869B] [PMID: 29451287]
[11]
Bao, H.Y.; Wang, W.; Sun, H.B.; Chen, J.Z. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR QSAR Environ. Res., 2023, 34(1), 65-89.
[http://dx.doi.org/10.1080/1062936X.2023.2165542] [PMID: 36762439]
[12]
Sun, Z.; Gong, Z.; Xia, F.; He, X. Ion dynamics and selectivity of Nav channels from molecular dynamics simulation. Chem. Phys., 2021, 548, 111245.
[http://dx.doi.org/10.1016/j.chemphys.2021.111245]
[13]
Hou, T.; Yu, R. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. J. Med. Chem., 2007, 50(6), 1177-1188.
[http://dx.doi.org/10.1021/jm0609162] [PMID: 17300185]
[14]
Alcaro, S.; Artese, A.; Ceccherini-Silberstein, F.; Ortuso, F.; Perno, C.F.; Sing, T.; Svicher, V. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: Mechanism of binding and drug resistance. J. Chem. Inf. Model., 2009, 49(7), 1751-1761.
[http://dx.doi.org/10.1021/ci900012k] [PMID: 19537723]
[15]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[16]
Grant, B.J.; Skjærven, L.; Yao, X.Q. The BIO3D packages for structural bioinformatics. Protein Sci., 2021, 30(1), 20-30.
[http://dx.doi.org/10.1002/pro.3923] [PMID: 32734663]
[17]
Xu, S.; Kennedy, M.A. Structural dynamics of pentapeptide repeat proteins. Proteins, 2020, 88(11), 1493-1512.
[http://dx.doi.org/10.1002/prot.25969] [PMID: 32548861]
[18]
Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 2006, 22(21), 2695-2696.
[http://dx.doi.org/10.1093/bioinformatics/btl461] [PMID: 16940322]
[19]
Amadei, A.; Linssen, A.B.M.; Berendsen, H.J.C. Essential dynamics of proteins. Proteins, 1993, 17(4), 412-425.
[http://dx.doi.org/10.1002/prot.340170408] [PMID: 8108382]
[20]
Kitao, A.; Hayward, S.; Go, N. Energy landscape of a native protein: Jumping-among-minima model. Proteins, 1998, 33(4), 496-517.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4<496:AID-PROT4>3.0.CO;2-1] [PMID: 9849935]
[21]
Laberge, M.; Yonetani, T. Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: Effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Biophys. J., 2008, 94(7), 2737-2751.
[http://dx.doi.org/10.1529/biophysj.107.114942] [PMID: 18096633]
[22]
Levy, R.M.; Srinivasan, A.R.; Olson, W.K.; McCammon, J.A. Quasi‐harmonic method for studying very low frequency modes in proteins. Biopolymers, 1984, 23(6), 1099-1112.
[http://dx.doi.org/10.1002/bip.360230610] [PMID: 6733249]
[23]
Chen, J.; Zeng, Q.; Wang, W.; Sun, H.; Hu, G. Decoding the identification mechanism of an SAM-III riboswitch on ligands through multiple independent gaussian-accelerated molecular dynamics simulations. J. Chem. Inf. Model., 2022, 62(23), 6118-6132.
[http://dx.doi.org/10.1021/acs.jcim.2c00961] [PMID: 36440874]
[24]
Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. Nature, 2007, 450(7172), 964-972.
[http://dx.doi.org/10.1038/nature06522] [PMID: 18075575]
[25]
Bao, H.; Wang, W.; Sun, H.; Chen, J. Probing mutation-induced conformational transformation of the GTP/M-RAS complex through Gaussian accelerated molecular dynamics simulations. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2195995.
[http://dx.doi.org/10.1080/14756366.2023.2195995] [PMID: 37057639]
[26]
Swope, W.C.; Pitera, J.W.; Suits, F. Describing protein folding kinetics by molecular dynamics simulations. 1. Theory. J. Phys. Chem. B, 2004, 108(21), 6571-6581.
[http://dx.doi.org/10.1021/jp037421y]
[27]
Levitt, M. Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol., 1983, 170(3), 723-764.
[http://dx.doi.org/10.1016/S0022-2836(83)80129-6] [PMID: 6195346]
[28]
Simmerling, C.; Strockbine, B.; Roitberg, A.E. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc., 2002, 124(38), 11258-11259.
[http://dx.doi.org/10.1021/ja0273851] [PMID: 12236726]
[29]
Wang, C.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.B.N.; Wang, H.; Ren, P.; Luo, R. Calculating protein–ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem., 2016, 37(27), 2436-2446.
[http://dx.doi.org/10.1002/jcc.24467] [PMID: 27510546]
[30]
Wang, C.; Xiao, L.; Luo, R. Numerical interpretation of molecular surface field in dielectric modeling of solvation. J. Comput. Chem., 2017, 38(14), 1057-1070.
[http://dx.doi.org/10.1002/jcc.24782] [PMID: 28318096]
[31]
Bennett, C.H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys., 1976, 22(2), 245-268.
[http://dx.doi.org/10.1016/0021-9991(76)90078-4]
[32]
Straatsma, T.P.; McCammon, J.A. Multiconfiguration thermodynamic integration. J. Chem. Phys., 1991, 95(2), 1175-1188.
[http://dx.doi.org/10.1063/1.461148]
[33]
Wang, W.; Kollman, P.A. Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 14937-14942.
[http://dx.doi.org/10.1073/pnas.251265598] [PMID: 11752442]
[34]
Xue, W.; Yang, F.; Wang, P.; Zheng, G.; Chen, Y.; Yao, X.; Zhu, F. What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? the key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci., 2018, 9(5), 1128-1140.
[http://dx.doi.org/10.1021/acschemneuro.7b00490] [PMID: 29300091]
[35]
Wang, J.; Morin, P.; Wang, W.; Kollman, P.A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc., 2001, 123(22), 5221-5230.
[http://dx.doi.org/10.1021/ja003834q] [PMID: 11457384]
[36]
Wang, W.; Lim, W.A.; Jakalian, A.; Wang, J.; Wang, J.; Luo, R.; Bayly, C.I.; Kollman, P.A. An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis. J. Am. Chem. Soc., 2001, 123(17), 3986-3994.
[http://dx.doi.org/10.1021/ja003164o] [PMID: 11457149]
[37]
Chen, J. Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Advances, 2016, 6(63), 58573-58585.
[http://dx.doi.org/10.1039/C6RA09201B]
[38]
Wang, C.; Greene, D.A.; Xiao, L.; Qi, R.; Luo, R. Recent Developments and Applications of the MMPBSA Method. Front. Mol. Biosci., 2018, 4, 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[39]
Sun, Z.; Huai, Z.; He, Q.; Liu, Z. A General Picture of Cucurbit[8]uril Host–Guest Binding. J. Chem. Inf. Model., 2021, 61(12), 6107-6134.
[http://dx.doi.org/10.1021/acs.jcim.1c01208] [PMID: 34818004]
[40]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[41]
Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys., 2014, 16(31), 16719-16729.
[http://dx.doi.org/10.1039/C4CP01388C] [PMID: 24999761]
[42]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[43]
Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys., 2014, 16(40), 22035-22045.
[http://dx.doi.org/10.1039/C4CP03179B] [PMID: 25205360]
[44]
Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; Purisima, E.O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model., 2007, 47(1), 122-133.
[http://dx.doi.org/10.1021/ci600406v] [PMID: 17238257]
[45]
Gao, Y.; Zhu, T.; Chen, J. Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method. Chem. Phys. Lett., 2018, 706, 400-408.
[http://dx.doi.org/10.1016/j.cplett.2018.06.040]
[46]
Wang, R.; Zheng, Q. Multiple molecular dynamics simulations of the inhibitor grl-02031 complex with wild type and mutant hiv-1 protease reveal the binding and drug-resistance mechanism. Langmuir, 2020, 36(46), 13817-13832.
[http://dx.doi.org/10.1021/acs.langmuir.0c02151] [PMID: 33175558]
[47]
Tzoupis, H.; Leonis, G.; Mavromoustakos, T.; Papadopoulos, M.G. A Comparative Molecular Dynamics, MM–PBSA and thermodynamic integration study of saquinavir complexes with wild-type HIV-1 PR and L10I, G48V, L63P, A71V, G73S, V82A and I84V Single Mutants. J. Chem. Theory Comput., 2013, 9(3), 1754-1764.
[http://dx.doi.org/10.1021/ct301063k] [PMID: 26587633]
[48]
Chen, J.; Wang, X.; Zhu, T.; Zhang, Q.; Zhang, J.Z.H. A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods. J. Chem. Inf. Model., 2015, 55(9), 1903-1913.
[http://dx.doi.org/10.1021/acs.jcim.5b00173] [PMID: 26317593]
[49]
Leonis, G.; Steinbrecher, T.; Papadopoulos, M.G. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: A systematic MM-PBSA and thermodynamic integration study. J. Chem. Inf. Model., 2013, 53(8), 2141-2153.
[http://dx.doi.org/10.1021/ci4002102] [PMID: 23834142]
[50]
Aldeghi, M.; Heifetz, A.; Bodkin, M.J.; Knapp, S.; Biggin, P.C. Predictions of ligand selectivity from absolute binding free energy calculations. J. Am. Chem. Soc., 2017, 139(2), 946-957.
[http://dx.doi.org/10.1021/jacs.6b11467] [PMID: 28009512]
[51]
Aldeghi, M.; Heifetz, A.; Bodkin, M.J.; Knapp, S.; Biggin, P.C. Accurate calculation of the absolute free energy of binding for drug molecules. Chem. Sci., 2016, 7(1), 207-218.
[http://dx.doi.org/10.1039/C5SC02678D] [PMID: 26798447]
[52]
Chen, J.; Wang, X.; Pang, L.; Zhang, J.Z.H.; Zhu, T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res., 2019, 47(13), 6618-6631.
[http://dx.doi.org/10.1093/nar/gkz499] [PMID: 31173143]
[53]
Bastys, T.; Gapsys, V.; Doncheva, N.T.; Kaiser, R.; de Groot, B.L.; Kalinina, O.V. Consistent prediction of mutation effect on drug binding in hiv-1 protease using alchemical calculations. J. Chem. Theory Comput., 2018, 14(7), 3397-3408.
[http://dx.doi.org/10.1021/acs.jctc.7b01109] [PMID: 29847122]
[54]
Bernetti, M.; Masetti, M.; Rocchia, W.; Cavalli, A. Kinetics of drug binding and residence time. Annu. Rev. Phys. Chem., 2019, 70(1), 143-171.
[http://dx.doi.org/10.1146/annurev-physchem-042018-052340] [PMID: 30786217]
[55]
Bernetti, M.; Cavalli, A.; Mollica, L. Protein–ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. MedChemComm, 2017, 8(3), 534-550.
[http://dx.doi.org/10.1039/C6MD00581K] [PMID: 30108770]
[56]
Bruce, N.J.; Ganotra, G.K.; Kokh, D.B.; Sadiq, S.K.; Wade, R.C. New approaches for computing ligand–receptor binding kinetics. Curr. Opin. Struct. Biol., 2018, 49, 1-10.
[http://dx.doi.org/10.1016/j.sbi.2017.10.001] [PMID: 29132080]
[57]
Guo, D.; Mulder-Krieger, T.; IJzerman, A.P.; Heitman, L.H. Functional efficacy of adenosine A 2A receptor agonists is positively correlated to their receptor residence time. Br. J. Pharmacol., 2012, 166(6), 1846-1859.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01897.x] [PMID: 22324512]
[58]
Pantsar, T.; Kaiser, P.D.; Kudolo, M.; Forster, M.; Rothbauer, U.; Laufer, S.A. Decisive role of water and protein dynamics in residence time of p38α MAP kinase inhibitors. Nat. Commun., 2022, 13(1), 569.
[http://dx.doi.org/10.1038/s41467-022-28164-4] [PMID: 35091547]
[59]
Braka, A.; Garnier, N.; Bonnet, P.; Aci-Sèche, S. Residence Time prediction of type 1 and 2 kinase inhibitors from unbinding simulations. J. Chem. Inf. Model., 2020, 60(1), 342-348.
[http://dx.doi.org/10.1021/acs.jcim.9b00497] [PMID: 31834793]
[60]
Schuetz, D.A.; Bernetti, M.; Bertazzo, M.; Musil, D.; Eggenweiler, H.M.; Recanatini, M.; Masetti, M.; Ecker, G.F.; Cavalli, A. Predicting residence time and drug unbinding pathway through scaled molecular dynamics. J. Chem. Inf. Model., 2019, 59(1), 535-549.
[http://dx.doi.org/10.1021/acs.jcim.8b00614] [PMID: 30500211]
[61]
Zwier, M.C.; Pratt, A.J.; Adelman, J.L.; Kaus, J.W.; Zuckerman, D.M.; Chong, L.T. Efficient atomistic simulation of pathways and calculation of rate constants for a protein–peptide binding process: Application to the mdm2 protein and an intrinsically disordered p53 peptide. J. Phys. Chem. Lett., 2016, 7(17), 3440-3445.
[http://dx.doi.org/10.1021/acs.jpclett.6b01502] [PMID: 27532687]
[62]
Moritsugu, K.; Ekimoto, T.; Ikeguchi, M.; Kidera, A. Binding and unbinding pathways of peptide substrates on the SARS-COV-2 3CL protease. J. Chem. Inf. Model., 2023, 63(1), 240-250.
[http://dx.doi.org/10.1021/acs.jcim.2c00946] [PMID: 36539353]
[63]
Tang, Z.; Chang, C.A. Binding thermodynamics and kinetics calculations using chemical host and guest: A comprehensive picture of molecular recognition. J. Chem. Theory Comput., 2018, 14(1), 303-318.
[http://dx.doi.org/10.1021/acs.jctc.7b00899] [PMID: 29149564]
[64]
Shan, Y.; Kim, E.T.; Eastwood, M.P.; Dror, R.O.; Seeliger, M.A.; Shaw, D.E. How does a drug molecule find its target binding site? J. Am. Chem. Soc., 2011, 133(24), 9181-9183.
[http://dx.doi.org/10.1021/ja202726y] [PMID: 21545110]
[65]
Dror, R.O.; Pan, A.C.; Arlow, D.H.; Borhani, D.W.; Maragakis, P.; Shan, Y.; Xu, H.; Shaw, D.E. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci., 2011, 108(32), 13118-13123.
[http://dx.doi.org/10.1073/pnas.1104614108] [PMID: 21778406]
[66]
Pan, A.C.; Xu, H.; Palpant, T.; Shaw, D.E. Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(7), 3372-3377.
[http://dx.doi.org/10.1021/acs.jctc.7b00172] [PMID: 28582625]
[67]
Mondal, J.; Ahalawat, N.; Pandit, S.; Kay, L.E.; Vallurupalli, P. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. PLOS Comput. Biol., 2018, 14(5), e1006180.
[http://dx.doi.org/10.1371/journal.pcbi.1006180] [PMID: 29775455]
[68]
Auffinger, P.; Westhof, E. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA Asp anticodon hairpin 1 1Edited by J. Karn. J. Mol. Biol., 1997, 269(3), 326-341.
[http://dx.doi.org/10.1006/jmbi.1997.1022] [PMID: 9199403]
[69]
Caves, L.S.D.; Evanseck, J.D.; Karplus, M. Locally accessible conformations of proteins: Multiple molecular dynamics simulations of crambin. Protein Sci., 1998, 7(3), 649-666.
[http://dx.doi.org/10.1002/pro.5560070314] [PMID: 9541397]
[70]
Elofsson, A.; Nilsson, L. How consistent are molecular dynamics simulations? Comparing structure and dynamics in reduced and oxidized Escherichia coli thioredoxin. J. Mol. Biol., 1993, 233(4), 766-780.
[http://dx.doi.org/10.1006/jmbi.1993.1551] [PMID: 8411178]
[71]
Knapp, B.; Ospina, L.; Deane, C.M. Avoiding false positive conclusions in molecular simulation: The importance of replicas. J. Chem. Theory Comput., 2018, 14(12), 6127-6138.
[http://dx.doi.org/10.1021/acs.jctc.8b00391] [PMID: 30354113]
[72]
Liang, S.; Liu, X.; Zhang, S.; Li, M.; Zhang, Q.; Chen, J. Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Phys. Chem. Chem. Phys., 2022, 24(3), 1743-1759.
[http://dx.doi.org/10.1039/D1CP04361G] [PMID: 34985081]
[73]
Wang, Y.; Yang, F.; Yan, D.; Zeng, Y.; Wei, B.; Chen, J.; He, W. Identification mechanism of BACE1 on inhibitors probed by using multiple separate molecular dynamics simulations and comparative calculations of binding free energies. Molecules, 2023, 28(12), 4773.
[http://dx.doi.org/10.3390/molecules28124773] [PMID: 37375328]
[74]
Yang, F.; Wang, Y.; Yan, D.; Liu, Z.; Wei, B.; Chen, J.; He, W. Binding mechanism of inhibitors to heat shock protein 90 investigated by multiple independent molecular dynamics simulations and prediction of binding free energy. Molecules, 2023, 28(12), 4792.
[http://dx.doi.org/10.3390/molecules28124792] [PMID: 37375347]
[75]
Wang, R.; Zheng, Q. Multiple molecular dynamics simulations and free-energy predictions uncover the susceptibility of variants of HIV-1 protease against inhibitors darunavir and KNI-1657. Langmuir, 2021, 37(49), 14407-14418.
[http://dx.doi.org/10.1021/acs.langmuir.1c02348] [PMID: 34851643]
[76]
Chen, J.; Wang, J.; Yin, B.; Pang, L.; Wang, W.; Zhu, W. Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions. ACS Chem. Neurosci., 2019, 10(10), 4303-4318.
[http://dx.doi.org/10.1021/acschemneuro.9b00348] [PMID: 31545898]
[77]
Suruzhon, M.; Bodnarchuk, M.S.; Ciancetta, A.; Viner, R.; Wall, I.D.; Essex, J.W. Sensitivity of binding free energy calculations to initial protein crystal structure. J. Chem. Theory Comput., 2021, 17(3), 1806-1821.
[http://dx.doi.org/10.1021/acs.jctc.0c00972] [PMID: 33534995]
[78]
Buch, I.; Giorgino, T.; De Fabritiis, G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10184-10189.
[http://dx.doi.org/10.1073/pnas.1103547108] [PMID: 21646537]
[79]
Bruce, N.J.; Ganotra, G.K.; Richter, S.; Wade, R.C. KBbox: A toolbox of computational methods for studying the kinetics of molecular binding. J. Chem. Inf. Model., 2019, 59(9), 3630-3634.
[http://dx.doi.org/10.1021/acs.jcim.9b00485] [PMID: 31381336]
[80]
Shao, Q.; Zhu, W. Exploring the ligand binding/unbinding pathway by selectively enhanced sampling of ligand in a protein–ligand complex. J. Phys. Chem. B, 2019, 123(38), 7974-7983.
[http://dx.doi.org/10.1021/acs.jpcb.9b05226] [PMID: 31478672]
[81]
Betz, R.M.; Dror, R.O. How effectively can adaptive sampling methods capture spontaneous ligand binding? J. Chem. Theory Comput., 2019, 15(3), 2053-2063.
[http://dx.doi.org/10.1021/acs.jctc.8b00913] [PMID: 30645108]
[82]
Donyapour, N.; Roussey, N.M.; Dickson, A. REVO: Resampling of ensembles by variation optimization. J. Chem. Phys., 2019, 150(24), 244112.
[http://dx.doi.org/10.1063/1.5100521] [PMID: 31255090]
[83]
Votapka, L.W.; Stokely, A.M.; Ojha, A.A.; Amaro, R.E. SEEKR2: Versatile multiscale milestoning utilizing the openmm molecular dynamics engine. J. Chem. Inf. Model., 2022, 62(13), 3253-3262.
[http://dx.doi.org/10.1021/acs.jcim.2c00501] [PMID: 35759413]
[84]
Gobbo, D.; Piretti, V.; Di Martino, R.M.C.; Tripathi, S.K.; Giabbai, B.; Storici, P.; Demitri, N.; Girotto, S.; Decherchi, S.; Cavalli, A. Investigating drug–target residence time in kinases through enhanced sampling simulations. J. Chem. Theory Comput., 2019, 15(8), 4646-4659.
[http://dx.doi.org/10.1021/acs.jctc.9b00104] [PMID: 31246463]
[85]
Kuriappan, J.A.; Osheroff, N.; De Vivo, M. Smoothed potential md simulations for dissociation kinetics of etoposide to unravel isoform specificity in targeting human topoisomerase II. J. Chem. Inf. Model., 2019, 59(9), 4007-4017.
[http://dx.doi.org/10.1021/acs.jcim.9b00605] [PMID: 31449404]
[86]
Du, Y.; Wang, R. Revealing the unbinding kinetics and mechanism of type I and Type II protein kinase inhibitors by local-scaled molecular dynamics simulations. J. Chem. Theory Comput., 2020, 16(10), 6620-6632.
[http://dx.doi.org/10.1021/acs.jctc.0c00342] [PMID: 32841004]
[87]
You, W.; Tang, Z.; Chang, C.A. Potential mean force from umbrella sampling simulations: What can we learn and what is missed? J. Chem. Theory Comput., 2019, 15(4), 2433-2443.
[http://dx.doi.org/10.1021/acs.jctc.8b01142] [PMID: 30811931]
[88]
Deb, I.; Frank, A.T. Accelerating rare dissociative processes in biomolecules using selectively scaled MD simulations. J. Chem. Theory Comput., 2019, 15(11), 5817-5828.
[http://dx.doi.org/10.1021/acs.jctc.9b00262] [PMID: 31509413]
[89]
Casasnovas, R.; Limongelli, V.; Tiwary, P.; Carloni, P.; Parrinello, M. Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. J. Am. Chem. Soc., 2017, 139(13), 4780-4788.
[http://dx.doi.org/10.1021/jacs.6b12950] [PMID: 28290199]
[90]
Tiwary, P.; Parrinello, M. From metadynamics to dynamics. Phys. Rev. Lett., 2013, 111(23), 230602.
[http://dx.doi.org/10.1103/PhysRevLett.111.230602] [PMID: 24476246]
[91]
Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps. Proc. Natl. Acad. Sci. USA, 2015, 112(5), E386-E391.
[http://dx.doi.org/10.1073/pnas.1424461112] [PMID: 25605901]
[92]
Salvalaglio, M.; Tiwary, P.; Parrinello, M. Assessing the reliability of the dynamics reconstructed from metadynamics. J. Chem. Theory Comput., 2014, 10(4), 1420-1425.
[http://dx.doi.org/10.1021/ct500040r] [PMID: 26580360]
[93]
Shekhar, M.; Smith, Z.; Seeliger, M.A.; Tiwary, P. Protein flexibility and dissociation pathway differentiation can explain onset of resistance mutations in kinases. Angew. Chem. Int. Ed., 2022, 61(28), e202200983.
[http://dx.doi.org/10.1002/anie.202200983] [PMID: 35486370]
[94]
Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B, 2007, 111(27), 7812-7824.
[http://dx.doi.org/10.1021/jp071097f] [PMID: 17569554]
[95]
Monticelli, L.; Kandasamy, S.K.; Periole, X.; Larson, R.G.; Tieleman, D.P.; Marrink, S.J. The MARTINI coarse-grained force field: Extension to proteins. J. Chem. Theory Comput., 2008, 4(5), 819-834.
[http://dx.doi.org/10.1021/ct700324x] [PMID: 26621095]
[96]
de Jong, D.H.; Singh, G.; Bennett, W.F.D.; Arnarez, C.; Wassenaar, T.A.; Schäfer, L.V.; Periole, X.; Tieleman, D.P.; Marrink, S.J. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput., 2013, 9(1), 687-697.
[http://dx.doi.org/10.1021/ct300646g] [PMID: 26589065]
[97]
Dandekar, B.R.; Mondal, J. Capturing protein–ligand recognition pathways in coarse-grained simulation. J. Phys. Chem. Lett., 2020, 11(13), 5302-5311.
[http://dx.doi.org/10.1021/acs.jpclett.0c01683] [PMID: 32520567]
[98]
Souza, P.C.T.; Thallmair, S.; Conflitti, P.; Ramírez-Palacios, C.; Alessandri, R.; Raniolo, S.; Limongelli, V.; Marrink, S.J. Protein–ligand binding with the coarse-grained Martini model. Nat. Commun., 2020, 11(1), 3714.
[http://dx.doi.org/10.1038/s41467-020-17437-5] [PMID: 32709852]
[99]
Souza, P.C.T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B.M.H.; Wassenaar, T.A.; Kroon, P.C.; Melcr, J.; Nieto, V.; Corradi, V.; Khan, H.M.; Domański, J.; Javanainen, M.; MartinezSeara, H.; Reuter, N.; Best, R.B.; Vattulainen, I.; Monticelli, L.; Periole, X.; Tieleman, D.P.; de Vries, A.H.; Marrink, S.J. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods, 2021, 18(4), 382-388.
[http://dx.doi.org/10.1038/s41592-021-01098-3] [PMID: 33782607]
[100]
Sohraby, F.; Nunes-Alves, A. Advances in computational methods for ligand binding kinetics. Trends Biochem. Sci., 2022.
[http://dx.doi.org/10.1016/j.tibs.2022.1011.1003] [PMID: 36566088]
[101]
Schaeffer, R.D.; Fersht, A.; Daggett, V. Combining experiment and simulation in protein folding: Closing the gap for small model systems. Curr. Opin. Struct. Biol., 2008, 18(1), 4-9.
[http://dx.doi.org/10.1016/j.sbi.2007.11.007] [PMID: 18242977]
[102]
Kubelka, J.; Chiu, T.K.; Davies, D.R.; Eaton, W.A.; Hofrichter, J. Sub-microsecond protein folding. J. Mol. Biol., 2006, 359(3), 546-553.
[http://dx.doi.org/10.1016/j.jmb.2006.03.034] [PMID: 16643946]
[103]
Freddolino, P.L.; Schulten, K. Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophys. J., 2009, 97(8), 2338-2347.
[http://dx.doi.org/10.1016/j.bpj.2009.08.012] [PMID: 19843466]
[104]
Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J. Chem. Phys., 2004, 120(24), 11919-11929.
[http://dx.doi.org/10.1063/1.1755656] [PMID: 15268227]
[105]
Hamelberg, D.; de Oliveira, C.A.F.; McCammon, J.A. Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J. Chem. Phys., 2007, 127(15), 155102.
[http://dx.doi.org/10.1063/1.2789432] [PMID: 17949218]
[106]
Sinko, W.; de Oliveira, C.A.F.; Pierce, L.C.T.; McCammon, J.A. Protecting high energy barriers: A new equation to regulate boost energy in accelerated molecular dynamics simulations. J. Chem. Theory Comput., 2012, 8(1), 17-23.
[http://dx.doi.org/10.1021/ct200615k] [PMID: 22241967]
[107]
Wereszczynski, J.; McCammon, J.A. Using selectively applied accelerated molecular dynamics to enhance free energy calculations. J. Chem. Theory Comput., 2010, 6(11), 3285-3292.
[http://dx.doi.org/10.1021/ct100322t] [PMID: 21072329]
[108]
Wang, Y.; Harrison, C.B.; Schulten, K.; McCammon, J.A. Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov., 2011, 4(1), 015002.
[http://dx.doi.org/10.1088/1749-4699/4/1/015002] [PMID: 21686063]
[109]
Pierce, L.C.T.; Salomon-Ferrer, R.; Augusto, F.; de Oliveira, C.; McCammon, J.A.; Walker, R.C. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput., 2012, 8(9), 2997-3002.
[http://dx.doi.org/10.1021/ct300284c] [PMID: 22984356]
[110]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[111]
Lee, T.S.; Cerutti, D.S.; Mermelstein, D.; Lin, C.; LeGrand, S.; Giese, T.J.; Roitberg, A.; Case, D.A.; Walker, R.C.; York, D.M. GPU-Accelerated molecular dynamics and free energy methods in amber18: Performance enhancements and new features. J. Chem. Inf. Model., 2018, 58(10), 2043-2050.
[http://dx.doi.org/10.1021/acs.jcim.8b00462] [PMID: 30199633]
[112]
Miao, Y.; Sinko, W.; Pierce, L.; Bucher, D.; Walker, R.C.; McCammon, J.A. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J. Chem. Theory Comput., 2014, 10(7), 2677-2689.
[http://dx.doi.org/10.1021/ct500090q] [PMID: 25061441]
[113]
Miao, Y.; Feixas, F.; Eun, C.; McCammon, J.A. Accelerated molecular dynamics simulations of protein folding. J. Comput. Chem., 2015, 36(20), 1536-1549.
[http://dx.doi.org/10.1002/jcc.23964] [PMID: 26096263]
[114]
Li, M.; Liu, X.; Zhang, S.; Liang, S.; Zhang, Q.; Chen, J. Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Phys. Chem. Chem. Phys., 2022, 24(36), 22129-22143.
[http://dx.doi.org/10.1039/D2CP03446H] [PMID: 36082845]
[115]
Duan, L.; Guo, X.; Cong, Y.; Feng, G.; Li, Y.; Zhang, J.Z.H. Accelerated molecular dynamics simulation for helical proteins folding in explicit water. Front Chem., 2019, 7, 540.
[http://dx.doi.org/10.3389/fchem.2019.00540] [PMID: 31448259]
[116]
Chen, J.; Yin, B.; Wang, W.; Sun, H. Effects of disulfide bonds on binding of inhibitors to β-Amyloid Cleaving Enzyme 1 decoded by multiple replica accelerated molecular dynamics simulations. ACS Chem. Neurosci., 2020, 11(12), 1811-1826.
[http://dx.doi.org/10.1021/acschemneuro.0c00234] [PMID: 32459964]
[117]
Chen, J.; Wang, W.; Pang, L.; Zhu, W. Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics. Phys. Chem. Chem. Phys., 2020, 22(37), 21238-21250.
[http://dx.doi.org/10.1039/D0CP03766D] [PMID: 32930679]
[118]
He, H.; Xu, J.; Xie, W.; Guo, Q.L.; Jiang, F.L.; Liu, Y. Reduced state transition barrier of CDK6 from open to closed state induced by Thr177 phosphorylation and its implication in binding modes of inhibitors. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(3), 501-512.
[http://dx.doi.org/10.1016/j.bbagen.2017.11.001] [PMID: 29108955]
[119]
Bueren-Calabuig, J.A.G.; G Bage, M.; Cowling, V.H.; Pisliakov, A.V. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: Insights from accelerated molecular dynamics simulations. Nucleic Acids Res., 2019, 47(16), 8675-8692.
[http://dx.doi.org/10.1093/nar/gkz613] [PMID: 31329932]
[120]
Grant, B.J.; Gorfe, A.A.; McCammon, J.A. Ras conformational switching: Simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLOS Comput. Biol., 2009, 5(3), e1000325.
[http://dx.doi.org/10.1371/journal.pcbi.1000325] [PMID: 19300489]
[121]
Doshi, U.; Hamelberg, D. Extracting realistic kinetics of rare activated processes from accelerated molecular dynamics using kramers’ theory. J. Chem. Theory Comput., 2011, 7(3), 575-581.
[http://dx.doi.org/10.1021/ct1005399] [PMID: 26596291]
[122]
Hayes, R.L.; Buckner, J.; Brooks, C.L. III BLaDE: A basic lambda dynamics engine for GPU-Accelerated molecular dynamics free energy calculations. J. Chem. Theory Comput., 2021, 17(11), 6799-6807.
[http://dx.doi.org/10.1021/acs.jctc.1c00833] [PMID: 34709046]
[123]
Bal, K.M.; Neyts, E.C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. J. Chem. Theory Comput., 2015, 11(10), 4545-4554.
[http://dx.doi.org/10.1021/acs.jctc.5b00597] [PMID: 26889516]
[124]
Peng, X.; Zhang, Y.; Li, Y.; Liu, Q.; Chu, H.; Zhang, D.; Li, G. Integrating multiple accelerated molecular dynamics to improve accuracy of free energy calculations. J. Chem. Theory Comput., 2018, 14(3), 1216-1227.
[http://dx.doi.org/10.1021/acs.jctc.7b01211] [PMID: 29394067]
[125]
Morrone, J.A.; Perez, A.; MacCallum, J.; Dill, K.A. Computed binding of peptides to proteins with MELD-Accelerated molecular dynamics. J. Chem. Theory Comput., 2017, 13(2), 870-876.
[http://dx.doi.org/10.1021/acs.jctc.6b00977] [PMID: 28042966]
[126]
Kokh, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D.; Buchstaller, H.P.; Dreyer, M.K.; Frech, M.; Lowinski, M.; Vallee, F.; Bianciotto, M.; Rak, A.; Wade, R.C. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theory Comput., 2018, 14(7), 3859-3869.
[http://dx.doi.org/10.1021/acs.jctc.8b00230] [PMID: 29768913]
[127]
Kokh, D.B.; Wade, R.C.G. Protein-coupled receptor–ligand dissociation rates and mechanisms from τramd simulations. J. Chem. Theory Comput., 2021, 17(10), 6610-6623.
[http://dx.doi.org/10.1021/acs.jctc.1c00641] [PMID: 34495672]
[128]
Spiwok, V.; Sucur, Z.; Hosek, P. Enhanced sampling techniques in biomolecular simulations. Biotechnol. Adv., 2015, 33(6), 1130-1140.
[http://dx.doi.org/10.1016/j.biotechadv.2014.11.011] [PMID: 25482668]
[129]
Gao, Y.Q.; Yang, L.; Fan, Y.; Shao, Q. Thermodynamics and kinetics simulations of multi-time-scale processes for complex systems. Int. Rev. Phys. Chem., 2008, 27(2), 201-227.
[http://dx.doi.org/10.1080/01442350801920334]
[130]
Liwo, A.; Czaplewski, C.; Ołdziej, S.; Scheraga, H.A. Computational techniques for efficient conformational sampling of proteins. Curr. Opin. Struct. Biol., 2008, 18(2), 134-139.
[http://dx.doi.org/10.1016/j.sbi.2007.12.001] [PMID: 18215513]
[131]
Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in monte carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 1977, 23(2), 187-199.
[http://dx.doi.org/10.1016/0021-9991(77)90121-8]
[132]
Kumar, S.; Rosenberg, J.M.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem., 1992, 13(8), 1011-1021.
[http://dx.doi.org/10.1002/jcc.540130812]
[133]
Laio, A.; Gervasio, F.L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys., 2008, 71(12), 126601.
[http://dx.doi.org/10.1088/0034-4885/71/12/126601]
[134]
Darve, E.; Rodríguez-Gómez, D.; Pohorille, A. Adaptive biasing force method for scalar and vector free energy calculations. J. Chem. Phys., 2008, 128(14), 144120.
[http://dx.doi.org/10.1063/1.2829861] [PMID: 18412436]
[135]
Isralewitz, B.; Baudry, J.; Gullingsrud, J.; Kosztin, D.; Schulten, K. Steered molecular dynamics investigations of protein function. J. Mol. Graph. Model., 2001, 19(1), 13-25.
[http://dx.doi.org/10.1016/S1093-3263(00)00133-9] [PMID: 11381523]
[136]
Shen, T.; Hamelberg, D. A statistical analysis of the precision of reweighting-based simulations. J. Chem. Phys., 2008, 129(3), 034103.
[http://dx.doi.org/10.1063/1.2944250] [PMID: 18647012]
[137]
Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput., 2015, 11(8), 3584-3595.
[http://dx.doi.org/10.1021/acs.jctc.5b00436] [PMID: 26300708]
[138]
Wang, J.; Arantes, P.R.; Bhattarai, A.; Hsu, R.V.; Pawnikar, S.; Huang, Y.M.; Palermo, G.; Miao, Y. Gaussian accelerated molecular dynamics: Principles and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2021, 11(5), e1521.
[http://dx.doi.org/10.1002/wcms.1521] [PMID: 34899998]
[139]
Miao, Y.; McCammon, J.A. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proc. Natl. Acad. Sci. USA, 2018, 115(12), 3036-3041.
[http://dx.doi.org/10.1073/pnas.1800756115] [PMID: 29507218]
[140]
Miao, Y.; McCammon, J.A. Graded activation and free energy landscapes of a muscarinic G-protein–coupled receptor. Proc. Natl. Acad. Sci., 2016, 113(43), 12162-12167.
[http://dx.doi.org/10.1073/pnas.1614538113] [PMID: 27791003]
[141]
Miao, Y.; McCammon, J.A. G-protein coupled receptors: Advances in simulation and drug discovery. Curr. Opin. Struct. Biol., 2016, 41, 83-89.
[http://dx.doi.org/10.1016/j.sbi.2016.06.008] [PMID: 27344006]
[142]
Wang, J.; Miao, Y. Mechanistic insights into specific g protein interactions with adenosine receptors. J. Phys. Chem. B, 2019, 123(30), 6462-6473.
[http://dx.doi.org/10.1021/acs.jpcb.9b04867] [PMID: 31283874]
[143]
Palermo, G.; Miao, Y.; Walker, R.C.; Jinek, M.; McCammon, J.A. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as revealed by molecular simulations. ACS Cent. Sci., 2016, 2(10), 756-763.
[http://dx.doi.org/10.1021/acscentsci.6b00218] [PMID: 27800559]
[144]
Xiaoli, A.; Yuzhen, N.; Qiong, Y.; Yang, L.; Yao, X.; Bing, Z. Investigating the dynamic binding behavior of pmx53 cooperating with allosteric antagonist ndt9513727 to c5a anaphylatoxin chemotactic receptor 1 through gaussian accelerated molecular dynamics and free-energy perturbation simulations. ACS Chem. Neurosci., 2022, 13(23), 3502-3511.
[http://dx.doi.org/10.1021/acschemneuro.2c00556] [PMID: 36428153]
[145]
Chen, J.; Wang, L.; Wang, W.; Sun, H.; Pang, L.; Bao, H. Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis. Comput. Biol. Med., 2021, 135, 104639.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104639] [PMID: 34247129]
[146]
Roy, R.; Mishra, A.; Poddar, S.; Nayak, D.; Kar, P. Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virusvia Gaussian accelerated molecular dynamics simulations. J. Biomol. Struct. Dyn., 2022, 40(5), 2302-2315.
[http://dx.doi.org/10.1080/07391102.2020.1838327] [PMID: 33089759]
[147]
Jonniya, N.A.; Sk, M.F.; Kar, P. Characterizing an allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamics simulations. Phys. Chem. Chem. Phys., 2021, 23(12), 7343-7358.
[http://dx.doi.org/10.1039/D0CP05733A] [PMID: 33876094]
[148]
Célerse, F.; Inizan, T.J.; Lagardère, L.; Adjoua, O.; Monmarché, P.; Miao, Y.; Derat, E.; Piquemal, J.P. An efficient gaussian-accelerated molecular dynamics (GaMD) multilevel enhanced sampling strategy: Application to polarizable force fields simulations of large biological systems. J. Chem. Theory Comput., 2022, 18(2), 968-977.
[http://dx.doi.org/10.1021/acs.jctc.1c01024] [PMID: 35080892]
[149]
Bao, H.; Wang, W.; Sun, H.; Chen, J. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. J. Biomol. Struct. Dyn., 2023, 1-19.
[http://dx.doi.org/10.1080/07391102.2023.2213355] [PMID: 37216340]
[150]
Palermo, G.; Miao, Y.; Walker, R.C.; Jinek, M.; McCammon, J.A. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Proc. Natl. Acad. Sci., 2017, 114(28), 7260-7265.
[http://dx.doi.org/10.1073/pnas.1707645114] [PMID: 28652374]
[151]
Wang, Y.; Li, M.; Liang, W.; Shi, X.; Fan, J.; Kong, R.; Liu, Y.; Zhang, J.; Chen, T.; Lu, S. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput. Struct. Biotechnol. J., 2022, 20, 628-639.
[http://dx.doi.org/10.1016/j.csbj.2022.01.015] [PMID: 35140883]
[152]
Chen, J.; Zhang, S.; Wang, W.; Pang, L.; Zhang, Q.; Liu, X. Mutation-induced impacts on the switch transformations of the gdp- and gtp-bound k-ras: Insights from multiple replica gaussian accelerated molecular dynamics and free energy analysis. J. Chem. Inf. Model., 2021, 61(4), 1954-1969.
[http://dx.doi.org/10.1021/acs.jcim.0c01470] [PMID: 33739090]
[153]
Chen, J.; Zhang, S.; Zeng, Q.; Wang, W.; Zhang, Q.; Liu, X. Free energy profiles relating with conformational transition of the switch domains induced by G12 Mutations in GTP-Bound KRAS. Front. Mol. Biosci., 2022, 9, 912518.
[http://dx.doi.org/10.3389/fmolb.2022.912518] [PMID: 35586192]
[154]
Liu, H.; Li, Q.; Xiong, C.; Zhong, H.; Zhang, Q.; Liu, H.; Yao, X. Uncovering the effect of pS202/pT205/pS208 triple phosphorylations on the conformational features of the key fragment G192–T212 of Tau Protein. ACS Chem. Neurosci., 2021, 12(6), 1039-1048.
[http://dx.doi.org/10.1021/acschemneuro.1c00058] [PMID: 33663205]
[155]
Zhao, Y.; Zhang, J.; Zhang, H.; Gu, S.; Deng, Y.; Tu, Y.; Hou, T.; Kang, Y. Sigmoid accelerated molecular dynamics: An efficient enhanced sampling method for biosystems. J. Phys. Chem. Lett., 2023, 14(4), 1103-1112.
[http://dx.doi.org/10.1021/acs.jpclett.2c03688] [PMID: 36700836]
[156]
Ahn, S.H.; Ojha, A.A.; Amaro, R.E.; McCammon, J.A. Gaussian-accelerated molecular dynamics with the weighted ensemble method: A hybrid method improves thermodynamic and kinetic sampling. J. Chem. Theory Comput., 2021, 17(12), 7938-7951.
[http://dx.doi.org/10.1021/acs.jctc.1c00770] [PMID: 34844409]
[157]
Huang, Y.M. Multiscale computational study of ligand binding pathways: Case of p38 MAP kinase and its inhibitors. Biophys. J., 2021, 120(18), 3881-3892.
[http://dx.doi.org/10.1016/j.bpj.2021.08.026] [PMID: 34453922]
[158]
Miao, Y.; Bhattarai, A.; Wang, J. Ligand gaussian accelerated molecular dynamics (LiGaMD): Characterization of ligand binding thermodynamics and kinetics. J. Chem. Theory Comput., 2020, 16(9), 5526-5547.
[http://dx.doi.org/10.1021/acs.jctc.0c00395] [PMID: 32692556]
[159]
Wang, Y.T.; Liao, J.M.; Lin, W.W.; Li, C.C.; Huang, B.C.; Cheng, T.L.; Chen, T.C. Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease complexation: A ligand Gaussian accelerated molecular dynamics study. Phys. Chem. Chem. Phys., 2022, 24(37), 22898-22904.
[http://dx.doi.org/10.1039/D2CP02882D] [PMID: 36124909]
[160]
Wang, J.; Miao, Y. Ligand gaussian accelerated molecular dynamics 2 (LiGaMD2): Improved calculations of ligand binding thermodynamics and kinetics with closed protein pocket. J. Chem. Theory Comput., 2023, 19(3), 733-745.
[http://dx.doi.org/10.1021/acs.jctc.2c01194] [PMID: 36706316]
[161]
Wang, J.; Miao, Y. Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding. J. Chem. Phys., 2020, 153(15), 154109.
[http://dx.doi.org/10.1063/5.0021399] [PMID: 33092378]
[162]
Wang, J.; Miao, Y. Protein–protein interaction-gaussian accelerated molecular dynamics (ppi-gamd): Characterization of protein binding thermodynamics and kinetics. J. Chem. Theory Comput., 2022, 18(3), 1275-1285.
[http://dx.doi.org/10.1021/acs.jctc.1c00974] [PMID: 35099970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy