Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Neurobiochemical Disturbances in Psychosis and their Implications for Therapeutic Intervention

Author(s): Georgi Panov* and Presyana Panova

Volume 24, Issue 20, 2024

Published on: 23 January, 2024

Page: [1784 - 1798] Pages: 15

DOI: 10.2174/0115680266282773240116073618

Price: $65

conference banner
Abstract

Psychosis, marked by the emergence of psychotic symptoms, delves into the intricate dance of neurotransmitter dynamics, prominently featuring dopamine as a key orchestrator. In individuals living with psychotic conditions, the finely tuned balance of dopamine becomes disrupted, setting off a cascade of perceptual distortions and the manifestation of psychotic symptoms. A lot of factors can impact dopamine metabolism, further complicating its effects. From genetic predispositions to environmental stressors and inflammation, the delicate equilibrium is susceptible to various influences. The sensorium, the origin of incoming information, loses its intrinsic valence in this complex interplay. The concept of the “signal-to-noise ratio” encapsulates dopamine's role as a molecular switch in neural networks, influencing the flow of information serving the basic biological functions. This nuanced modulation acts as a cognitive prism, shaping how the world is perceived. However, in psychosis, this balance is disrupted, steering individuals away from a shared reality. Understanding dopamine's centrality requires acknowledging its unique status among neurotransmitters. Unlike strictly excitatory or inhibitory counterparts, dopamine's versatility allows it to toggle between roles and act as a cognitive director in the neural orchestra. Disruptions in dopamine synthesis, exchange, and receptor representation set off a chain reaction, impacting the delivery of biologically crucial information. The essence of psychosis is intricately woven into the delicate biochemical ballet choreographed by dopamine. The disruption of this neurotransmitter not only distorts reality but fundamentally reshapes the cognitive and behavioral field of our experience. Recognizing dopamine's role as a cognitive prism provides vital insights into the multifaceted nature of psychotic conditions, offering avenues for targeted therapeutic interventions aimed at restoring this delicate neurotransmitter balance.

Keywords: Schizophrenia, Psychosis, Dopaminе, Hypersensitivity psychosis, Dopamine D2 high receptor, Dopamine D2 low receptor, Neuromediation, Excitation.

Graphical Abstract
[1]
Adamu, M.J.; Qiang, L.; Nyatega, C.O.; Younis, A.; Kawuwa, H.B.; Jabire, A.H.; Saminu, S. Unraveling the pathophysiology of schizophrenia: Insights from structural magnetic resonance imaging studies. Front. Psychiatry, 2023, 14, 1188603.
[http://dx.doi.org/10.3389/fpsyt.2023.1188603] [PMID: 37275974]
[2]
Price, JA; Morris, ZA; Costello, S The application of adaptive behaviour models: A systematic review. Behav Sci., 2018, 8(1), 11.
[http://dx.doi.org/10.3390/bs8010011]
[3]
Promoting mental health: Concepts, emerging evidence, practice; World Health Organization: Geneva, 2004.
[4]
Ventura, J.; Thames, A.D.; Wood, R.C.; Guzik, L.H.; Hellemann, G.S. Disorganization and reality distortion in schizophrenia: A meta-analysis of the relationship between positive symptoms and neurocognitive deficits. Schizophr. Res., 2010, 121(1-3), 1-14.
[http://dx.doi.org/10.1016/j.schres.2010.05.033] [PMID: 20579855]
[5]
Sorkin, A.; Weinshall, D.; Peled, A. The distortion of reality perception in schizophrenia patients, as measured in Virtual Reality. Stud. Health Technol. Inform., 2008, 132, 475-480.
[PMID: 18391348]
[6]
David B, A. Psychosis. Continuum, 2015, 21, 715-736.
[http://dx.doi.org/10.1212/01.CON.0000466662.89908.e7]
[7]
Radua, J.; Ramella-Cravaro, V.; Ioannidis, J.P.A.; Reichenberg, A.; Phiphopthatsanee, N.; Amir, T.; Yenn Thoo, H.; Oliver, D.; Davies, C.; Morgan, C.; McGuire, P.; Murray, R.M.; Fusar-Poli, P. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry, 2018, 17(1), 49-66.
[http://dx.doi.org/10.1002/wps.20490] [PMID: 29352556]
[8]
Walz, R.; Diaz, A.; Martins, E.T.; Rufino, A.; Amante, L.N.; Thais, M.E.; Quevedo, J.; Hohl, A.; Linhares, M.N.; Walz, R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr. Dis. Treat., 2008, 4(4), 797-816.
[http://dx.doi.org/10.2147/NDT.S2653] [PMID: 19043523]
[9]
Zhang, L; Lizano, P; Guo, B; Xu, Y; Rubin, LH; Hill, SK; Alliey-Rodriguez, N; Lee, AM; Wu, B; Keedy, SK; Tamminga, CA; Pearlson, GD; Clementz, BA; Keshavan, MS; Gershon, ES; Sweeney, JA; Bishop, JR Inflammation subtypes in psychosis and their relationships with genetic risk for psychiatric and cardiometabolic disorders. Brain Behav. Immun. Health., 2022, 8(22), 100459.
[http://dx.doi.org/10.1016/j.bbih.2022.100459]
[10]
Craddock, N.; O’Donovan, M.C.; Owen, M.J. Psychosis genetics: Modeling the relationship between schizophrenia, bipolar disorder, and mixed (or “schizoaffective”) psychoses. Schizophr. Bull., 2009, 35(3), 482-490.
[http://dx.doi.org/10.1093/schbul/sbp020] [PMID: 19329560]
[11]
Miller, CL The epigenetics of psychosis: A structured review with representative loci. Biomedicines, 2022, 10(3), 561.
[http://dx.doi.org/10.3390/biomedicines10030561]
[12]
Morgan, C.; Lappin, J.; Heslin, M.; Donoghue, K.; Lomas, B.; Reininghaus, U.; Onyejiaka, A.; Croudace, T.; Jones, P.B.; Murray, R.M.; Fearon, P.; Doody, G.A.; Dazzan, P. Reappraising the long-term course and outcome of psychotic disorders: the AESOP-10 study. Psychol. Med., 2014, 44(13), 2713-2726.
[http://dx.doi.org/10.1017/S0033291714000282] [PMID: 25066181]
[13]
American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders, 5th ed; Washington, DC, 2013.
[14]
Renthal, W.; Maze, I.; Krishnan, V.; Covington, H.E., III; Xiao, G.; Kumar, A.; Russo, S.J.; Graham, A.; Tsankova, N.; Kippin, T.E.; Kerstetter, K.A.; Neve, R.L.; Haggarty, S.J.; McKinsey, T.A.; Bassel-Duby, R.; Olson, E.N.; Nestler, E.J. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron, 2007, 56(3), 517-529.
[http://dx.doi.org/10.1016/j.neuron.2007.09.032] [PMID: 17988634]
[15]
Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet., 2011, 12(8), 529-541.
[http://dx.doi.org/10.1038/nrg3000] [PMID: 21747404]
[16]
Covington, H.E., III; Maze, I.; Sun, H.; Bomze, H.M.; DeMaio, K.D.; Wu, E.Y.; Dietz, D.M.; Lobo, M.K.; Ghose, S.; Mouzon, E.; Neve, R.L.; Tamminga, C.A.; Nestler, E.J. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron, 2011, 71(4), 656-670.
[http://dx.doi.org/10.1016/j.neuron.2011.06.007] [PMID: 21867882]
[17]
Wilkinson, M.B.; Xiao, G.; Kumar, A.; LaPlant, Q.; Renthal, W.; Sikder, D.; Kodadek, T.J.; Nestler, E.J. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci., 2009, 29(24), 7820-7832.
[http://dx.doi.org/10.1523/JNEUROSCI.0932-09.2009] [PMID: 19535594]
[18]
Howes, O.D.; McCutcheon, R.; Owen, M.J.; Murray, R.M. The role of genes, stress, and dopamine in the development of schizophrenia. Biol. Psychiatry, 2017, 81(1), 9-20.
[http://dx.doi.org/10.1016/j.biopsych.2016.07.014] [PMID: 27720198]
[19]
Stoyanov, D. Advances in the diagnosis and management of psychosis. Diagnostics, 2023, 13(9), 1517.
[http://dx.doi.org/10.3390/diagnostics13091517] [PMID: 37174908]
[20]
Tost, H.; Alam, T.; Meyer-Lindenberg, A. Dopamine and psychosis: Theory, pathomechanisms and intermediate phenotypes. Neurosci. Biobehav. Rev., 2010, 34(5), 689-700.
[http://dx.doi.org/10.1016/j.neubiorev.2009.06.005] [PMID: 19559045]
[21]
Lovinger, D.M. Communication networks in the brain: Neurons, receptors, neurotransmitters, and alcohol. Alcohol Res. Health, 2008, 31(3), 196-214.
[PMID: 23584863]
[22]
Smelser, N.J.; Baltes, P.B. International encyclopedia of the social & behavioral sciences, 1st ed; Elsevier: Amsterdam, New York, 2001.
[23]
Cuevas, J. Neurotransmitters and their life cycle. In: Reference Module in Biomedical Sciences; Elsevier, 2019.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.11318-2]
[24]
Meltzer, H.Y.; Stahl, S.M. The dopamine hypothesis of schizophrenia: A review. Schizophr. Bull., 1976, 2(1), 19-76.
[http://dx.doi.org/10.1093/schbul/2.1.19] [PMID: 779020]
[25]
Howes, O.D.; Kambeitz, J.; Kim, E.; Stahl, D.; Slifstein, M.; Abi- Dargham, A.; Kapur, S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry, 2012, 69(8), 776-786.
[http://dx.doi.org/10.1001/archgenpsychiatry.2012.169] [PMID: 22474070]
[26]
Moncrieff, J. The myth of the chemical cure. A critique of psychiatric drug treatment; Palgrave MacMillan: Basingstoke, UK, 2008.
[27]
Kegeles, L.S.; Abi-Dargham, A.; Zea-Ponce, Y.; Rodenhiser-Hill, J.; Mann, J.J.; Van Heertum, R.L.; Cooper, T.B.; Carlsson, A.; Laruelle, M. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol. Psychiatry, 2000, 48(7), 627-640.
[http://dx.doi.org/10.1016/S0006-3223(00)00976-8] [PMID: 11032974]
[28]
dela Peña, I.; Gevorkiana, R.; Shi, W.X. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur. J. Pharmacol., 2015, 764, 562-570.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.044] [PMID: 26209364]
[29]
Kalivas, P.W. Cocaine and amphetamine-like psychostimulants: Neurocircuitry and glutamate neuroplasticity. Dialogues Clin. Neurosci., 2007, 9(4), 389-397.
[http://dx.doi.org/10.31887/DCNS.2007.9.4/pkalivas] [PMID: 18286799]
[30]
Kelley, A.E.; Gauthier, A.M.; Lang, C.G. Amphetamine microinjections into distinct striatal subregions cause dissociable effects on motor and ingestive behavior. Behav. Brain Res., 1989, 35(1), 27-39.
[http://dx.doi.org/10.1016/S0166-4328(89)80005-1] [PMID: 2803542]
[31]
Friedman, A.; Sienkiewicz, J. Psychotic complications of long-term levodopa treatment of Parkinson’s disease. Acta Neurol. Scand., 1991, 84(2), 111-113.
[http://dx.doi.org/10.1111/j.1600-0404.1991.tb04918.x] [PMID: 1950448]
[32]
Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci., 2007, 30(1), 259-288.
[http://dx.doi.org/10.1146/annurev.neuro.28.061604.135722] [PMID: 17600522]
[33]
Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 1964, 232, 232-55.
[PMID: 14229500]
[34]
Björklund, A; Dunnett, SB Dopamine neuron systems in the brain: An update. Trends Neurosci., 2007, 30(5), 194-202.
[http://dx.doi.org/10.1016/j.tins.2007.03.006]
[35]
Malenka, R.C.; Nestler, E.J. Chapter 6: Widely projecting systems: Monoamines, acetylcholine, and orexin. In: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience; McGraw-Hill: New York, 2009.
[36]
Alcaro, A; Huber, R; Panksepp, J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res. Rev., 2007, 56(2), 283-321.
[http://dx.doi.org/10.1016/j.brainresrev.2007.07.014]
[37]
Ikemoto, S. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci. Biobeh. Rev., 2010, 25(2), 129-150.
[http://dx.doi.org/10.1016/j.neubiorev.2010.02.001]
[38]
Yamaguchi, T; Wang, HL; Li, X; Ng, TH; Morales, M Mesocorticolimbic glutamatergic pathway. J. Neurosci., 2011, 31(23), 8476-8490.
[http://dx.doi.org/10.1523/JNEUROSCI.1598-11.2011]
[39]
Engert, V; Pruessner, JC Dopaminergic and noradrenergic contributions to functionality in ADHD: The role of methylphenidate. Curr. Neuropharmacol., 2008, 6(4), 322-328.
[http://dx.doi.org/10.2174/157015908787386069]
[40]
Puig, M.V.; Rose, J.; Schmidt, R.; Freund, N. Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Front. Neural Circuits, 2014, 8, 93.
[http://dx.doi.org/10.3389/fncir.2014.00093] [PMID: 25140130]
[41]
Reynolds, L.M.; Flores, C. Mesocorticolimbic dopamine pathways across adolescence: Diversity in development. Front. Neural Circuits, 2021, 15, 735625.
[http://dx.doi.org/10.3389/fncir.2021.735625] [PMID: 34566584]
[42]
Balleine, BW; Delgado, MR; Hikosaka, O The role of the dorsal striatum in reward and decision-making. J. Neurosci., 2007, 27(31), 8161-8165.
[http://dx.doi.org/10.1523/JNEUROSCI.1554-07.2007]
[43]
Malenka, R.C.; Nestler, E.J. Chapter 10: Neural and neuroendocrine control of the internal milieu. In: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience; McGraw-Hill: New York, 2009.
[44]
Montalvo, I.; Gutiérrez-Zotes, A.; Creus, M.; Monseny, R.; Ortega, L.; Franch, J.; Lawrie, S.M.; Reynolds, R.M.; Vilella, E.; Labad, J. Increased prolactin levels are associated with impaired processing speed in subjects with early psychosis. PLoS One, 2014, 9(2), e89428.
[http://dx.doi.org/10.1371/journal.pone.0089428] [PMID: 24586772]
[45]
Garcia-Rizo, C.; Fernandez-Egea, E.; Oliveira, C.; Justicia, A.; Parellada, E.; Bernardo, M.; Kirkpatrick, B. Prolactin concentrations in newly diagnosed, antipsychotic-naïve patients with nonaffective psychosis. Schizophr. Res., 2012, 134(1), 16-19.
[http://dx.doi.org/10.1016/j.schres.2011.07.025] [PMID: 21831600]
[46]
Riecher-Rössler, A.; Rybakowski, J.K.; Pflueger, M.O.; Beyrau, R.; Kahn, R.S.; Malik, P.; Fleischhacker, W.W. Hyperprolactinemia in antipsychotic-naive patients with first-episode psychosis. Psychol. Med., 2013, 43(12), 2571-2582.
[http://dx.doi.org/10.1017/S0033291713000226] [PMID: 23590895]
[47]
Lennartsson, A.K.; Jonsdottir, I.H. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology, 2011, 36(10), 1530-1539.
[http://dx.doi.org/10.1016/j.psyneuen.2011.04.007] [PMID: 21621331]
[48]
Volkow, ND; Wang, GJ; Kollins, SH; Wigal, TL; Newcorn, JH; Telang, F; Fowler, JS; Zhu, W; Logan, J; Ma, Y; Pradhan, K; Wong, C; Swanson, JM Evaluating dopamine reward pathway in ADHD: Clinical implications. JAMA, 2009, 302(10), 1084-1091.
[http://dx.doi.org/10.1001/jama.2009.1308]
[49]
McCutcheon, R.A.; Krystal, J.H.; Howes, O.D. Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry, 2020, 19(1), 15-33.
[http://dx.doi.org/10.1002/wps.20693] [PMID: 31922684]
[50]
Baliki, MN; Mansour, A; Baria, AT; Huang, L; Berger, SE; Fields, HL; Apkarian, AV Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J. Neurosci., 2013, 33(41), 16383-16393.
[http://dx.doi.org/10.1523/JNEUROSCI.1731-13.2013]
[51]
Wenzel, JM; Rauscher, NA; Cheer, JF; Oleson, EB A role for phasic dopamine release within the nucleus accumbens in encoding aversion: A review of the neurochemical literature. ACS Chem. Neurosci., 2015, 6(1), 16-26.
[http://dx.doi.org/10.1021/cn500255p]
[52]
Sands, L.P.; Jiang, A.; Liebenow, B.; DiMarco, E.; Laxton, A.W.; Tatter, S.B.; Montague, P.R.; Kishida, K.T. Subsecond fluctuations in extracellular dopamine encode reward and punishment prediction errors in humans. Sci. Adv., 2023, 9(48), eadi4927.
[http://dx.doi.org/10.1126/sciadv.adi4927] [PMID: 38039368]
[53]
Puglisi-Allegra, S.; Ventura, R. Prefrontal/accumbal catecholamine system processes high motivational salience. Front. Behav. Neurosci., 2012, 6, 31.
[http://dx.doi.org/10.3389/fnbeh.2012.00031] [PMID: 22754514]
[54]
Zakzanis, K.K.; Hansen, K.T. Dopamine D2 densities and the schizophrenic brain. Schizophr. Res., 1998, 32(3), 201-206.
[http://dx.doi.org/10.1016/S0920-9964(98)00041-3] [PMID: 9720125]
[55]
Widerlöv, E. A critical appraisal of CSF monoamine metabolite studies in schizophrenia. Ann. N. Y. Acad. Sci., 1988, 537(1), 309-323.
[http://dx.doi.org/10.1111/j.1749-6632.1988.tb42115.x] [PMID: 2462396]
[56]
Wong, D.F.; Wagner, H.N., Jr; Tune, L.E.; Dannals, R.F.; Pearlson, G.D.; Links, J.M.; Tamminga, C.A.; Broussolle, E.P.; Ravert, H.T.; Wilson, A.A.; Toung, J.K.T.; Malat, J.; Williams, J.A.; O’Tuama, L.A.; Snyder, S.H.; Kuhar, M.J.; Gjedde, A. Positron emission tomography reveals elevated D2 dopamine receptors in drug- naive schizophrenics. Science, 1986, 234(4783), 1558-1563.
[http://dx.doi.org/10.1126/science.2878495] [PMID: 2878495]
[57]
Meisenzahl, E.M.; Schmitt, G.J.; Scheuerecker, J.; Möller, H.J. The role of dopamine for the pathophysiology of schizophrenia. Int. Rev. Psychiatry, 2007, 19(4), 337-345.
[http://dx.doi.org/10.1080/09540260701502468] [PMID: 17671867]
[58]
Reith, J.; Benkelfat, C.; Sherwin, A.; Yasuhara, Y.; Kuwabara, H.; Andermann, F.; Bachneff, S.; Cumming, P.; Diksic, M.; Dyve, S.E.; Etienne, P.; Evans, A.C.; Lal, S.; Shevell, M.; Savard, G.; Wong, D.F.; Chouinard, G.; Gjedde, A. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl. Acad. Sci., 1994, 91(24), 11651-11654.
[http://dx.doi.org/10.1073/pnas.91.24.11651] [PMID: 7972118]
[59]
Howes, O.D.; Bose, S.K.; Turkheimer, F.; Valli, I.; Egerton, A.; Valmaggia, L.R.; Murray, R.M.; McGuire, P. Dopamine synthesis capacity before onset of psychosis: A prospective [18F]-DOPA PET imaging study. Am. J. Psychiatry, 2011, 168(12), 1311-1317.
[http://dx.doi.org/10.1176/appi.ajp.2011.11010160] [PMID: 21768612]
[60]
Abi-Dargham, A.; Rodenhiser, J.; Printz, D.; Zea-Ponce, Y.; Gil, R.; Kegeles, L.S.; Weiss, R.; Cooper, T.B.; Mann, J.J.; Van Heertum, R.L.; Gorman, J.M.; Laruelle, M. Increased baseline occupancy of D 2 receptors by dopamine in schizophrenia. Proc. Natl. Acad. Sci., 2000, 97(14), 8104-8109.
[http://dx.doi.org/10.1073/pnas.97.14.8104] [PMID: 10884434]
[61]
Meyer-Lindenberg, A.; Miletich, R.S.; Kohn, P.D.; Esposito, G.; Carson, R.E.; Quarantelli, M.; Weinberger, D.R.; Berman, K.F. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat. Neurosci., 2002, 5(3), 267-271.
[http://dx.doi.org/10.1038/nn804] [PMID: 11865311]
[62]
Knable, M.B.; Weinberger, D.R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol., 1997, 11(2), 123-131.
[http://dx.doi.org/10.1177/026988119701100205] [PMID: 9208376]
[63]
Karreman, M.; Moghaddam, B. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: An effect mediated by ventral tegmental area. J. Neurochem., 1996, 66(2), 589-598.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66020589.x] [PMID: 8592128]
[64]
Slifstein, M.; van de Giessen, E.; Van Snellenberg, J.; Thompson, J.L.; Narendran, R.; Gil, R.; Hackett, E.; Girgis, R.; Ojeil, N.; Moore, H.; D’Souza, D.; Malison, R.T.; Huang, Y.; Lim, K.; Nabulsi, N.; Carson, R.E.; Lieberman, J.A.; Abi-Dargham, A. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry, 2015, 72(4), 316-324.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.2414] [PMID: 25651194]
[65]
Abi-Dargham, A.; Gil, R.; Krystal, J.; Baldwin, R.M.; Seibyl, J.P.; Bowers, M.; van Dyck, C.H.; Charney, D.S.; Innis, R.B.; Laruelle, M. Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. Am. J. Psychiatry, 1998, 155(6), 761-767.
[PMID: 9619147]
[66]
Egerton, A.; Chaddock, C.A.; Winton-Brown, T.T.; Bloomfield, M.A.P.; Bhattacharyya, S.; Allen, P.; McGuire, P.K.; Howes, O.D. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: Findings in a second cohort. Biol. Psychiatry, 2013, 74(2), 106-112.
[http://dx.doi.org/10.1016/j.biopsych.2012.11.017] [PMID: 23312565]
[67]
Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: Overview and treatment options. P&T, 2014, 39(9), 638-645.
[PMID: 25210417]
[68]
Sekiguchi, H.; Pavey, G.; Dean, B. Altered levels of dopamine transporter in the frontal pole and dorsal striatum in schizophrenia. NPJ Schizophr., 2019, 5(1), 20.
[http://dx.doi.org/10.1038/s41537-019-0087-7]
[69]
Contreras, F.; Fouillioux, C.; Bolívar, A.; Simonovis, N.; Hernández-Hernández, R.; Armas-Hernandez, M.J.; Velasco, M. Dopamine, hypertension and obesity. J. Hum. Hypertens., 2002, 16(S1), S13-S17.
[http://dx.doi.org/10.1038/sj.jhh.1001334] [PMID: 11986886]
[70]
Murphy, M.B. Dopamine: A role in the pathogenesis and treatment of hypertension. J. Hum. Hypertens., 2000, 14(S1), S47-S50.
[http://dx.doi.org/10.1038/sj.jhh.1000987] [PMID: 10854081]
[71]
Hurley, MJ; Jenner, P What has been learnt from study of dopamine receptors in Parkinson's disease? Pharmacol. Ther., 2006, 111(3), 715-728.
[http://dx.doi.org/10.1016/j.pharmthera.2005.12.001]
[72]
Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for parkinson’s disease. J. Exp. Neurosci., 2018, 12
[http://dx.doi.org/10.1177/1179069518779829] [PMID: 29899667]
[73]
Vekshina, NL; Anokhin, PK; Veretinskaya, AG; Shamakina, IY Heterodimeric D1-D2 dopamine receptors: A review. Biomed. Khim., 2017, 63(1), 5-12.
[74]
Yin, John; Barr, Alasdair; Ramos-Miguel, Alfredo; Procyshyn, Ric Antipsychotic induced dopamine supersensitivity psychosis: A comprehensive review. Curr. Neuropharmacol., 2016, 15(1), 174-183.
[http://dx.doi.org/10.2174/1570159X14666160606093602]
[75]
Seeman, P. Schizophrenia and dopamine receptors. Eur. Neuropsychopharmacol., 2013, 23(9), 999-1009.
[http://dx.doi.org/10.1016/j.euroneuro.2013.06.005] [PMID: 23860356]
[76]
Seeman, P. Are dopamine D2 receptors out of control in psychosis? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46(46), 146-152.
[http://dx.doi.org/10.1016/j.pnpbp.2013.07.006] [PMID: 23880595]
[77]
Seeman, P.; Schwarz, J.; Chen, J.F.; Szechtman, H.; Perreault, M.; McKnight, G.S.; Roder, J.C.; Quirion, R.; Boksa, P.; Srivastava, L.K.; Yanai, K.; Weinshenker, D.; Sumiyoshi, T. Psychosis pathways converge via D2High dopamine receptors. Synapse, 2006, 60(4), 319-346.
[http://dx.doi.org/10.1002/syn.20303] [PMID: 16786561]
[78]
Silvestri, S.; Seeman, M.V.; Negrete, J.C.; Houle, S.; Shammi, C.M.; Remington, G.J.; Kapur, S.; Zipursky, R.B.; Wilson, A.A.; Christensen, B.K.; Seeman, P. Increased dopamine D 2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology, 2000, 152(2), 174-180.
[http://dx.doi.org/10.1007/s002130000532] [PMID: 11057521]
[79]
Seeman, P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin. Schizophr. Relat. Psychoses, 2010, 4(1), 56-73.
[http://dx.doi.org/10.3371/CSRP.4.1.5] [PMID: 20643630]
[80]
Nakata, Y; Kanahara, N; Iyo, M. Dopamine supersensitivity psychosis in schizophrenia: Concepts and implications in clinical practice. J. Psychopharmacol., 2017, 31(12), 1511-1518.
[http://dx.doi.org/10.1177/0269881117728428]
[81]
Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.G.; Steiner, J.; Bogerts, B.; Braun, A.K.; Jankowski, Z.; Kumaritlake, J.; Henneberg, M.; Gos, T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front. Psychiatry, 2014, 5, 47.
[http://dx.doi.org/10.3389/fpsyt.2014.00047] [PMID: 24904434]
[82]
Samaha, A.N.; Seeman, P.; Stewart, J.; Rajabi, H.; Kapur, S. “Breakthrough” dopamine supersensitivity during ongoing antipsychotic treatment leads to treatment failure over time. J. Neurosci., 2007, 27(11), 2979-2986.
[http://dx.doi.org/10.1523/JNEUROSCI.5416-06.2007] [PMID: 17360921]
[83]
Lieberman, J.; Jody, D.; Geisler, S.; Alvir, J.; Loebel, A.; Szymanski, S.; Woerner, M.; Borenstein, M. Time course and biologic correlates of treatment response in first-episode schizophrenia. Arch. Gen. Psychiatry, 1993, 50(5), 369-376.
[http://dx.doi.org/10.1001/archpsyc.1993.01820170047006] [PMID: 8098203]
[84]
Davis, J.M.; Schaffer, C.B.; Killian, G.A.; Kinard, C.; Chan, C. Important issues in the drug treatment of schizophrenia. Schizophr. Bull., 1980, 6(1), 70-87.
[http://dx.doi.org/10.1093/schbul/6.1.70] [PMID: 6102795]
[85]
Lieberman, J.A. Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia. J. Clin. Psychiatry, 1999, 60(Suppl. 12), 9-12.
[PMID: 10372603]
[86]
Meltzer, H.Y. Defining treatment refractoriness in schizophrenia. Schizophr. Bull., 1990, 16(4), 563-565.
[http://dx.doi.org/10.1093/schbul/16.4.563] [PMID: 2077634]
[87]
Antipsychotic Agents & Lithium. In: Katzung & Trevor’s Pharmacology: Examination & Board Review, 12th ed; Katzung, B.G.; Kruidering-Hall, M.; Trevor, A.J., Eds.;
[88]
Antonini, A.; Leenders, K.L.; Reist, H.; Thomann, R.; Beer, H.F.; Locher, J. Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and 11C-raclopride. Arch. Neurol., 1993, 50(5), 474-480.
[http://dx.doi.org/10.1001/archneur.1993.00540050026010] [PMID: 8489403]
[89]
Antonini, A.; Leenders, K.L. Dopamine D2 receptors in normal human brain: Effect of age measured by positron emission tomography (PET) and [11C]-raclopride. Ann. N. Y. Acad. Sci., 1993, 695(1), 81-85.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23033.x] [PMID: 8239318]
[90]
Pruessner, J.C.; Champagne, F.; Meaney, M.J.; Dagher, A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride. J. Neurosci., 2004, 24(11), 2825-2831.
[http://dx.doi.org/10.1523/JNEUROSCI.3422-03.2004] [PMID: 15028776]
[91]
Baik, J.H. Stress and the dopaminergic reward system. Exp. Mol. Med., 2020, 52(12), 1879-1890.
[http://dx.doi.org/10.1038/s12276-020-00532-4] [PMID: 33257725]
[92]
Dohrenwend, B.P.; Shrout, P.E.; Link, B.G.; Skodol, A.E.; Stueve, A. Does Stress Cause Psychiatric illness?; Mazure, C.M., Ed.; American Psychiatric Press: Washington, DC, 1995, pp. 43-65.
[93]
Quessy, F.; Bittar, T.; Blanchette, L.J.; Lévesque, M.; Labonté, B. Stress-induced alterations of mesocortical and mesolimbic dopaminergic pathways. Sci. Rep., 2021, 11(1), 11000.
[http://dx.doi.org/10.1038/s41598-021-90521-y] [PMID: 34040100]
[94]
Arnsten, A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci., 2009, 10(6), 410-422.
[http://dx.doi.org/10.1038/nrn2648] [PMID: 19455173]
[95]
Lan, Y.L.; Li, S.; Lou, J.C.; Ma, X.C.; Zhang, B. The potential roles of dopamine in traumatic brain injury: A preclinical and clinical update. Am. J. Transl. Res., 2019, 11(5), 2616-2631.
[PMID: 31217842]
[96]
Santos, M.S.; Moreno, A.J.; Carvalho, A.P. Relationships between ATP depletion, membrane potential, and the release of neurotransmitters in rat nerve terminals. An in vitro study under conditions that mimic anoxia, hypoglycemia, and ischemia. Stroke, 1996, 27(5), 941-950.
[http://dx.doi.org/10.1161/01.STR.27.5.941] [PMID: 8623117]
[97]
McAllister, T.W. Traumatic brain injury and psychosis: What is the connection? Semin. Clin. Neuropsychiatry, 1998, 3(3), 211-223.
[PMID: 10085209]
[98]
Bryant, R. Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin. Neurosci., 2011, 13(3), 251-262.
[http://dx.doi.org/10.31887/DCNS.2011.13.2/rbryant] [PMID: 22034252]
[99]
Giersch, A.; Lalanne, L.; Assche, M.; Elliott, M.A. On disturbed time continuity in schizophrenia: An elementary impairment in visual perception? Front. Psychol., 2013, 4, 281.
[http://dx.doi.org/10.3389/fpsyg.2013.00281] [PMID: 23755027]
[100]
Ueda, N.; Maruo, K.; Sumiyoshi, T. Positive symptoms and time perception in schizophrenia: A meta-analysis. Schizophr. Res. Cogn., 2018, 13, 3-6.
[http://dx.doi.org/10.1016/j.scog.2018.07.002] [PMID: 30105211]
[101]
Stevenson, R.A.; Park, S.; Cochran, C.; McIntosh, L.G.; Noel, J.P.; Barense, M.D.; Ferber, S.; Wallace, M.T. The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophr. Res., 2017, 179, 97-103.
[http://dx.doi.org/10.1016/j.schres.2016.09.035] [PMID: 27746052]
[102]
Dommett, E.J.; Overton, P.G.; Greenfield, S.A. Drug therapies for attentional disorders alter the signal-to-noise ratio in the superior colliculus. Neuroscience, 2009, 164(3), 1369-1376.
[http://dx.doi.org/10.1016/j.neuroscience.2009.09.007] [PMID: 19747530]
[103]
Amadeo, M.B.; Esposito, D.; Escelsior, A.; Campus, C.; Inuggi, A.; Pereira Da Silva, B.; Serafini, G.; Amore, M.; Gori, M. Time in schizophrenia: A link between psychopathology, psychophysics and technology. Transl. Psychiatry, 2022, 12(1), 331.
[http://dx.doi.org/10.1038/s41398-022-02101-x] [PMID: 35961974]
[104]
Vander Weele, C.M.; Siciliano, C.A.; Matthews, G.A.; Namburi, P.; Izadmehr, E.M.; Espinel, I.C.; Nieh, E.H.; Schut, E.H.S.; Padilla-Coreano, N.; Burgos-Robles, A.; Chang, C.J.; Kimchi, E.Y.; Beyeler, A.; Wichmann, R.; Wildes, C.P.; Tye, K.M. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature, 2018, 563(7731), 397-401.
[http://dx.doi.org/10.1038/s41586-018-0682-1] [PMID: 30405240]
[105]
Bleich, A.; Brown, S.L.; Kahn, R.; van Praag, H.M. The role of serotonin in schizophrenia. Schizophr. Bull., 1988, 14(2), 297-315.
[http://dx.doi.org/10.1093/schbul/14.2.297] [PMID: 3059473]
[106]
Kapur, S.; Remington, G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am. J. Psychiatry, 1996, 153(4), 466-476.
[http://dx.doi.org/10.1176/ajp.153.4.466] [PMID: 8599393]
[107]
Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors : Their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(7), 1159-1172.
[http://dx.doi.org/10.1016/j.pnpbp.2003.09.010] [PMID: 14642974]
[108]
De Deurwaerdère, P.; Chagraoui, A.; Di Giovanni, G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. Prog. Brain Res., 2021, 261, 161-264.
[http://dx.doi.org/10.1016/bs.pbr.2021.02.001] [PMID: 33785130]
[109]
Zhang, M-D.; Mao, Y-M. Augmentation with antidepressants in schizophrenia treatment: benefit or risk. Neuropsychiatr. Dis. Treat., 2015, 11, 701-713.
[http://dx.doi.org/10.2147/NDT.S62266] [PMID: 25834445]
[110]
Buoli, M.; Serati, M.; Ciappolino, V.; Altamura, A.C. May selective serotonin reuptake inhibitors (SSRIs) provide some benefit for the treatment of schizophrenia? Expert Opin. Pharmacother., 2016, 17(10), 1375-1385.
[http://dx.doi.org/10.1080/14656566.2016.1186646] [PMID: 27148641]
[111]
Sansone, R.A.; Sansone, L.A. SSRI-induced indifference. Psychiatry, 2010, 7(10), 14-18.
[PMID: 21103140]
[112]
Ma, H.; Cai, M.; Wang, H. Emotional blunting in patients with major depressive disorder: A brief non-systematic review of current research. Front. Psychiatry, 2021, 12, 792960.
[http://dx.doi.org/10.3389/fpsyt.2021.792960] [PMID: 34970173]
[113]
Muscatello, M.R.A.; Zoccali, R.A.; Pandolfo, G.; Mangano, P.; Lorusso, S.; Cedro, C.; Battaglia, F.; Spina, E.; Bruno, A. Duloxetine in psychiatric disorders: Expansions beyond major depression and generalized anxiety disorder. Front. Psychiatry, 2019, 10, 772.
[http://dx.doi.org/10.3389/fpsyt.2019.00772] [PMID: 31749717]
[114]
Iancu, I.; Tschernihovsky, E.; Bodner, E.; Piconne, A.S.; Lowengrub, K. Escitalopram in the treatment of negative symptoms in patients with chronic schizophrenia: A randomized double-blind placebo-controlled trial. Psychiatry Res., 2010, 179(1), 19-23.
[http://dx.doi.org/10.1016/j.psychres.2010.04.035] [PMID: 20472299]
[115]
Thakore, J.H.; Berti, C.; Dinan, T.G. An open trial of adjunctive sertraline in the treatment of chronic schizophrenia. Acta Psychiatr. Scand., 1996, 94(3), 194-197.
[http://dx.doi.org/10.1111/j.1600-0447.1996.tb09848.x] [PMID: 8891087]
[116]
Lewis, D.A.; Hashimoto, T.; Volk, D.W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci., 2005, 6(4), 312-324.
[http://dx.doi.org/10.1038/nrn1648] [PMID: 15803162]
[117]
de Jonge, J.C.; Vinkers, C.H.; Hulshoff Pol, H.E.; Marsman, A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and in vivo Studies. Front. Psychiatry, 2017, 8, 118.
[http://dx.doi.org/10.3389/fpsyt.2017.00118] [PMID: 28848455]
[118]
Orhan, F.; Fatouros-Bergman, H.; Goiny, M.; Malmqvist, A.; Piehl, F.; Cervenka, S.; Collste, K.; Victorsson, P.; Sellgren, C.M.; Flyckt, L.; Erhardt, S.; Engberg, G. CSF GABA is reduced in first-episode psychosis and associates to symptom severity. Mol. Psychiatry, 2018, 23(5), 1244-1250.
[http://dx.doi.org/10.1038/mp.2017.25] [PMID: 28289277]
[119]
Gerner, R.H.; Hare, T.A. CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am. J. Psychiatry, 1981, 138(8), 1098-1101.
[http://dx.doi.org/10.1176/ajp.138.8.1098] [PMID: 7258390]
[120]
Gerner, R.H.; Fairbanks, L.; Anderson, G.M.; Young, J.G.; Scheinin, M.; Linnoila, M.; Hare, T.A.; Shaywitz, B.A.; Cohen, D.J. CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am. J. Psychiatry, 1984, 141(12), 1533-1540.
[http://dx.doi.org/10.1176/ajp.141.12.1533] [PMID: 6209989]
[121]
Garbutt, J.C.; van Kammen, D.P. The interaction between GABA and dopamine: Implications for schizophrenia. Schizophr. Bull., 1983, 9(3), 336-353.
[http://dx.doi.org/10.1093/schbul/9.3.336] [PMID: 6137869]
[122]
Van Kammen, D.P. Gamma-Aminobutyric acid (Gaba) and the dopamine hypothesis of schizophrenia. Am. J. Psychiatry, 1977, 134(2), 138-143.
[http://dx.doi.org/10.1176/ajp.134.2.138] [PMID: 835733]
[123]
Goto, N.; Yoshimura, R.; Moriya, J.; Kakeda, S.; Ueda, N.; Ikenouchi-Sugita, A.; Umene-Nakano, W.; Hayashi, K.; Oonari, N.; Korogi, Y.; Nakamura, J. Reduction of brain γ-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophr. Res., 2009, 112(1-3), 192-193.
[http://dx.doi.org/10.1016/j.schres.2009.04.026] [PMID: 19464152]
[124]
Mao, X.; Mao, X.; Stanford, A.D.; Girgis, R.; Ojeil, N.; Xu, X.; Gil, R.; Slifstein, M.; Abi-Dargham, A.; Lisanby, S.H.; Shungu, D.C. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2012, 69(5), 449-459.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.1519] [PMID: 22213769]
[125]
Rowland, L.M.; Kontson, K.; West, J.; Edden, R.A.; Zhu, H.; Wijtenburg, S.A.; Holcomb, H.H.; Barker, P.B. in vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr. Bull., 2013, 39(5), 1096-1104.
[http://dx.doi.org/10.1093/schbul/sbs092] [PMID: 23081992]
[126]
Rowland, L.M.; Krause, B.W.; Wijtenburg, S.A.; McMahon, R.P.; Chiappelli, J.; Nugent, K.L.; Nisonger, S.J.; Korenic, S.A.; Kochunov, P.; Hong, L.E. Medial frontal GABA is lower in older schizophrenia: A MEGA-PRESS with macromolecule suppression study. Mol. Psychiatry, 2016, 21(2), 198-204.
[http://dx.doi.org/10.1038/mp.2015.34] [PMID: 25824298]
[127]
Marenco, S.; Meyer, C.; Kuo, S.; van der Veen, J.W.; Shen, J.; DeJong, K.; Barnett, A.S.; Apud, J.A.; Dickinson, D.; Weinberger, D.R.; Berman, K.F. Prefrontal GABA levels measured with magnetic resonance spectroscopy in patients with psychosis and unaffected siblings. Am. J. Psychiatry, 2016, 173(5), 527-534.
[http://dx.doi.org/10.1176/appi.ajp.2015.15020190] [PMID: 26806873]
[128]
de la Fuente-Sandoval, C.; Reyes-Madrigal, F.; Mao, X.; León-Ortiz, P.; Rodríguez-Mayoral, O.; Jung-Cook, H.; Solís-Vivanco, R.; Graff-Guerrero, A.; Shungu, D.C. Prefrontal and striatal gamma-aminobutyric acid levels and the effect of antipsychotic treatment in first-episode psychosis patients. Biol. Psychiatry, 2018, 83(6), 475-483.
[http://dx.doi.org/10.1016/j.biopsych.2017.09.028] [PMID: 29132653]
[129]
Murphy, S.E.; Downham, C.; Cowen, P.J.; Harmer, C.J. Direct effects of diazepam on emotional processing in healthy volunteers. Psychopharmacology, 2008, 199(4), 503-513.
[http://dx.doi.org/10.1007/s00213-008-1082-2] [PMID: 18581100]
[130]
Wassef, A.A.; Dott, S.G.; Harris, A.; Brown, A.; O’Boyle, M.; Meyer, W.J., III; Rose, R.M. Critical review of GABA-ergic drugs in the treatment of schizophrenia. J. Clin. Psychopharmacol., 1999, 19(3), 222-232.
[http://dx.doi.org/10.1097/00004714-199906000-00004] [PMID: 10350028]
[131]
Tayoshi, S.Y.; Nakataki, M.; Sumitani, S.; Taniguchi, K.; Shibuya-Tayoshi, S.; Numata, S.; Iga, J.; Ueno, S.; Harada, M.; Ohmori, T. GABA concentration in schizophrenia patients and the effects of antipsychotic medication: A proton magnetic resonance spectroscopy study. Schizophr. Res., 2010, 117(1), 83-91.
[http://dx.doi.org/10.1016/j.schres.2009.11.011] [PMID: 20022731]
[132]
Gaillard, R; Ouanas, A; Spadone, C; Llorca, PM; Lôo, H; Baylé, FJ Benzodiazepines and schizophrenia, A review of the literature. Encephale, 2006, 32(6 Pt 1), 1003-1010.
[http://dx.doi.org/10.1016/S0013-7006(06)76280-7]
[133]
Szarmach, J.; Włodarczyk, A.; Cubała, W.J.; Wiglusz, M.S. Benzodiazepines as adjunctive therapy in treatment refractory symptoms of schizophrenia. Psychiatr. Danub., 2017, 29(Suppl. 3), 349-352.
[PMID: 28953789]
[134]
Włodarczyk, A.; Szarmach, J.; Cubała, W.J.; Wiglusz, M.S. Benzodiazepines in combination with antipsychotic drugs for schizophrenia: GABA-ergic targeted therapy. Psychiatr. Danub., 2017, 29(Suppl. 3), 345-348.
[PMID: 28953788]
[135]
Kegeles, L.S. Brain GABA function and psychosis. Am. J. Psychiatry, 2016, 173(5), 448-449.
[http://dx.doi.org/10.1176/appi.ajp.2016.16020165] [PMID: 27133403]
[136]
de la Fuente-Sandoval, C.; Reyes-Madrigal, F.; Mao, X.; León-Ortiz, P.; Rodríguez-Mayoral, O.; Solís-Vivanco, R.; Favila, R.; Graff-Guerrero, A.; Shungu, D.C. Cortico-striatal GABAergic and glutamatergic dysregulations in subjects at ultra-high risk for psychosis investigated with proton magnetic resonance spectroscopy. Int. J. Neuropsychopharmacol., 2016, 19(3), pyv105.
[http://dx.doi.org/10.1093/ijnp/pyv105] [PMID: 26364273]
[137]
Yang, A.; Tsai, S.J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci., 2017, 18(8), 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]
[138]
Mechri, A; Saoud, M; Khiari, G; d'Amato, T; Dalery, J; Gaha, L Glutaminergic hypothesis of schizophrenia: Clinical research studies with ketamine. Encephale, 2001, 27(1), 53-59.
[139]
Javitt, D.C. Glutamate and schizophrenia: Phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol., 2007, 78, 69-108.
[http://dx.doi.org/10.1016/S0074-7742(06)78003-5] [PMID: 17349858]
[140]
Panov, G. Dissociative model in patients with resistant schizophrenia. Front. Psychiatry, 2022, 13, 845493.
[http://dx.doi.org/10.3389/fpsyt.2022.845493] [PMID: 35242066]
[141]
Meltzer, H.Y. Clinical studies on the mechanism of action of clozapine: The dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology, 1989, 99(S1), S18-S27.
[http://dx.doi.org/10.1007/BF00442554] [PMID: 2682729]
[142]
Sagud, M; Breznoscakova, D; Celofiga, A; Chihai, J; Chkonia, E; Ristic Ignjatovic, D; Injac Stevovic, L; Kopecek, M; Kurvits, K; Kuzo, N; Lazáry, J; Mazaliauskienė, R; Mladina Perisa, D; Novotni, A; Panov, G; Pikirenia, U; Rădulescu, FȘ; Sukiasyan, SG; Taube, M; Tomori, S; Wilkowska, A; De Las Cuevas, C; Sanz, EJ; de Leon, J An expert review of clozapine in eastern european countries: Use, regulations and pharmacovigilance. Schizophr Res., 2023, 30, 00312.
[http://dx.doi.org/10.1016/j.schres.2023.09.002]
[143]
Zhou, Y.; Danbolt, N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm., 2014, 121(8), 799-817.
[http://dx.doi.org/10.1007/s00702-014-1180-8] [PMID: 24578174]
[144]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[145]
Lutkenhoff, E.S.; van Erp, T.G.; Thomas, M.A.; Therman, S.; Manninen, M.; Huttunen, M.O.; Kaprio, J.; Lönnqvist, J.; O’Neill, J.; Cannon, T.D. Proton MRS in twin pairs discordant for schizophrenia. Mol. Psychiatry, 2010, 15(3), 308-318.
[http://dx.doi.org/10.1038/mp.2008.87] [PMID: 18645571]
[146]
Tebartz van Elst, L.; Valerius, G.; Büchert, M.; Thiel, T.; Rüsch, N.; Bubl, E.; Hennig, J.; Ebert, D.; Olbrich, H.M. Increased prefrontal and hippocampal glutamate concentration in schizophrenia: Evidence from a magnetic resonance spectroscopy study. Biol. Psychiatry, 2005, 58(9), 724-730.
[http://dx.doi.org/10.1016/j.biopsych.2005.04.041] [PMID: 16018980]
[147]
Reid, M.A.; Salibi, N.; White, D.M.; Gawne, T.J.; Denney, T.S.; Lahti, A.C. 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia. Schizophr. Bull., 2019, 45(1), 180-189.
[http://dx.doi.org/10.1093/schbul/sbx190] [PMID: 29385594]
[148]
Jan Wang, AM; Pradhan, S; Coughlin, JM; Trivedi, A; DuBois, SL; Crawford, JL; Sedlak, TW; Nucifora, FC, Jr; Nestadt, G; Nucifora, LG; Schretlen, DJ; Sawa, A; Barker, PB Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychia., 2019, 76(3), 314-323.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.3637]
[149]
Kumar, J.; Liddle, E.B.; Fernandes, C.C.; Palaniyappan, L.; Hall, E.L.; Robson, S.E.; Simmonite, M.; Fiesal, J.; Katshu, M.Z.; Qureshi, A.; Skelton, M.; Christodoulou, N.G.; Brookes, M.J.; Morris, P.G.; Liddle, P.F. Glutathione and glutamate in schizophrenia: A 7T MRS study. Mol. Psychiatry, 2020, 25(4), 873-882.
[http://dx.doi.org/10.1038/s41380-018-0104-7] [PMID: 29934548]
[150]
Wijtenburg, S.A.; Wang, M.; Korenic, S.A.; Chen, S.; Barker, P.B.; Rowland, L.M. Metabolite alterations in adults with schizophrenia, first degree relatives, and healthy controls: A multi-region 7T MRS study. Front. Psychiatry, 2021, 12, 656459.
[http://dx.doi.org/10.3389/fpsyt.2021.656459] [PMID: 34093272]
[151]
Swanton, T. The dopamine, glutamate, and GABA hypotheses of schizophrenia: Glutamate may be the key. ANU Undergra. Res. J., 2020, 10(1), 88-96.
[152]
Turko, P.; Groberman, K.; Browa, F.; Cobb, S.; Vida, I. Differential dependence of GABAergic and glutamatergic neurons on glia for the establishment of synaptic transmission. Cereb. Cortex, 2019, 29(3), 1230-1243.
[http://dx.doi.org/10.1093/cercor/bhy029] [PMID: 29425353]
[153]
Hampe, C.S.; Mitoma, H.; Manto, M. GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets; InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.70958]
[154]
Ottersen, O.P.; Zhang, N.; Walberg, F. Metabolic compartmentation of glutamate and glutamine: Morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience, 1992, 46(3), 519-534.
[http://dx.doi.org/10.1016/0306-4522(92)90141-N] [PMID: 1347649]
[155]
Al-Diwani, A.A.J.; Pollak, T.A.; Irani, S.R.; Lennox, B.R. Psychosis: An autoimmune disease? Immunology, 2017, 152(3), 388-401.
[http://dx.doi.org/10.1111/imm.12795] [PMID: 28704576]
[156]
Mané-Damas, M.; Hoffmann, C.; Zong, S.; Tan, A.; Molenaar, P.C.; Losen, M.; Martinez-Martinez, P. Autoimmunity in psychotic disorders. Where we stand, challenges and opportunities. Autoimmun. Rev., 2019, 18(9), 102348.
[http://dx.doi.org/10.1016/j.autrev.2019.102348] [PMID: 31323365]
[157]
Feng, Y.; Lu, Y. Immunomodulatory effects of dopamine in inflammatory diseases. Front. Immunol., 2021, 12, 663102.
[http://dx.doi.org/10.3389/fimmu.2021.663102] [PMID: 33897712]
[158]
Dietz, A.G.; Goldman, S.A.; Nedergaard, M. Glial cells in schizophrenia: A unified hypothesis. Lancet Psychiatry, 2020, 7(3), 272-281.
[http://dx.doi.org/10.1016/S2215-0366(19)30302-5] [PMID: 31704113]
[159]
Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; Bousman, C.A.; Brouwer, R.M.; Bruggemann, J.; Bustillo, J.; Cahn, W.; Calhoun, V.; Cannon, D.; Carr, V.; Catts, S.; Chen, J.; Chen, J.; Chen, X.; Chiapponi, C.; Cho, K.K.; Ciullo, V.; Corvin, A.S.; Crespo-Facorro, B.; Cropley, V.; De Rossi, P.; Diaz-Caneja, C.M.; Dickie, E.W.; Ehrlich, S.; Fan, F.; Faskowitz, J.; Fatouros-Bergman, H.; Flyckt, L.; Ford, J.M.; Fouche, J-P.; Fukunaga, M.; Gill, M.; Glahn, D.C.; Gollub, R.; Goudzwaard, E.D.; Guo, H.; Gur, R.E.; Gur, R.C.; Gurholt, T.P.; Hashimoto, R.; Hatton, S.N.; Henskens, F.A.; Hibar, D.P.; Hickie, I.B.; Hong, L.E.; Horacek, J.; Howells, F.M.; Hulshoff Pol, H.E.; Hyde, C.L.; Isaev, D.; Jablensky, A.; Jansen, P.R.; Janssen, J.; Jönsson, E.G ; Jung, L.A.; Kahn, R.S.; Kikinis, Z.; Liu, K.; Klauser, P.; Knöchel, C.; Kubicki, M.; Lagopoulos, J.; Langen, C.; Lawrie, S.; Lenroot, R.K.; Lim, K.O.; Lopez-Jaramillo, C.; Lyall, A.; Magnotta, V.; Mandl, R.C.W.; Mathalon, D.H.; McCarley, R.W.; McCarthy-Jones, S.; McDonald, C.; McEwen, S.; McIntosh, A.; Melicher, T.; Mesholam-Gately, R.I.; Michie, P.T.; Mowry, B.; Mueller, B.A.; Newell, D.T.; O’Donnell, P.; Oertel-Knöchel, V.; Oestreich, L.; Paciga, S.A.; Pantelis, C.; Pasternak, O.; Pearlson, G.; Pellicano, G.R.; Pereira, A.; Pineda Zapata, J.; Piras, F.; Potkin, S.G.; Preda, A.; Rasser, P.E.; Roalf, D.R.; Roiz, R.; Roos, A.; Rotenberg, D.; Satterthwaite, T.D.; Savadjiev, P.; Schall, U.; Scott, R.J.; Seal, M.L.; Seidman, L.J.; Shannon Weickert, C.; Whelan, C.D.; Shenton, M.E.; Kwon, J.S.; Spalletta, G.; Spaniel, F.; Sprooten, E.; Stäblein, M.; Stein, D.J.; Sundram, S.; Tan, Y.; Tan, S.; Tang, S.; Temmingh, H.S.; Westlye, L.T.; Tønnesen, S.; Tordesillas-Gutierrez, D.; Doan, N.T.; Vaidya, J.; van Haren, N.E.M.; Vargas, C.D.; Vecchio, D.; Velakoulis, D.; Voineskos, A.; Voyvodic, J.Q.; Wang, Z.; Wan, P.; Wei, D.; Weickert, T.W.; Whalley, H.; White, T.; Whitford, T.J.; Wojcik, J.D.; Xiang, H.; Xie, Z.; Yamamori, H.; Yang, F.; Yao, N.; Zhang, G.; Zhao, J.; van Erp, T.G.M.; Turner, J.; Thompson, P.M.; Donohoe, G. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry, 2018, 23(5), 1261-1269.
[http://dx.doi.org/10.1038/mp.2017.170] [PMID: 29038599]
[160]
Samartzis, L.; Dima, D.; Fusar-Poli, P.; Kyriakopoulos, M. White matter alterations in early stages of schizophrenia: A systematic review of diffusion tensor imaging studies. J. Neuroimaging, 2014, 24(2), 101-110.
[http://dx.doi.org/10.1111/j.1552-6569.2012.00779.x] [PMID: 23317110]
[161]
Jiménez-González, A.; Gómez-Acevedo, C.; Ochoa-Aguilar, A.; Chavarría, A. The role of glia in addiction: Dopamine as a modulator of glial responses in addiction. Cell. Mol. Neurobiol., 2022, 42(7), 2109-2120.
[http://dx.doi.org/10.1007/s10571-021-01105-3] [PMID: 34057683]
[162]
Quincozes-Santos, A.; Bobermin, L.D.; Tonial, R.P.L.; Bambini-Junior, V.; Riesgo, R.; Gottfried, C. Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur. Arch. Psychiatry Clin. Neurosci., 2010, 260(6), 475-481.
[http://dx.doi.org/10.1007/s00406-009-0095-0] [PMID: 20041330]
[163]
Ermakov, E.A.; Melamud, M.M.; Buneva, V.N.; Ivanova, S.A. Immune system abnormalities in schizophrenia: An integrative view and translational perspectives. Front. Psychiatry, 2022, 13, 880568.
[http://dx.doi.org/10.3389/fpsyt.2022.880568] [PMID: 35546942]
[164]
Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Vodjani, A. Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox. Res., 2019, 36(2), 306-322.
[http://dx.doi.org/10.1007/s12640-019-00054-6] [PMID: 31077000]
[165]
Tanaka, M.; Toldi, J.; Vécsei, L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int. J. Mol. Sci., 2020, 21(7), 2431.
[http://dx.doi.org/10.3390/ijms21072431] [PMID: 32244523]
[166]
Maes, M.; Vojdani, A.; Sirivichayakul, S.; Barbosa, D.S.; Kanchanatawan, B. Inflammatory and oxidative pathways are new drug targets in multiple episode schizophrenia and leaky gut, klebsiella pneumoniae, and c1q immune complexes are additional drug targets in first episode schizophrenia. Mol. Neurobiol., 2021, 58(7), 3319-3334.
[http://dx.doi.org/10.1007/s12035-021-02343-8] [PMID: 33675500]
[167]
Maes, M.; Vojdani, A.; Geffard, M.; Moreira, E.G ; Barbosa, D.S.; Michelin, A.P.; Semeão, L.O.; Sirivichayakul, S.; Kanchanatawan, B. Schizophrenia phenomenology comprises a bifactorial general severity and a single-group factor, which are differently associated with neurotoxic immune and immune-regulatory pathways. Biomol. Concepts, 2019, 10(1), 209-225.
[http://dx.doi.org/10.1515/bmc-2019-0023] [PMID: 31734647]
[168]
Müller, N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr. Bull., 2018, 44(5), 973-982.
[http://dx.doi.org/10.1093/schbul/sby024] [PMID: 29648618]
[169]
Müller, N. COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front. Psychiatry, 2019, 10, 375.
[http://dx.doi.org/10.3389/fpsyt.2019.00375] [PMID: 31214060]
[170]
Panov, G.; Dyulgerova, S.; Panova, P. Cognition in patients with schizophrenia: interplay between working memory, disorganized symptoms, dissociation, and the onset and duration of psychosis, as well as resistance to treatment. Biomedicines, 2023, 11(12), 3114.
[http://dx.doi.org/10.3390/biomedicines11123114] [PMID: 38137335]
[171]
Sirivichayakul, S.; Kanchanatawan, B.; Thika, S.; Carvalho, A.F.; Maes, M. A new schizophrenia model: Immune activation is associated with the induction of different neurotoxic products which together determine memory impairments and schizophrenia symptom dimensions. CNS Neurol. Disord. Drug Targets, 2019, 18(2), 124-140.
[http://dx.doi.org/10.2174/1871527317666181119115532] [PMID: 30451122]
[172]
Vidal, P.M.; Pacheco, R. The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front. Pharmacol., 2020, 11, 394.
[http://dx.doi.org/10.3389/fphar.2020.00394] [PMID: 32296337]
[173]
Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 2015, 160(1-2), 62-73.
[http://dx.doi.org/10.1016/j.cell.2014.11.047] [PMID: 25594175]
[174]
Wehr, M.; Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 2003, 426(6965), 442-446.
[http://dx.doi.org/10.1038/nature02116] [PMID: 14647382]
[175]
Wu, G.K.; Li, P.; Tao, H.W.; Zhang, L.I. Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. Neuron, 2006, 52(4), 705-715.
[http://dx.doi.org/10.1016/j.neuron.2006.10.009] [PMID: 17114053]
[176]
Sato, T.K.; Haider, B.; Häusser, M.; Carandini, M. An excitatory basis for divisive normalization in visual cortex. Nat. Neurosci., 2016, 19(4), 568-570.
[http://dx.doi.org/10.1038/nn.4249] [PMID: 26878671]
[177]
van Vreeswijk, C.; Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 1996, 274(5293), 1724-1726.
[http://dx.doi.org/10.1126/science.274.5293.1724] [PMID: 8939866]
[178]
Carney, L.H.; Kim, D.O.; Kuwada, S. Speech coding in the midbrain: effects of sensorineural hearing loss. Adv. Exp. Med. Biol., 2016, 894, 427-435.
[http://dx.doi.org/10.1007/978-3-319-25474-6_45] [PMID: 27080684]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy