Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus

Author(s): Alsalt Al-Busaidi, Omer Alabri, Jaifar Alomairi, Ahmed ElSharaawy, Abdullah Al Lawati, Hanan Al Lawati and Srijit Das*

Volume 21, Issue 1, 2025

Published on: 17 January, 2024

Article ID: e170124225723 Pages: 21

DOI: 10.2174/0115733998281910231231051814

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual’s good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.

Keywords: Microbiota, gut, microorganisms, insulin, type 2 diabetes mellitus, gastrointestinal system.

[1]
Suzuki TA, Fitzstevens JL, Schmidt VT, et al. Codiversification of gut microbiota with humans. Science 2022; 377(6612): 1328-32.
[http://dx.doi.org/10.1126/science.abm7759] [PMID: 36108023]
[2]
Ronan V, Yeasin R, Claud EC. Childhood development and the microbiome-the intestinal Microbiota in maintenance of health and development of disease during childhood development. Gastroenterology 2021; 160(2): 495-506.
[http://dx.doi.org/10.1053/j.gastro.2020.08.065] [PMID: 33307032]
[3]
Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018; 24(1): 133-145.e5.
[http://dx.doi.org/10.1016/j.chom.2018.06.005] [PMID: 30001516]
[4]
Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut 2019; 68(6): 1108-14.
[http://dx.doi.org/10.1136/gutjnl-2018-317503] [PMID: 30670574]
[5]
Dalby MJ, Hall LJ. Recent advances in understanding the neonatal microbiome. F1000 Res 2020; 9: 422.
[http://dx.doi.org/10.12688/f1000research.22355.1] [PMID: 32518631]
[6]
Van Winckel M, De Bruyne R, Van De Velde S, Van Biervliet S. Vitamin K, an update for the paediatrician. Eur J Pediatr 2009; 168(2): 127-34.
[http://dx.doi.org/10.1007/s00431-008-0856-1] [PMID: 18982351]
[7]
Lippi G, Franchini M. Vitamin K in neonates: Facts and myths. Blood Transfus 2011; 9(1): 4-9.
[http://dx.doi.org/10.2450/2010.0034-10] [PMID: 21084009]
[8]
Kennedy KM, de Goffau MC, Perez-Muñoz ME, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613(7945): 639-49.
[http://dx.doi.org/10.1038/s41586-022-05546-8] [PMID: 36697862]
[9]
Mishra A, Lai GC, Yao LJ, et al. Microbial exposure during early human development primes fetal immune cells. Cell 2021; 184(13): 3394-3409.e20.
[http://dx.doi.org/10.1016/j.cell.2021.04.039] [PMID: 34077752]
[10]
Roswall J, Olsson LM, Kovatcheva-Datchary P, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 2021; 29(5): 765-776.e3.
[http://dx.doi.org/10.1016/j.chom.2021.02.021] [PMID: 33794185]
[11]
Kuperman AA, Zimmerman A, Hamadia S, et al. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. BJOG 2020; 127(2): 159-69.
[http://dx.doi.org/10.1111/1471-0528.15896] [PMID: 31376240]
[12]
Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int 2017; 66(4): 515-22.
[http://dx.doi.org/10.1016/j.alit.2017.07.010] [PMID: 28826938]
[13]
Enav H, Bäckhed F, Ley RE. The developing infant gut microbiome: A strain-level view. Cell Host Microbe 2022; 30(5): 627-38.
[http://dx.doi.org/10.1016/j.chom.2022.04.009] [PMID: 35550666]
[14]
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6(237): 237ra65.
[http://dx.doi.org/10.1126/scitranslmed.3008599] [PMID: 24848255]
[15]
Al Alam D, Danopoulos S, Grubbs B, et al. Human fetal lungs harbor a microbiome signature. Am J Respir Crit Care Med 2020; 201(8): 1002-6.
[http://dx.doi.org/10.1164/rccm.201911-2127LE] [PMID: 31898918]
[16]
Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One 2014; 9(3): e90784.
[http://dx.doi.org/10.1371/journal.pone.0090784] [PMID: 24614698]
[17]
Chen C, Song X, Wei W, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 2017; 8(1): 875.
[http://dx.doi.org/10.1038/s41467-017-00901-0] [PMID: 29042534]
[18]
Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6(1): 23129.
[http://dx.doi.org/10.1038/srep23129] [PMID: 27001291]
[19]
de Goffau MC, Lager S, Sovio U, et al. Human placenta has no microbiome but can contain potential pathogens. Nature 2019; 572(7769): 329-34.
[http://dx.doi.org/10.1038/s41586-019-1451-5] [PMID: 31367035]
[20]
Diaz Heijtz R. Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med 2016; 21(6): 410-7.
[http://dx.doi.org/10.1016/j.siny.2016.04.012] [PMID: 27255860]
[21]
D’Argenio V. The prenatal microbiome: A new player for human health. High Throughput 2018; 7(4): 38.
[http://dx.doi.org/10.3390/ht7040038] [PMID: 30544936]
[22]
Funkhouser LJ, Bordenstein SR. Mom knows best: The universality of maternal microbial transmission. PLoS Biol 2013; 11(8): e1001631.
[http://dx.doi.org/10.1371/journal.pbio.1001631] [PMID: 23976878]
[23]
Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr Obes 2017; 12(S1) (Suppl. 1): 3-17.
[http://dx.doi.org/10.1111/ijpo.12217] [PMID: 28447406]
[24]
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14(1): 4.
[http://dx.doi.org/10.1186/s13073-021-01005-7] [PMID: 35016706]
[25]
Podlesny D, Fricke WF. Strain inheritance and neonatal gut microbiota development: A meta-analysis. Int J Med Microbiol 2021; 311(3): 151483.
[http://dx.doi.org/10.1016/j.ijmm.2021.151483] [PMID: 33689953]
[26]
Stinson LF, Payne MS, Keelan JA. A critical review of the bacterial baptism hypothesis and the impact of cesarean delivery on the infant microbiome. Front Med 2018; 5: 135.
[http://dx.doi.org/10.3389/fmed.2018.00135] [PMID: 29780807]
[27]
Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018; 562(7728): 583-8.
[http://dx.doi.org/10.1038/s41586-018-0617-x] [PMID: 30356187]
[28]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107(26): 11971-5.
[http://dx.doi.org/10.1073/pnas.1002601107] [PMID: 20566857]
[29]
Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019; 574(7776): 117-21.
[http://dx.doi.org/10.1038/s41586-019-1560-1] [PMID: 31534227]
[30]
Wampach L, Heintz-Buschart A, Fritz JV, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun 2018; 9(1): 5091.
[http://dx.doi.org/10.1038/s41467-018-07631-x] [PMID: 30504906]
[31]
Reyman M, van Houten MA, van Baarle D, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun 2019; 10(1): 4997.
[http://dx.doi.org/10.1038/s41467-019-13014-7] [PMID: 31676793]
[32]
Makino H, Kushiro A, Ishikawa E, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS One 2013; 8(11): e78331.
[http://dx.doi.org/10.1371/journal.pone.0078331] [PMID: 24244304]
[33]
Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 2011; 108 (Suppl. 1): 4578-85.
[http://dx.doi.org/10.1073/pnas.1000081107]
[34]
Lim ES, Wang D, Holtz LR. The bacterial microbiome and virome milestones of infant development. Trends Microbiol 2016; 24(10): 801-10.
[http://dx.doi.org/10.1016/j.tim.2016.06.001] [PMID: 27353648]
[35]
Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 2016; 8(343): 343ra82.
[http://dx.doi.org/10.1126/scitranslmed.aad7121] [PMID: 27306664]
[36]
Marcobal A, Barboza M, Froehlich JW, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 2010; 58(9): 5334-40.
[http://dx.doi.org/10.1021/jf9044205] [PMID: 20394371]
[37]
Le Huërou-Luron I, Blat S, Boudry G. Breast- v. formula-feeding: Impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 2010; 23(1): 23-36.
[http://dx.doi.org/10.1017/S0954422410000065] [PMID: 20450531]
[38]
Matsuki T, Yahagi K, Mori H, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 2016; 7(1): 11939.
[http://dx.doi.org/10.1038/ncomms11939] [PMID: 27340092]
[39]
McKeen S, Young W, Fraser K, Roy NC, McNabb WC. Glycan utilisation and function in the microbiome of weaning infants. Microorganisms 2019; 7(7): 190.
[http://dx.doi.org/10.3390/microorganisms7070190] [PMID: 31277402]
[40]
Liu Y, Qin S, Song Y, et al. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Front Microbiol 2019; 10: 598.
[http://dx.doi.org/10.3389/fmicb.2019.00598] [PMID: 30972048]
[41]
Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17(6): 852.
[http://dx.doi.org/10.1016/j.chom.2015.05.012] [PMID: 26308884]
[42]
Henderickx JGE, Zwittink RD, van Lingen RA, Knol J, Belzer C. The preterm gut microbiota: An inconspicuous challenge in nutritional neonatal care. Front Cell Infect Microbiol 2019; 9: 85.
[http://dx.doi.org/10.3389/fcimb.2019.00085] [PMID: 31001489]
[43]
Ihekweazu FD, Versalovic J. Development of the pediatric gut microbiome: Impact on health and disease. Am J Med Sci 2018; 356(5): 413-23.
[http://dx.doi.org/10.1016/j.amjms.2018.08.005] [PMID: 30384950]
[44]
Leggett RM, Alcon-Giner C, Heavens D, et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol 2019; 5(3): 430-42.
[http://dx.doi.org/10.1038/s41564-019-0626-z] [PMID: 31844297]
[45]
Pammi M, Cope J, Tarr PI, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: A systematic review and meta-analysis. Microbiome 2017; 5(1): 31.
[http://dx.doi.org/10.1186/s40168-017-0248-8] [PMID: 28274256]
[46]
Alcon-Giner C, Dalby MJ, Caim S, et al. Microbiota supplementation with bifidobacterium and lactobacillus modifies the preterm infant gut microbiota and metabolome: An observational study. Cell Rep Med 2020; 1(5): 100077.
[http://dx.doi.org/10.1016/j.xcrm.2020.100077] [PMID: 32904427]
[47]
Laursen MF, Sakanaka M, von Burg N, et al. Breastmilk-promoted bifidobacteria produce aromatic amino acids in the infant gut. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.22.914994]
[48]
AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Libr 2014; (4): CD005496.
[http://dx.doi.org/10.1002/14651858.CD005496.pub4] [PMID: 24723255]
[49]
Dermyshi E, Wang Y, Yan C, et al. The “golden age” of probiotics: A systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology 2017; 112(1): 9-23.
[http://dx.doi.org/10.1159/000454668] [PMID: 28196365]
[50]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222-7.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[51]
Bergström A, Skov TH, Bahl MI, et al. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014; 80(9): 2889-900.
[http://dx.doi.org/10.1128/AEM.00342-14] [PMID: 24584251]
[52]
Cheng J, Ringel-Kulka T, Heikamp-de Jong I, et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J 2016; 10(4): 1002-14.
[http://dx.doi.org/10.1038/ismej.2015.177] [PMID: 26430856]
[53]
Fallani M, Amarri S, Uusijarvi A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 2011; 157(5): 1385-92.
[http://dx.doi.org/10.1099/mic.0.042143-0] [PMID: 21330436]
[54]
Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for noncommunicable disease. Annu Rev Public Health 2021; 42(1): 277-92.
[http://dx.doi.org/10.1146/annurev-publhealth-012420-105020] [PMID: 33798404]
[55]
Sharma A, Gilbert JA. Microbial exposure and human health. Curr Opin Microbiol 2018; 44: 79-87.
[http://dx.doi.org/10.1016/j.mib.2018.08.003] [PMID: 30195150]
[56]
Sommer F, Bäckhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol 2013; 11(4): 227-38.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[57]
Mihai P, Curtis H, Dirk G, et al. A framework for human microbiome research. Nature 2012; 486(7402): 215-21.
[http://dx.doi.org/10.1038/nature11209] [PMID: 22699610]
[58]
DeLong EF, Pace NR. Environmental diversity of bacteria and archaea. Syst Biol 2001; 50(4): 470-8.
[http://dx.doi.org/10.1080/106351501750435040] [PMID: 12116647]
[59]
Holmes E, Wijeyesekera A, Taylor-Robinson SD, Nicholson JK. The promise of metabolic phenotyping in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol 2015; 12(8): 458-71.
[http://dx.doi.org/10.1038/nrgastro.2015.114] [PMID: 26194948]
[60]
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008; 6(10): 776-88.
[http://dx.doi.org/10.1038/nrmicro1978] [PMID: 18794915]
[61]
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell 2012; 148(6): 1258-70.
[http://dx.doi.org/10.1016/j.cell.2012.01.035] [PMID: 22424233]
[62]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[63]
Muegge BD, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011; 332(6032): 970-4.
[http://dx.doi.org/10.1126/science.1198719] [PMID: 21596990]
[64]
Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014; 5(1): 4724.
[http://dx.doi.org/10.1038/ncomms5724] [PMID: 25182170]
[65]
Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513(7516): 59-64.
[http://dx.doi.org/10.1038/nature13568] [PMID: 25079328]
[66]
Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 2013; 131(2): 346-52.
[http://dx.doi.org/10.1016/j.jaci.2012.11.013]
[67]
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: The neglected endocrine organ. Mol Endocrinol 2014; 28(8): 1221-38.
[http://dx.doi.org/10.1210/me.2014-1108] [PMID: 24892638]
[68]
Ursell LK, Haiser HJ, Van Treuren W, et al. The intestinal metabolome: An intersection between microbiota and host. Gastroenterology 2014; 146(6): 1470-6.
[http://dx.doi.org/10.1053/j.gastro.2014.03.001] [PMID: 24631493]
[69]
Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate‐producing bacteria revealed by analysis of the butyryl‐CoA: Acetate CoA‐transferase gene. Environ Microbiol 2010; 12(2): 304-14.
[http://dx.doi.org/10.1111/j.1462-2920.2009.02066.x] [PMID: 19807780]
[70]
Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol 2017; 25(3): 217-28.
[http://dx.doi.org/10.1016/j.tim.2016.11.008] [PMID: 27916383]
[71]
Donia MS, Fischbach MA. Small molecules from the human microbiota. Science 2015; 349(6246): 1254766.
[http://dx.doi.org/10.1126/science.1254766] [PMID: 26206939]
[72]
Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016; 65(1): 63-72.
[http://dx.doi.org/10.1136/gutjnl-2014-308209] [PMID: 25431456]
[73]
Han S, Van Treuren W, Fischer CR, et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 2021; 595(7867): 415-20.
[http://dx.doi.org/10.1038/s41586-021-03707-9] [PMID: 34262212]
[74]
Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: A new clinical frontier. Gut 2016; 65(2): 330-9.
[http://dx.doi.org/10.1136/gutjnl-2015-309990] [PMID: 26338727]
[75]
Rup L. The human microbiome project. Indian J Microbiol 2012; 52(3): 315.
[http://dx.doi.org/10.1007/s12088-012-0304-9] [PMID: 23997318]
[76]
The human microbiome project consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207-14.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[77]
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-4.
[http://dx.doi.org/10.1038/nature07540]
[78]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65.
[http://dx.doi.org/10.1038/nature08821]
[79]
Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 2005; 353(18): 1899-911.
[http://dx.doi.org/10.1056/NEJMoa043802] [PMID: 16267321]
[80]
Weiss MA. The structure and function of insulin: Decoding the TR transition. Vitam Horm 2009; 80: 33-49.
[http://dx.doi.org/10.1016/S0083-6729(08)00602-X] [PMID: 19251033]
[81]
Utiger RD. Insulin Encyclopedia Britannica. 2023. Available from: https://www.britannica.com/science/insulin
[82]
Rahman MS, Hossain KS, Das S, et al. Role of insulin in health and disease: An update. Int J Mol Sci 2021; 22(12): 6403.
[http://dx.doi.org/10.3390/ijms22126403] [PMID: 34203830]
[83]
Suckale J, Solimena M. The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 2010; 21(10): 599-609.
[http://dx.doi.org/10.1016/j.tem.2010.06.003] [PMID: 20609596]
[84]
Yang BY, Zhai G, Gong YL, et al. Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish. Am J Physiol Endocrinol Metab 2018; 315(1): E38-51.
[http://dx.doi.org/10.1152/ajpendo.00227.2017] [PMID: 29351486]
[85]
Kolka CM, Bergman RN. The endothelium in diabetes: Its role in insulin access and diabetic complications. Rev Endocr Metab Disord 2013; 14(1): 13-9.
[http://dx.doi.org/10.1007/s11154-012-9233-5] [PMID: 23306780]
[86]
Onyango AN. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid Med Cell Longev 2018; 2018: 1-27.
[http://dx.doi.org/10.1155/2018/4321714] [PMID: 30116482]
[87]
Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Care 2008; 31 (Suppl. 2): S262-8.
[http://dx.doi.org/10.2337/dc08-s264]
[88]
Reaven GM. Role of insulin resistance in human disease. Nutrition 1997; 13(1): 64.
[http://dx.doi.org/10.1016/S0899-9007(96)00380-2] [PMID: 9058458]
[89]
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013; 3(1): 1-58.
[http://dx.doi.org/10.1002/cphy.c110062] [PMID: 23720280]
[90]
DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The claude bernard lecture 2009. Diabetologia 2010; 53(7): 1270-87.
[http://dx.doi.org/10.1007/s00125-010-1684-1] [PMID: 20361178]
[91]
DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14(3): 173-94.
[http://dx.doi.org/10.2337/diacare.14.3.173] [PMID: 2044434]
[92]
DeFronzo RA. Is insulin resistance atherogenic? Possible mechanisms. Atheroscler Suppl 2006; 7(4): 11-5.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2006.05.002] [PMID: 16815101]
[93]
Zavaroni I, Bonini L, Gasparini P, et al. Hyperinsulinemia in a normal population as a predictor of non—insulin-dependent diabetes mellitus, hypertension, and coronary heart disease: The barilla factory revisited. Metabolism 1999; 48(8): 989-94.
[http://dx.doi.org/10.1016/S0026-0495(99)90195-6] [PMID: 10459563]
[94]
Kashyap SR, Defronzo RA. The insulin resistance syndrome: physiological considerations. Diab Vasc Dis Res 2007; 4(1): 13-9.
[http://dx.doi.org/10.3132/dvdr.2007.001] [PMID: 17469039]
[95]
Wagenknecht LE, Langefeld CD, Scherzinger AL, et al. Insulin sensitivity, insulin secretion, and abdominal fat: The insulin resistance atherosclerosis study (IRAS) family study. Diabetes 2003; 52(10): 2490-6.
[http://dx.doi.org/10.2337/diabetes.52.10.2490] [PMID: 14514631]
[96]
Virtanen KA, Iozzo P, Hällsten K, et al. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: A positron-emitting tomography study. Diabetes 2005; 54(9): 2720-6.
[http://dx.doi.org/10.2337/diabetes.54.9.2720] [PMID: 16123362]
[97]
Bonadonna RC, Leif G, Kraemer N, Ferrannini E, Prato SD, DeFronzo RA. Obesity and insulin resistance in humans: A dose-response study. Metabolism 1990; 39(5): 452-9.
[http://dx.doi.org/10.1016/0026-0495(90)90002-T] [PMID: 2186255]
[98]
Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004; 89(2): 463-78.
[http://dx.doi.org/10.1210/jc.2003-030723] [PMID: 14764748]
[99]
McGarry JD. Banting lecture 2001. Diabetes 2002; 51(1): 7-18.
[http://dx.doi.org/10.2337/diabetes.51.1.7] [PMID: 11756317]
[100]
Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity: Reversal with intramyocellular fat depletion. Diabetes 2002; 51(1): 144-51.
[http://dx.doi.org/10.2337/diabetes.51.1.144] [PMID: 11756334]
[101]
Kim JK, Fillmore JJ, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001; 98(13): 7522-7.
[http://dx.doi.org/10.1073/pnas.121164498] [PMID: 11390966]
[102]
Bajaj M, Defronzo RA. Metabolic and molecular basis of insulin resistance. J Nucl Cardiol 2003; 10(3): 311-23.
[http://dx.doi.org/10.1016/S1071-3581(03)00520-8] [PMID: 12794631]
[103]
Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA. Beta-cell dysfunction and glucose intolerance: Results from the San Antonio metabolism (SAM) study. Diabetologia 2004; 47(1): 31-9.
[http://dx.doi.org/10.1007/s00125-003-1263-9] [PMID: 14666364]
[104]
Kashyap S, Belfort R, Gastaldelli A, et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 2003; 52(10): 2461-74.
[http://dx.doi.org/10.2337/diabetes.52.10.2461] [PMID: 14514628]
[105]
Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002; 109(10): 1321-6.
[http://dx.doi.org/10.1172/JCI0214955] [PMID: 12021247]
[106]
Maachi M, Piéroni L, Bruckert E, et al. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFα, leptin and IL-6 levels in obese women. Int J Obes 2004; 28(8): 993-7.
[http://dx.doi.org/10.1038/sj.ijo.0802718] [PMID: 15211360]
[107]
Leinonen E, Hurt-Camejo E, Wiklund O, Hultén LM, Hiukka A, Taskinen MR. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis 2003; 166(2): 387-94.
[http://dx.doi.org/10.1016/S0021-9150(02)00371-4] [PMID: 12535753]
[108]
Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 2004; 110(12): 1564-71.
[http://dx.doi.org/10.1161/01.CIR.0000142055.53122.FA] [PMID: 15364812]
[109]
Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: A randomized trial. JAMA 2003; 289(14): 1799-804.
[http://dx.doi.org/10.1001/jama.289.14.1799] [PMID: 12684358]
[110]
Esposito K, Pontillo A, Ciotola M, et al. Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 2002; 87(8): 3864-6.
[http://dx.doi.org/10.1210/jcem.87.8.8781] [PMID: 12161523]
[111]
Tomás E, Lin YS, Dagher Z, et al. Hyperglycemia and insulin resistance: Possible mechanisms. Ann N Y Acad Sci 2002; 967(1): 43-51.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04262.x] [PMID: 12079834]
[112]
Kurowski TG, Lin Y, Luo Z, et al. Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle. Diabetes 1999; 48(3): 658-63.
[http://dx.doi.org/10.2337/diabetes.48.3.658] [PMID: 10078574]
[113]
Saha AK, Laybutt DR, Dean D, et al. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. Am J Physiol Endocrinol Metab 1999; 276(6): E1030-7.
[http://dx.doi.org/10.1152/ajpendo.1999.276.6.E1030] [PMID: 10362615]
[114]
Sokolowska E, Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol 2019; 10: 577.
[http://dx.doi.org/10.3389/fendo.2019.00577] [PMID: 31496996]
[115]
Petersen MC, Shulman GI. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol Sci 2017; 38(7): 649-65.
[http://dx.doi.org/10.1016/j.tips.2017.04.004] [PMID: 28551355]
[116]
Petersen MC, Madiraju AK, Gassaway BM, et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J Clin Invest 2016; 126(11): 4361-71.
[http://dx.doi.org/10.1172/JCI86013] [PMID: 27760050]
[117]
Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007; 117(3): 739-45.
[http://dx.doi.org/10.1172/JCI30400] [PMID: 17318260]
[118]
Takayama S, White MF, Kahn CR. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J Biol Chem 1988; 263(7): 3440-7.
[http://dx.doi.org/10.1016/S0021-9258(18)69090-8] [PMID: 3125181]
[119]
Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest 2006; 116(7): 1813-22.
[http://dx.doi.org/10.1172/JCI29024] [PMID: 16823479]
[120]
Lewis GF, Steiner G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care 1996; 19(4): 390-3.
[http://dx.doi.org/10.2337/diacare.19.4.390] [PMID: 8729170]
[121]
Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab 2013; 24(8): 391-7.
[http://dx.doi.org/10.1016/j.tem.2013.04.001] [PMID: 23721961]
[122]
Vergès B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia 2015; 58(5): 886-99.
[http://dx.doi.org/10.1007/s00125-015-3525-8] [PMID: 25725623]
[123]
Szapary PO, Rader DJ. The triglyceride–high-density lipoprotein axis: An important target of therapy? Am Heart J 2004; 148(2): 211-21.
[http://dx.doi.org/10.1016/j.ahj.2004.03.037] [PMID: 15308990]
[124]
Zhou MS, Schulman IH, Zeng Q. Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc Med 2012; 17(5): 330-41.
[http://dx.doi.org/10.1177/1358863X12450094] [PMID: 22814999]
[125]
Lastra G, Dhuper S, Johnson MS, Sowers JR. Salt, aldosterone, and insulin resistance: Impact on the cardiovascular system. Nat Rev Cardiol 2010; 7(10): 577-84.
[http://dx.doi.org/10.1038/nrcardio.2010.123] [PMID: 20697411]
[126]
Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994; 94(6): 2511-5.
[http://dx.doi.org/10.1172/JCI117621] [PMID: 7989610]
[127]
Manhiani MM, Cormican MT, Brands MW. Chronic sodium-retaining action of insulin in diabetic dogs. Am J Physiol Renal Physiol 2011; 300(4): F957-65.
[http://dx.doi.org/10.1152/ajprenal.00395.2010] [PMID: 21228110]
[128]
Horita S, Seki G, Yamada H, Suzuki M, Koike K, Fujita T. Insulin resistance, obesity, hypertension, and renal sodium transport. Int J Hypertens 2011; 2011: 1-8.
[http://dx.doi.org/10.4061/2011/391762] [PMID: 21629870]
[129]
Schulman IH, Zhou MS. Vascular insulin resistance: A potential link between cardiovascular and metabolic diseases. Curr Hypertens Rep 2009; 11(1): 48-55.
[http://dx.doi.org/10.1007/s11906-009-0010-0] [PMID: 19146801]
[130]
Cooper SA, Whaley-Connell A, Habibi J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 2007; 293(4): H2009-23.
[http://dx.doi.org/10.1152/ajpheart.00522.2007] [PMID: 17586614]
[131]
Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev 2007; 28(5): 463-91.
[http://dx.doi.org/10.1210/er.2007-0006] [PMID: 17525361]
[132]
Zhou MS, Schulman IH, Raij L. Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: Role of nuclear factor kappa B activation. J Hypertens 2010; 28(3): 527-35.
[http://dx.doi.org/10.1097/HJH.0b013e3283340da8] [PMID: 19898250]
[133]
Freeman AM, Pennings N. Insulin resistance. 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507839/ [cited 2023 Aug 11].
[134]
DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab 1979; 237(3): E214-23.
[http://dx.doi.org/10.1152/ajpendo.1979.237.3.E214] [PMID: 382871]
[135]
Muniyappa R, Madan R, Varghese RT. Assessing insulin sensitivity and resistance in humans. Endotext. 2009. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK278954/ [cited 2023 Aug 11]
[136]
Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care 2012; 35(7): 1605-10.
[http://dx.doi.org/10.2337/dc11-2339] [PMID: 22511259]
[137]
Knowles JW, Assimes TL, Tsao PS, et al. Measurement of insulin-mediated glucose uptake: Direct comparison of the modified insulin suppression test and the euglycemic, hyperinsulinemic clamp. Metabolism 2013; 62(4): 548-53.
[http://dx.doi.org/10.1016/j.metabol.2012.10.002] [PMID: 23151437]
[138]
Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998; 21(12): 2191-2.
[http://dx.doi.org/10.2337/diacare.21.12.2191] [PMID: 9839117]
[139]
Vilela BS, Vasques ACJ, Cassani RSL, et al. The HOMA-adiponectin (HOMA-AD) closely mirrors the HOMA-IR index in the screening of insulin resistance in the brazilian metabolic syndrome study (brams). PLoS One 2016; 11(8): e0158751.
[http://dx.doi.org/10.1371/journal.pone.0158751] [PMID: 27490249]
[140]
[141]
Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000; 85(7): 2402-10.
[http://dx.doi.org/10.1210/jcem.85.7.6661] [PMID: 10902785]
[142]
Chen H, Sullivan G, Quon MJ. Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes 2005; 54(7): 1914-25.
[http://dx.doi.org/10.2337/diabetes.54.7.1914] [PMID: 15983190]
[143]
Søndergaard E, Espinosa De Ycaza AE, Morgan-Bathke M, Jensen MD. How to measure adipose tissue insulin sensitivity. J Clin Endocrinol Metab 2017; 102(4): 1193-9.
[http://dx.doi.org/10.1210/jc.2017-00047] [PMID: 28323973]
[144]
van der Aa MP, Fazeli Farsani S, Knibbe CAJ, de Boer A, van der Vorst MMJ. Population-based studies on the epidemiology of insulin resistance in children. J Diabetes Res 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/362375] [PMID: 26273668]
[145]
Al-Beltagi M, Bediwy AS, Saeed NK. Insulin-resistance in paediatric age: Its magnitude and implications. World J Diabetes 2022; 13(4): 282-307.
[http://dx.doi.org/10.4239/wjd.v13.i4.282] [PMID: 35582667]
[146]
Fahed M, Abou Jaoudeh MG, Merhi S, et al. Evaluation of risk factors for insulin resistance: A cross sectional study among employees at a private university in Lebanon. BMC Endocr Disord 2020; 20(1): 85.
[http://dx.doi.org/10.1186/s12902-020-00558-9] [PMID: 32522257]
[147]
Denys K, Cankurtaran M, Janssens W, Petrovic M. Metabolic syndrome in the elderly: An overview of the evidence. Acta Clin Belg 2009; 64(1): 23-34.
[http://dx.doi.org/10.1179/acb.2009.006] [PMID: 19317238]
[148]
Pandya N, Hames E, Sandhu S. Challenges and strategies for managing diabetes in the elderly in long-term care settings. Diabetes Spectr 2020; 33(3): 236-45.
[http://dx.doi.org/10.2337/ds20-0018] [PMID: 32848345]
[149]
Cholerton B, Baker LD, Craft S. Insulin resistance and pathological brain ageing. Diabet Med 2011; 28(12): 1463-75.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03464.x] [PMID: 21974744]
[150]
Jiao N, Baker SS, Nugent CA, et al. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: A meta-analysis. Physiol Genomics 2018; 50(4): 244-54.
[http://dx.doi.org/10.1152/physiolgenomics.00114.2017] [PMID: 29373083]
[151]
Scheithauer TPM, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 2016; 5(9): 759-70.
[http://dx.doi.org/10.1016/j.molmet.2016.06.002] [PMID: 27617199]
[152]
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718-23.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[153]
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913-916.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031] [PMID: 22728514]
[154]
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7(3): 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[155]
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018; 98(4): 2133-223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[156]
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148(5): 852-71.
[http://dx.doi.org/10.1016/j.cell.2012.02.017] [PMID: 22385956]
[157]
Bastos RM, Rangel ÉB. Gut microbiota-derived metabolites are novel targets for improving insulin resistance. World J Diabetes 2022; 13(1): 65.
[http://dx.doi.org/10.4239/wjd.v13.i1.65]
[158]
Lieber RL, Roberts TJ, Blemker SS, Lee SSM, Herzog W. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil 2017; 14(1): 108.
[http://dx.doi.org/10.1186/s12984-017-0318-y] [PMID: 29058612]
[159]
Baron AD, Brechtel G, Wallace P, Edelman SV. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol Endocrinol Metab 1988; 255(6): E769-74.
[http://dx.doi.org/10.1152/ajpendo.1988.255.6.E769] [PMID: 3059816]
[160]
Karlsson HKR, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 2007; 48(2-3): 103-13.
[http://dx.doi.org/10.1007/s12013-007-0030-9] [PMID: 17709880]
[161]
Choi Y, Kwon Y, Kim DK, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 2015; 5(1): 15878.
[http://dx.doi.org/10.1038/srep15878] [PMID: 26510393]
[162]
Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 2006; 346(3): 739-45.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.170] [PMID: 16781673]
[163]
Tamrakar AK, Schertzer JD, Chiu TT, et al. NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance. Endocrinology 2010; 151(12): 5624-37.
[http://dx.doi.org/10.1210/en.2010-0437] [PMID: 20926588]
[164]
Schertzer JD, Tamrakar AK, Magalhães JG, et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 2011; 60(9): 2206-15.
[http://dx.doi.org/10.2337/db11-0004] [PMID: 21715553]
[165]
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21(1): 335-76.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]
[166]
Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004; 430(6996): 257-63.
[http://dx.doi.org/10.1038/nature02761] [PMID: 15241424]
[167]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[168]
Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 2003; 278(5): 2896-902.
[http://dx.doi.org/10.1074/jbc.M208359200] [PMID: 12417588]
[169]
Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998; 282(5396): 2085-8.
[http://dx.doi.org/10.1126/science.282.5396.2085] [PMID: 9851930]
[170]
Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001; 167(10): 5887-94.
[http://dx.doi.org/10.4049/jimmunol.167.10.5887] [PMID: 11698465]
[171]
Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007; 56(8): 1986-98.
[http://dx.doi.org/10.2337/db06-1595] [PMID: 17519423]
[172]
Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol 2012; 4(11): a011254.
[http://dx.doi.org/10.1101/cshperspect.a011254] [PMID: 23125017]
[173]
Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 1996; 271(5249): 665-70.
[http://dx.doi.org/10.1126/science.271.5249.665] [PMID: 8571133]
[174]
Chung S, LaPoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 2006; 147(11): 5340-51.
[http://dx.doi.org/10.1210/en.2006-0536] [PMID: 16873530]
[175]
Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signalling in cellular metabolism: Stress or wellness? EMBO Rep 2010; 11(11): 834-40.
[http://dx.doi.org/10.1038/embor.2010.160] [PMID: 20930846]
[176]
Rajan MR, Fagerholm S, Jönsson C, Kjølhede P, Turkina MV, Strålfors P. Phosphorylation of IRS1 at serine 307 in response to insulin in human adipocytes is not likely to be catalyzed by p70 ribosomal S6 kinase. PLoS One 2013; 8(4): e59725.
[http://dx.doi.org/10.1371/journal.pone.0059725] [PMID: 23565163]
[177]
Carvalho-Filho MA, Ueno M, Hirabara SM, et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance. Diabetes 2005; 54(4): 959-67.
[http://dx.doi.org/10.2337/diabetes.54.4.959] [PMID: 15793233]
[178]
Kapur S, Picard F, Perreault M, Deshaies Y, Marette A. Nitric oxide: A new player in the modulation of energy metabolism. Int J Obes 2000; 24(S4) (Suppl. 4): S36-40.
[http://dx.doi.org/10.1038/sj.ijo.0801502] [PMID: 11126239]
[179]
Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The microbial metabolite trimethylamine n-oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. Nutrients 2019; 11(8): 1821.
[http://dx.doi.org/10.3390/nu11081821] [PMID: 31394758]
[180]
Schugar RC, Shih DM, Warrier M, et al. The tmao- producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 2017; 19(12): 2451-61.
[http://dx.doi.org/10.1016/j.celrep.2017.05.077] [PMID: 28636934]
[181]
Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng 2014; 118(4): 476-81.
[http://dx.doi.org/10.1016/j.jbiosc.2014.03.001] [PMID: 24721123]
[182]
Chen K, Zheng X, Feng M, Li D, Zhang H. Gut microbiota-dependent metabolite trimethylamine n-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front Physiol 2017; 8: 139.
[http://dx.doi.org/10.3389/fphys.2017.00139] [PMID: 28377725]
[183]
Zhao L, Hu P, Zhou Y, Purohit J, Hwang D. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2011; 301(4): E587-98.
[http://dx.doi.org/10.1152/ajpendo.00709.2010] [PMID: 21693690]
[184]
Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015; 58(2): 221-32.
[http://dx.doi.org/10.1007/s00125-014-3451-1] [PMID: 25421524]
[185]
Lee HY, Birkenfeld AL, Jornayvaz FR, et al. Apolipoprotein CIII overexpressing mice are predisposed to diet‐induced hepatic steatosis and hepatic insulin resistance. Hepatology 2011; 54(5): 1650-60.
[http://dx.doi.org/10.1002/hep.24571] [PMID: 21793029]
[186]
Koh A, Molinaro A, Ståhlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mtorc1. Cell 2018; 175(4): 947-961.e17.
[http://dx.doi.org/10.1016/j.cell.2018.09.055] [PMID: 30401435]
[187]
Jia L, Vianna CR, Fukuda M, et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 2014; 5(1): 3878.
[http://dx.doi.org/10.1038/ncomms4878] [PMID: 24815961]
[188]
Svingen GFT, Schartum-Hansen H, Pedersen ER, et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes. Clin Chem 2016; 62(5): 755-65.
[http://dx.doi.org/10.1373/clinchem.2015.250761] [PMID: 26980210]
[189]
Miao J, Ling AV, Manthena PV, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6(1): 6498.
[http://dx.doi.org/10.1038/ncomms7498] [PMID: 25849138]
[190]
Chen S, Henderson A, Petriello MC, et al. Trimethylamine n-oxide binds and activates perk to promote metabolic dysfunction. Cell Metab 2019; 30(6): 1141-1151.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.08.021] [PMID: 31543404]
[191]
Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology 2013; 154(1): 114-26.
[http://dx.doi.org/10.1210/en.2012-1658] [PMID: 23183179]
[192]
Zhang H, Huang Y, Chen S, et al. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review. J Adv Res 2021; 27: 19-30.
[http://dx.doi.org/10.1016/j.jare.2020.02.013] [PMID: 33318863]
[193]
Russell WR, Duncan SH, Scobbie L, et al. Major phenylpropanoid‐derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 2013; 57(3): 523-35.
[http://dx.doi.org/10.1002/mnfr.201200594] [PMID: 23349065]
[194]
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009; 106(10): 3698-703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[195]
Hoyles L, Fernández-Real JM, Federici M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 2018; 24(7): 1070-80.
[http://dx.doi.org/10.1038/s41591-018-0061-3] [PMID: 29942096]
[196]
Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 2000; 165(2): 618-22.
[http://dx.doi.org/10.4049/jimmunol.165.2.618] [PMID: 10878331]
[197]
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472(9): 1207-48.
[http://dx.doi.org/10.1007/s00424-020-02439-5] [PMID: 32829466]
[198]
Pavlic M, Xiao C, Szeto L, Patterson BW, Lewis GF. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids. Diabetes 2010; 59(3): 580-7.
[http://dx.doi.org/10.2337/db09-1297] [PMID: 20028946]
[199]
Ussar S, Haering MF, Fujisaka S, et al. Regulation of glucose uptake and enteroendocrine function by the intestinal epithelial insulin receptor. Diabetes 2017; 66(4): 886-96.
[http://dx.doi.org/10.2337/db15-1349] [PMID: 28096258]
[200]
Denou E, Lolmède K, Garidou L, et al. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med 2015; 7(3): 259-74.
[http://dx.doi.org/10.15252/emmm.201404169] [PMID: 25666722]
[201]
Schertzer JD, Klip A. Give a NOD to insulin resistance. Am J Physiol Endocrinol Metab 2011; 301(4): E585-6.
[http://dx.doi.org/10.1152/ajpendo.00362.2011] [PMID: 21771969]
[202]
Cavallari JF, Barra NG, Foley KP, et al. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice. Am J Physiol Endocrinol Metab 2020; 318(4): E579-85.
[http://dx.doi.org/10.1152/ajpendo.00033.2020] [PMID: 32101030]
[203]
Chi W, Dao D, Lau TC, et al. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1. PLoS One 2014; 9(5): e97675.
[http://dx.doi.org/10.1371/journal.pone.0097675] [PMID: 24828250]
[204]
Cavallari JF, Fullerton MD, Duggan BM, et al. Muramyl dipeptide-based postbiotics mitigate obesity- induced insulin resistance via irf4. Cell Metab 2017; 25(5): 1063-1074.e3.
[http://dx.doi.org/10.1016/j.cmet.2017.03.021] [PMID: 28434881]
[205]
Andersen K, Kesper MS, Marschner JA, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for ckd-related systemic inflammation. J Am Soc Nephrol 2017; 28(1): 76-83.
[http://dx.doi.org/10.1681/ASN.2015111285] [PMID: 27151924]
[206]
Caricilli A, Saad M. The role of gut microbiota on insulin resistance. Nutrients 2013; 5(3): 829-51.
[http://dx.doi.org/10.3390/nu5030829] [PMID: 23482058]
[207]
Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011; 22(9): 353-63.
[http://dx.doi.org/10.1016/j.tem.2011.04.007] [PMID: 21616678]
[208]
Zhang SY, Li RJW, Lim YM, et al. FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats. Gut 2021; 70(9): 1675-83.
[http://dx.doi.org/10.1136/gutjnl-2020-321757] [PMID: 33087489]
[209]
Waise TMZ, Lim YM, Danaei Z, Zhang SY, Lam TKT. Small intestinal taurochenodeoxycholic acid-FXR axis alters local nutrient-sensing glucoregulatory pathways in rats. Mol Metab 2021; 44(101132): 101132.
[http://dx.doi.org/10.1016/j.molmet.2020.101132] [PMID: 33264656]
[210]
Li RJW, Zhang SY, Lam TKT. Interaction of glucose sensing and leptin action in the brain. Mol Metab 2020; 39(101011): 101011.
[http://dx.doi.org/10.1016/j.molmet.2020.101011] [PMID: 32416314]
[211]
Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 2015; 6(1): 10166.
[http://dx.doi.org/10.1038/ncomms10166] [PMID: 26670557]
[212]
Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med 2018; 215(2): 383-96.
[http://dx.doi.org/10.1084/jem.20171965] [PMID: 29339445]
[213]
Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411(6837): 603-6.
[http://dx.doi.org/10.1038/35079114] [PMID: 11385577]
[214]
Pascault N, Roux S, Artigas J, et al. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole. FEMS Microbiol Ecol 2014; 90(3): 563-74.
[http://dx.doi.org/10.1111/1574-6941.12416] [PMID: 25135322]
[215]
Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[216]
Johnson CL, Versalovic J. The human microbiome and its potential importance to pediatrics. Pediatrics 2012; 129(5): 950-60.
[http://dx.doi.org/10.1542/peds.2011-2736] [PMID: 22473366]
[217]
Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 2010; 92(5): 1023-30.
[http://dx.doi.org/10.3945/ajcn.2010.29877] [PMID: 20844065]
[218]
Mshvildadze M, Neu J, Shuster J, Theriaque D, Li N, Mai V. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr 2010; 156(1): 20-5.
[http://dx.doi.org/10.1016/j.jpeds.2009.06.063] [PMID: 19783002]
[219]
Avershina E, Rudi K. Confusion about the species richness of human gut microbiota. Benef Microbes 2015; 6(5): 657-9.
[http://dx.doi.org/10.3920/BM2015.0007] [PMID: 26036144]
[220]
Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 2014; 63(4): 559-66.
[http://dx.doi.org/10.1136/gutjnl-2012-303249] [PMID: 23926244]
[221]
Vassallo MF, Walker WA. Neonatal microbial flora and disease outcome. In: Nestlé nutrition workshop series: Pediatric program. Basel: KARGER 2008; pp. 211-24.
[222]
Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5(3): e9836.
[http://dx.doi.org/10.1371/journal.pone.0009836] [PMID: 20352091]
[223]
Dai D, Walker WA. Protective nutrients and bacterial colonization in the immature human gut. Adv Pediatr 1999; 46: 353-82.
[PMID: 10645469]
[224]
Carvalho FA, Koren O, Goodrich JK, et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012; 12(2): 139-52.
[http://dx.doi.org/10.1016/j.chom.2012.07.004] [PMID: 22863420]
[225]
Shulzhenko N, Morgun A, Hsiao W, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 2011; 17(12): 1585-93.
[http://dx.doi.org/10.1038/nm.2505] [PMID: 22101768]
[226]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107(33): 14691-6.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[227]
Azzini E, Polito A, Fumagalli A, et al. Mediterranean diet effect: An Italian picture. Nutr J 2011; 10(1): 125.
[http://dx.doi.org/10.1186/1475-2891-10-125] [PMID: 22087545]
[228]
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519(7541): 92-6.
[http://dx.doi.org/10.1038/nature14232] [PMID: 25731162]
[229]
Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514(7521): 181-6.
[http://dx.doi.org/10.1038/nature13793] [PMID: 25231862]
[230]
Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 2016; 24(5): 402-13.
[http://dx.doi.org/10.1016/j.tim.2016.02.002] [PMID: 26996765]
[231]
Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science 2012; 336(6086): 1255-62.
[http://dx.doi.org/10.1126/science.1224203] [PMID: 22674335]
[232]
Wilson ML, Davies IG, Waraksa W, Khayyatzadeh SS, Al-Asmakh M, Mazidi M. The impact of microbial composition on postprandial glycaemia and lipidaemia: A systematic review of current evidence. Nutrients 2021; 13(11): 3887.
[http://dx.doi.org/10.3390/nu13113887] [PMID: 34836140]
[233]
Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079-94.
[http://dx.doi.org/10.1016/j.cell.2015.11.001] [PMID: 26590418]
[234]
Sharma N, Navik U, Tikoo K. Unveiling the presence of epigenetic mark by Lactobacillus supplementation in high-fat diet-induced metabolic disorder in Sprague-Dawley rats. J Nutr Biochem 2020; 84: 108442.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108442]
[235]
Ben-Yacov O, Godneva A, Rein M, et al. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: A diet intervention in pre-diabetes. Gut 2023; 72(8): 1486-96.
[http://dx.doi.org/10.1136/gutjnl-2022-329201] [PMID: 37137684]
[236]
Wu Z, Zhang B, Chen F, et al. Fecal microbiota transplantation reverses insulin resistance in type 2 diabetes: A randomized, controlled, prospective study. Front Cell Infect Microbiol 2023; 12: 1089991.
[http://dx.doi.org/10.3389/fcimb.2022.1089991] [PMID: 36704100]
[237]
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052): 105-8.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[238]
Erejuwa O, Sulaiman S, Wahab M. Modulation of gut microbiota in the management of metabolic disorders: The prospects and challenges. Int J Mol Sci 2014; 15(3): 4158-88.
[http://dx.doi.org/10.3390/ijms15034158] [PMID: 24608927]
[239]
Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488(7413): 621-6.
[http://dx.doi.org/10.1038/nature11400] [PMID: 22914093]
[240]
Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes 2013; 37(1): 16-23.
[http://dx.doi.org/10.1038/ijo.2012.132] [PMID: 22907693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy