Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Research Article

Analyzing Interaction of Rhodacyanine Inhibitor ‘MKT-077’ with Plasmodium falciparum HSP70s

Author(s): Kumari Chanchal Nainani, Vipul Upadhyay, Bikramjit Singh, Komalpreet Kaur Sandhu, Satinder Kaur, Rachna Hora and Prakash Chandra Mishra*

Volume 17, Issue 1, 2024

Published on: 12 January, 2024

Page: [34 - 41] Pages: 8

DOI: 10.2174/0118723128279697231226044406

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Introduction: MKT-077 and its derivatives are rhodacyanine inhibitors that hold potential in the treatment of cancer, neurodegenerative diseases and malaria. These allosteric drugs act by inhibiting the ATPase action of heat shock proteins of 70 kDa (HSP70). MKT-077 accumulates in the mitochondria and displays differential activity against HSP70 homologs.

Methods: The four Plasmodium falciparum HSP70s (PfHSP70) are present in various subcellular locations to perform distinct functions. In the present study, we have used bioinformatics tools to understand the interaction of MKT-077 at the ADP and HEW (2-amino 4 bromopyridine) binding sites on PfHSP70s. Our molecular docking experiments predict that the mitochondrial and endoplasmic reticulum PfHSP70 homologs are likely to bind MKT-077 with higher affinities at their ADP binding sites.

Results: Binding analysis indicates that the nature of the identified interactions is primarily hydrophobic. We have also identified specific residues of PfHSP70s that are involved in interacting with the ligand.

Conclusion: Information obtained in this study may form the foundation for the design and development of MKT-077-based drugs against malaria.

Keywords: Malaria, plasmodium falciparum, PfHSP70, MKT-077, nucleotide binding domains, molecular docking.

Graphical Abstract
[1]
World malaria report. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (Accessed Jul. 09, 2023).
[2]
Sharma, Y.D. Structure and possible function of heat-shock proteins in Falciparum malaria. Comp. Biochem. Physiol. B, 1992, 102(3), 437-444.
[http://dx.doi.org/10.1016/0305-0491(92)90033-N ] [PMID: 1499283]
[3]
Behl, A.; Kumar, V.; Bisht, A.; Panda, J.J.; Hora, R.; Mishra, P.C. Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’. Sci. Rep., 2019, 9(1), 2664.
[http://dx.doi.org/10.1038/s41598-019-39217-y ] [PMID: 30804381]
[4]
Behl, A.; Mishra, P.C. Structural insights into the binding mechanism of Plasmodium falciparum exported Hsp40-Hsp70 chaperone pair. Comput. Biol. Chem., 2019, 83, 107099.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107099 ] [PMID: 31430682]
[5]
Rousaki, A.; Miyata, Y.; Jinwal, U.K.; Dickey, C.A.; Gestwicki, J.E.; Zuiderweg, E.R.P. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol., 2011, 411(3), 614-632.
[http://dx.doi.org/10.1016/j.jmb.2011.06.003] [PMID: 21708173]
[6]
Tatsuta, N.; Suzuki, N.; Mochizuki, T.; Koya, K.; Kawakami, M.; Shishido, T.; Motoji, N.; Kuroiwa, H.; Shigematsu, A.; Chen, L.B. Pharmacokinetic analysis and antitumor efficacy of MKT-077, a novel antitumor agent. Cancer Chemother. Pharmacol., 1999, 43(4), 295-301.
[http://dx.doi.org/10.1007/s002800050898] [PMID: 10071980]
[7]
Propper, D.J.; Braybrooke, J.P.; Taylor, D.J.; Lodi, R.; Styles, P.; Cramer, J.A.; Collins, W.C.J.; Levitt, N.C.; Talbot, D.C.; Ganesan, T.S.; Harris, A.L. Phase I trial of the selective mitochondrial toxin MKT 077 in chemo-resistant solid tumours. Ann. Oncol., 1999, 10(8), 923-927.
[http://dx.doi.org/10.1023/A:1008336904585] [PMID: 10509153]
[8]
Britten, C.D.; Rowinsky, E.K.; Baker, S.D.; Weiss, G.R.; Smith, L.; Stephenson, J.; Rothenberg, M.; Smetzer, L.; Cramer, J.; Collins, W.; Von Hoff, D.D.; Eckhardt, S.G. A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin. Cancer Res., 2000, 6(1), 42-49.
[PMID: 10656430]
[9]
Takasu, K.; Inoue, H.; Kim, H.S.; Suzuki, M.; Shishido, T.; Wataya, Y.; Ihara, M. Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity. J. Med. Chem., 2002, 45(5), 995-998.
[http://dx.doi.org/10.1021/jm0155704] [PMID: 11855978]
[10]
Moradi-Marjaneh, R.; Paseban, M.; Moradi Marjaneh, M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life, 2019, 71(12), 1834-1845.
[http://dx.doi.org/10.1002/iub.2157] [PMID: 31441584]
[11]
Kaul, S.C.; Deocaris, C.C.; Wadhwa, R. Three faces of mortalin: A housekeeper, guardian and killer. Exp. Gerontol., 2007, 42(4), 263-274.
[http://dx.doi.org/10.1016/j.exger.2006.10.020] [PMID: 17188442]
[12]
Schneider, H.C.; Berthold, J.; Bauer, M.F.; Dietmeier, K.; Guiard, B.; Brunner, M.; Neupert, W. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature, 1994, 371(6500), 768-774.
[http://dx.doi.org/10.1038/371768a0] [PMID: 7935837]
[13]
Liu, Q.; D’Silva, P.; Walter, W.; Marszalek, J.; Craig, E.A. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science, 2003, 300(5616), 139-141.
[http://dx.doi.org/10.1126/science.1083379] [PMID: 12677068]
[14]
Amick, J.; Schlanger, S.E.; Wachnowsky, C.; Moseng, M.A.; Emerson, C.C.; Dare, M.; Luo, W.I.; Ithychanda, S.S.; Nix, J.C.; Cowan, J.A.; Page, R.C.; Misra, S. Crystal structure of the nucleotide‐binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci., 2014, 23(6), 833-842.
[http://dx.doi.org/10.1002/pro.2466] [PMID: 24687350]
[15]
Walker, C.; Böttger, S.; Low, B. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am. J. Pathol., 2006, 168(5), 1526-1530.
[http://dx.doi.org/10.2353/ajpath.2006.050603] [PMID: 16651619]
[16]
Wadhwa, R.; Sugihara, T.; Yoshida, A.; Nomura, H.; Reddel, R.R.; Simpson, R.; Maruta, H.; Kaul, S.C. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res., 2000, 60(24), 6818-6821.
[PMID: 11156371]
[17]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandaran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The protein data bank. Acta. Crystalogr D. Biol. Crystallogr., 2002, 58(Pt 6 No 1), 899-907.
[PMID: 12037327]
[18]
Aurrecoechea, C.; Plasmo, D.B. A functional genomic database for malaria parasites. Nucleic Acids Res., 2009, 37, 539-543.
[http://dx.doi.org/10.1093/nar/gkn814]
[19]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[20]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[21]
Tatusova, T.A.; Madden, T.L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett., 1999, 174(2), 247-250.
[http://dx.doi.org/10.1111/j.1574-6968.1999.tb13575.x ] [PMID: 10339815]
[22]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[23]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[24]
PubChem. Aspirin., Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2244 (Accessed Jul. 09, 2023).
[25]
Chen, Y.; Murillo-Solano, C.; Kirkpatrick, M.G.; Antoshchenko, T.; Park, H.W.; Pizarro, J.C. Repurposing drugs to target the malaria parasite unfolding protein response. Sci. Rep., 2018, 8(1), 10333.
[http://dx.doi.org/10.1038/s41598-018-28608-2 ] [PMID: 29985421]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy