Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Highlights from the Top 100 Most Influential Articles Regarding the Nuclear Receptor PPAR-γ: A Bibliometric Analysis

Author(s): Si Wu, Haijiao Dai, Xianxiang Bai, Zhen Wu, Xianglei Wang* and Bin Xiao*

Volume 24, Issue 11, 2024

Published on: 03 January, 2024

Page: [1303 - 1314] Pages: 12

DOI: 10.2174/0118715303265935231114073638

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: PPAR-γ is one of three members of the PPAR group of the nuclear receptor superfamily and plays an important regulatory role as a ligand-dependent transcription factor.

Objective: This study aimed to identify the top 100 most influential articles in the field of PPAR-γ. We hypothesized that a bibliometric and scientometric analysis of the PPAR-γ research field could render trends that provide researchers and funding agencies valuable insight into the history of the field, and potential future directions.

Methods: A literature search of publications was carried out using the Web of Science (WOS) and Scopus database based on specific subject words on September 11, 2023. Articles were listed in descending order of the number of citations. Statistical analysis was performed on the data of the top 100 cited articles in terms of year of publication, journal, research direction, institution, author, and country. Meanwhile, co-authorship networks and co-citation networks were constructed by using VOSviewer software, and keywords were analyzed for co-occurrence.

Results: A total of 9,456 articles regarding PPAR-γ were identified and analyzed based on the WOS database, and the top 100 cited articles in the field of PPAR-γ were ranked by citation. The most cited article was published in 1998, with 2,571 citations and a density of 102.80 citations/ year. Of the 100 articles, Harvard University was the institution with the highest number of articles published. Spiegelman, B. M. was the author with the highest number of articles published. Using the VOSviewer software, we found that the most used keywords were geneexpression, activated receptor-gamma, and adipocyte differentiation. PPAR-γ, one of the most widely studied transcription factors, is an important drug target for many diseases. Therefore, screening for small molecule compounds targeting PPAR-γ remains of great value.

Conclusion: The present study identified the top 100 most influential articles in the field of PPAR-γ, which help global researchers to better understand research perspectives and develop future research directions of PPAR-γ.

Keywords: PPAR gamma, nuclear receptors, bibliometrics, citation analysis, influential article, outcomes.

Graphical Abstract
[1]
Owens, D.R. Thiazolidinediones. Clin. Drug Investig., 2002, 22(8), 485-505.
[http://dx.doi.org/10.2165/00044011-200222080-00001]
[2]
Enayati, A.; Ghojoghnejad, M.; Roufogalis, B.D.; Maollem, S.A.; Sahebkar, A. Impact of phytochemicals on PPAR receptors: Implications for disease treatments. PPAR Res., 2022, 1-43.
[http://dx.doi.org/10.1155/2022/4714914] [PMID: 36092543]
[3]
Li, J.; Guo, C.; Wu, J. 15-Deoxy-∆-12,14-Prostaglandin J2 (15d-PGJ2), an endogenous ligand of PPAR-γ: Function and mechanism. PPAR Res., 2019, 1-10.
[http://dx.doi.org/10.1155/2019/7242030] [PMID: 31467514]
[4]
Wu, L.; Guo, C.; Wu, J. Therapeutic potential of PPARγ natural agonists in liver diseases. J. Cell. Mol. Med., 2020, 24(5), 2736-2748.
[http://dx.doi.org/10.1111/jcmm.15028] [PMID: 32031298]
[5]
Vella, V.; Nicolosi, M.L.; Giuliano, S.; Bellomo, M.; Belfiore, A.; Malaguarnera, R. PPAR-γ agonists as antineoplastic agents in cancers with Dysregulated IGF Axis. Front. Endocrinol., 2017, 8, 31.
[http://dx.doi.org/10.3389/fendo.2017.00031] [PMID: 28275367]
[6]
Colle, R.; De Larminat, D.; Rotenberg, S.; Hozer, F.; Hardy, P.; Verstuyft, C.; Fève, B.; Corruble, E. PPAR-γ agonists for the treatment of major depression: A review. Pharmacopsychiatry, 2017, 50(2), 49-55.
[PMID: 27978584]
[7]
Prashantha Kumar, B.R.; Kumar, A.P.; Jose, J.A.; Prabitha, P.; Yuvaraj, S.; Chipurupalli, S.; Jeyarani, V.; Manisha, C.; Banerjee, S.; Jeyabalan, J.B.; Mohankumar, S.K.; Dhanabal, S.P.; Justin, A. Minutes of PPAR-γ agonism and neuroprotection. Neurochem. Int., 2020, 140, 104814.
[http://dx.doi.org/10.1016/j.neuint.2020.104814]
[8]
Agarwal, A.; Durairajanayagam, D.; Tatagari, S.; Esteves, S.; Harlev, A.; Henkel, R.; Roychoudhury, S.; Homa, S.; Puchalt, N.; Ramasamy, R.; Majzoub, A.; Ly, K.; Tvrda, E.; Assidi, M.; Kesari, K.; Sharma, R.; Banihani, S.; Ko, E.; Abu-Elmagd, M.; Gosalvez, J.; Bashiri, A. Bibliometrics: Tracking research impact by selecting the appropriate metrics. Asian J. Androl., 2016, 18(2), 296-309.
[http://dx.doi.org/10.4103/1008-682X.171582] [PMID: 26806079]
[9]
Cheek, J.; Garnham, B.; Quan, J. What’s in a number? Issues in providing evidence of impact and quality of research(ers). Qual. Health Res., 2006, 16(3), 423-435.
[http://dx.doi.org/10.1177/1049732305285701] [PMID: 16449691]
[10]
Moed, H.F. New developments in the use of citation analysis in research evaluation. Arch. Immunol. Ther. Exp., 2009, 57(1), 13-18.
[http://dx.doi.org/10.1007/s00005-009-0001-5] [PMID: 19219533]
[11]
Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene – A review. Diabetes Metab. Syndr., 2015, 9(1), 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[12]
Peng, X.; Dai, J.G. A bibliometric analysis of neutrosophic set: two decades review from 1998 to 2017. Artif. Intell. Rev., 2018, (53), 199-255.
[13]
Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci., 1973, 24(4), 265-269.
[http://dx.doi.org/10.1002/asi.4630240406]
[14]
Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem., 1995, 270(22), 12953-12956.
[http://dx.doi.org/10.1074/jbc.270.22.12953] [PMID: 7768881]
[15]
Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell, 1994, 79(7), 1147-1156.
[http://dx.doi.org/10.1016/0092-8674(94)90006-X] [PMID: 8001151]
[16]
Forman, B.M.; Tontonoz, P.; Chen, J.; Brun, R.P.; Spiegelman, B.M.; Evans, R.M. 15-Deoxy-Δ12,14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell, 1995, 83(5), 803-812.
[http://dx.doi.org/10.1016/0092-8674(95)90193-0] [PMID: 8521497]
[17]
Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature, 1998, 391(6662), 79-82.
[http://dx.doi.org/10.1038/34178] [PMID: 9422508]
[18]
Tontonoz, P.; Hu, E.; Graves, R.A.; Budavari, A.I.; Spiegelman, B.M. mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev., 1994, 8(10), 1224-1234.
[http://dx.doi.org/10.1101/gad.8.10.1224] [PMID: 7926726]
[19]
Kliewer, S.A.; Lenhard, J.M.; Willson, T.M.; Patel, I.; Morris, D.C.; Lehmann, J.M. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell, 1995, 83(5), 813-819.
[http://dx.doi.org/10.1016/0092-8674(95)90194-9] [PMID: 8521498]
[20]
Jiang, C.; Ting, A.T.; Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662), 82-86.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[21]
Tontonoz, P.; Nagy, L.; Alvarez, J.G.A.; Thomazy, V.A.; Evans, R.M. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 1998, 93(2), 241-252.
[http://dx.doi.org/10.1016/S0092-8674(00)81575-5] [PMID: 9568716]
[22]
Nagy, L.; Tontonoz, P.; Alvarez, J.G.A.; Chen, H.; Evans, R.M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell, 1998, 93(2), 229-240.
[http://dx.doi.org/10.1016/S0092-8674(00)81574-3] [PMID: 9568715]
[23]
Barak, Y.; Nelson, M.C.; Ong, E.S.; Jones, Y.Z.; Ruiz-Lozano, P.; Chien, K.R.; Koder, A.; Evans, R.M. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell, 1999, 4(4), 585-595.
[http://dx.doi.org/10.1016/S1097-2765(00)80209-9] [PMID: 10549290]
[24]
White, H.D.; Griffith, B.C. Author cocitation: A literature measure of intellectual structure. J. Am. Soc. Inf. Sci., 1981, 32(3), 163-171.
[http://dx.doi.org/10.1002/asi.4630320302]
[25]
McCain, K.W. Mapping economics through the journal literature: An experiment in journal cocitation analysis. J. Am. Soc. Inf. Sci., 1991, 42(4), 290-296.
[http://dx.doi.org/10.1002/(SICI)1097-4571(199105)42:4<290::AID-ASI5>3.0.CO;2-9]
[26]
Ballav, S.; Biswas, B.; Sahu, V.K.; Ranjan, A.; Basu, S. PPAR-γ partial agonists in disease-fate decision with special reference to cancer. Cells, 2022, 11(20), 3215.
[http://dx.doi.org/10.3390/cells11203215] [PMID: 36291082]
[27]
Lu, M.; Sarruf, D.A.; Talukdar, S.; Sharma, S.; Li, P.; Bandyopadhyay, G.; Nalbandian, S.; Fan, W.; Gayen, J.R.; Mahata, S.K.; Webster, N.J.; Schwartz, M.W.; Olefsky, J.M. Brain PPAR-γ promotes obesity and is required for the insulin–sensitizing effect of thiazolidinediones. Nat. Med., 2011, 17(5), 618-622.
[http://dx.doi.org/10.1038/nm.2332] [PMID: 21532596]
[28]
Jabbari, P.; Sadeghalvad, M.; Rezaei, N. An inflammatory triangle in Sarcoidosis: PPAR-γ, immune microenvironment, and inflammation. Expert Opin. Biol. Ther., 2021, 21(11), 1451-1459.
[http://dx.doi.org/10.1080/14712598.2021.1913118] [PMID: 33798017]
[29]
Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med., 2013, 19(5), 557-566.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[30]
Liu, C.; Xiong, Q.; Li, Q.; Lin, W.; Jiang, S.; Zhang, D.; Wang, Y.; Duan, X.; Gong, P.; Kang, N. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat. Commun., 2022, 13(1), 1989.
[http://dx.doi.org/10.1038/s41467-022-29633-6] [PMID: 35418650]
[31]
Ma, Z.G.; Yuan, Y.P.; Zhang, X.; Xu, S.C.; Wang, S.S.; Tang, Q.Z. Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways. EBioMedicine, 2017, 18, 179-187.
[http://dx.doi.org/10.1016/j.ebiom.2017.03.021] [PMID: 28330809]
[32]
Rayner, M.L.D.; Healy, J.; Phillips, J.B. Repurposing small molecules to target PPAR-γ as new therapies for peripheral nerve injuries. Biomolecules, 2021, 11(9), 1301.
[http://dx.doi.org/10.3390/biom11091301] [PMID: 34572514]
[33]
Zhu, Y.; Kan, L.; Qi, C.; Kanwar, Y.S.; Yeldandi, A.V.; Rao, M.S.; Reddy, J.K. Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J. Biol. Chem., 2000, 275(18), 13510-13516.
[http://dx.doi.org/10.1074/jbc.275.18.13510] [PMID: 10788465]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy