Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review

Author(s): Hamid Reza Garshasbi and Seyed Morteza Naghib*

Volume 29, Issue 44, 2023

Published on: 19 December, 2023

Page: [3546 - 3562] Pages: 17

DOI: 10.2174/0113816128283806231211073031

Price: $65

conference banner
Abstract

Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles’ biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.

Keywords: Stimuli-responsive, alginate, nanogel, drug delivery system, cancer treatment, polymers.

[1]
Zielińska A, Eder P, Rannier L, et al. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2022; 28(8): 609-18.
[http://dx.doi.org/10.2174/1381612828666211230114755] [PMID: 34967292]
[2]
Diavati S, Sagris M, Terentes-Printzios D, Vlachopoulos C. Anticoagulation treatment in venous thromboembolism: Options and optimal duration. Curr Pharm Des 2022; 28(4): 296-305.
[http://dx.doi.org/10.2174/1381612827666211111150705] [PMID: 34766887]
[3]
Katiyar S, Yadav D. Correlation of oxidative stress with melasma: An overview. Curr Pharm Des 2022; 28(3): 225-31.
[http://dx.doi.org/10.2174/1381612827666211104154928] [PMID: 34736377]
[4]
Patel P, Kumar K, Jain VK, Popli H, Yadav AK, Jain K. Nanotheranostics for diagnosis and treatment of breast cancer. Curr Pharm Des 2023; 29(10): 732-47.
[5]
Gholami L, Momtazi-Borojeni AA, Malaekeh-Nikouei B, et al. Selective cellular uptake and cytotoxicity of curcumin-encapsulated SPC and HSPC liposome nanoparticles on human bladder cancer cells. Curr Pharm Des 2023; 29(13): 1046-58.
[http://dx.doi.org/10.2174/1381612829666230331084848] [PMID: 36999712]
[6]
Alimohammadi M, Faramarzi F, Mafi A, et al. Efficacy and safety of atezolizumab monotherapy or combined therapy with chemotherapy in patients with metastatic triple-negative breast cancer: A systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 2023; 29(31): 2461-76.
[http://dx.doi.org/10.2174/0113816128270102231016110637] [PMID: 37921135]
[7]
Ozkan E, Bakar-Ates F. Ferroptosis: A trusted ally in combating drug resistance in cancer. Curr Med Chem 2022; 29(1): 41-55.
[http://dx.doi.org/10.2174/0929867328666210810115812] [PMID: 34375173]
[8]
Dawood KM, Raslan MA, Abbas AA, Mohamed BE, Nafie MS. Novel bis-amide-based bis-thiazoles as anti-colorectal cancer agents through Bcl-2 inhibition: Synthesis, in vitro, and in vivo studies. Anticancer Agents Med Chem 2023; 23: 328-45.
[9]
Sahoo BM, Banik BK, Borah P, Jain A. Reactive oxygen species (ROS): Key components in cancer therapies. Anti-Cancer Agents Med Chem 2022; 22: 215-22.
[10]
Shams ul Hassan S, Abbas SQ, Hassan M, Jin HZ. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anticancer Agents Med Chem 2022; 22: 731-46.
[11]
Paidakula S, Nerella S, Kankala S, Kankala RK. Recent trends in tubulin-binding combretastatin A-4 analogs for anticancer drug development. Curr Med Chem 2022; 29(21): 3748-73.
[http://dx.doi.org/10.2174/0929867328666211202101641] [PMID: 34856892]
[12]
Fatima M, Iqubal MK, Iqubal A, et al. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer. Anticancer Agents Med Chem 2022; 22: 668-86.
[13]
Criscitiello C, Guerini-Rocco E, Viale G, et al. Immunotherapy in breast cancer patients: A focus on the use of the currently available biomarkers in oncology. Anticancer Agents Med Chem 2022; 22: 787-800.
[14]
Kumar PV, Sheng TM. A new approach for β-cyclodextrin conjugated drug delivery system in cancer therapy. Curr Drug Deliv 2022; 19(3): 266-300.
[http://dx.doi.org/10.2174/1567201818666211006103452] [PMID: 34620064]
[15]
Sadr S, Borji H. Echinococcus granulosus as a promising therapeutic agent against triplenegative breast cancer. Curr Cancer Ther Rev 2023; 19(4): 292-7.
[http://dx.doi.org/10.2174/1573394719666230427094247]
[16]
Gupta S, Coronado GD, Argenbright K, et al. Mailed fecal immunochemical test outreach for colorectal cancer screening: Summary of a centers for disease control and prevention-sponsored summit. CA Cancer J Clin 2020; 70: 283-98.
[http://dx.doi.org/10.3322/caac.21615]
[17]
Huang J, Cheng N, Chen C, Li C. Inferring cell-type-specific genes of lung cancer based on deep learning. Curr Gene Ther 2022; 22(5): 439-48.
[http://dx.doi.org/10.2174/1566523222666220324110914] [PMID: 35331109]
[18]
Gupta N, Malviya R. Role of polysaccharides mimetic components in targeted cancer treatment. Curr Drug Targets 2022; 23(9): 856-68.
[19]
Upaganlawar A, Polshettiwar S, Raut S, Tagalpallewar A, Pande V. Effective cancer management: Inimitable role of phytochemical based nano-formulations. Curr Drug Metab 2022; 23(11): 869-81.
[http://dx.doi.org/10.2174/1389200223666220905162245] [PMID: 36065928]
[20]
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular mechanisms of Sanguinarine in cancer prevention and treatment. Anti-Cancer Agents Med Chem 2023; 23: 765-78.
[21]
Arrigoni R, Ballini A, Santacroce L, et al. Another look at dietary polyphenols: Challenges in cancer prevention and treatment. Curr Med Chem 2022; 29(6): 1061-82.
[http://dx.doi.org/10.2174/1875533XMTE3kMjUp2] [PMID: 34375181]
[22]
Akter Z, Khan FZ, Khan MA. Gold nanoparticles in triple-negative breast cancer therapeutics. Curr Med Chem 2023; 30(3): 316-34.
[http://dx.doi.org/10.2174/0929867328666210902141257] [PMID: 34477507]
[23]
Carrick S, Parker S, Thornton CE, Ghersi D, Simes J, Wilcken N. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev 2009; 2009: CD003372.
[http://dx.doi.org/10.1002/14651858.CD003372.pub3]
[24]
Ghafelehbashi R, Tavakkoli YM, Heidarpoor SL, et al. A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. Mater Sci Eng C 2020; 109: 110597.
[http://dx.doi.org/10.1016/j.msec.2019.110597] [PMID: 32228991]
[25]
Aktan B, Chambre L, Sanyal R, Sanyal A. “Clickable” nanogels via thermally driven self-assembly of polymers: Facile access to targeted imaging platforms using thiol-maleimide conjugation. Biomacromolecules 2017; 18(2): 490-7.
[http://dx.doi.org/10.1021/acs.biomac.6b01576] [PMID: 28052673]
[26]
Shen W, Chang Y, Liu G, Wang H, Cao A, An Z. Biocompatible, antifouling, and thermosensitive core-shell nanogels synthesized by RAFT aqueous dispersion polymerization. Macromolecules 2011; 44(8): 2524-30.
[http://dx.doi.org/10.1021/ma200074n]
[27]
Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(4): 509-33.
[http://dx.doi.org/10.1002/wnan.1328] [PMID: 25581024]
[28]
Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J 2016; 24(2): 133-9.
[http://dx.doi.org/10.1016/j.jsps.2014.04.001] [PMID: 27013905]
[29]
Din F, Kim DW, Choi JY, et al. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater 2017; 54: 239-48.
[http://dx.doi.org/10.1016/j.actbio.2017.03.007] [PMID: 28285074]
[30]
Taemeh MA, Shiravandi A, Korayem MA, Daemi H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym 2020; 228: 115419.
[http://dx.doi.org/10.1016/j.carbpol.2019.115419] [PMID: 31635749]
[31]
Sheldon RA, Norton M. Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chem 2020; 22(19): 6310-22.
[http://dx.doi.org/10.1039/D0GC02630A]
[32]
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers 2020; 12(10): 2417.
[http://dx.doi.org/10.3390/polym12102417] [PMID: 33092194]
[33]
Ramdhan T, Ching SH, Prakash S, Bhandari B. Physical and mechanical properties of alginate based composite gels. Trends Food Sci Technol 2020; 106: 150-9.
[http://dx.doi.org/10.1016/j.tifs.2020.10.002]
[34]
Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate based scaffolds for cartilage tissue engineering: A review. Int J Polym Mater 2020; 69(4): 230-47.
[http://dx.doi.org/10.1080/00914037.2018.1562924]
[35]
Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019; 11(4): 042001.
[http://dx.doi.org/10.1088/1758-5090/ab331e] [PMID: 31315105]
[36]
Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: A review. Carbohydr Polym 2011; 84(1): 33-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.048]
[37]
Li J, He J, Huang Y. Role of alginate in antibacterial finishing of textiles. Int J Biol Macromol 2017; 94(Pt A): 466-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.054] [PMID: 27771407]
[38]
Dalheim MØ, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE. Efficient functionalization of alginate biomaterials. Biomaterials 2016; 80: 146-56.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.043] [PMID: 26708091]
[39]
Mohammed A, Bissoon R, Bajnath E, et al. Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach. Carbohydr Polym 2018; 198: 109-18.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.067] [PMID: 30092980]
[40]
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16(3): 280-306.
[41]
Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 2012; 88(1): 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.012]
[42]
Peña A, Sánchez NS, Calahorra M. Effects of chitosan on Candida albicans: Conditions for its antifungal activity. Biomed Res Int 2013; 2013: 527549.
[http://dx.doi.org/10.1155/2013/527549]
[43]
Shin J. Evaluation of Calcium Alginate Microparticles Prepared Using a Novel Nebulized Aerosol Mediated Interfacial Crosslinking Method. University of Toledo Health Science Campus 2016.
[44]
Gombotz W, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31(3): 267-85.
[http://dx.doi.org/10.1016/S0169-409X(97)00124-5] [PMID: 10837629]
[45]
Chan L, Lee H, Heng P. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohyd Polym 2006; 63: 176-87.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.033]
[46]
Orive G, Ponce S, Hernández RM, Gascón AR, Igartua M, Pedraz JL. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002; 23(18): 3825-31.
[http://dx.doi.org/10.1016/S0142-9612(02)00118-7] [PMID: 12164186]
[47]
Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob Cardiol Sci Pract 2016; 2016(1): e201604.
[http://dx.doi.org/10.21542/gcsp.2016.4] [PMID: 29043254]
[48]
Distler T, McDonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and enzymatically dual cross-linked oxidized alginate gelatin hydrogels with tunable stiffness and degradation behavior for tissue engineering. ACS Biomater Sci Eng 2020; 6(7): 3899-914.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00677] [PMID: 33463325]
[49]
Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: A review. Biomacromolecules 2018; 19(1): 3-21.
[http://dx.doi.org/10.1021/acs.biomac.7b01331] [PMID: 29172448]
[50]
Alvarez MV, Bambace MF, Quintana G, Gómez-Zavaglia A, Moreira MR. Prebiotic-alginate edible coating on fresh-cut apple as a new carrier for probiotic lactobacilli and bifidobacteria. Lebensm Wiss Technol 2021; 137: 110483.
[http://dx.doi.org/10.1016/j.lwt.2020.110483]
[51]
Kelishomi ZH, Goliaei B, Mahdavi H, et al. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem 2016; 196: 897-902.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.091] [PMID: 26593570]
[52]
Bi D, Yu B, Han Q, et al. Immune activation of RAW264.7 macrophages by low molecular weight fucoidan extracted from New Zealand Undaria pinnatifida. J Agric Food Chem 2018; 66(41): 10721-8.
[http://dx.doi.org/10.1021/acs.jafc.8b03698] [PMID: 30257559]
[53]
Kurczewska J, Cegłowski M, Pecyna P, Ratajczak M, Gajęcka M, Schroeder G. Molecularly imprinted polymer as drug delivery carrier in alginate dressing. Mater Lett 2017; 201: 46-9.
[http://dx.doi.org/10.1016/j.matlet.2017.05.008]
[54]
Larsen B, Salem DMSA, Sallam MAE, Mishrikey MM, Beltagy AI. Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res 2003; 338(22): 2325-36.
[http://dx.doi.org/10.1016/S0008-6215(03)00378-1] [PMID: 14572716]
[55]
Shtenberg Y, Goldfeder M, Prinz H, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol 2018; 111: 62-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.137] [PMID: 29292143]
[56]
Tentor F, Siccardi G, Sacco P, et al. Long lasting mucoadhesive membrane based on alginate and chitosan for intravaginal drug delivery. J Mater Sci Mater Med 2020; 31(3): 25.
[http://dx.doi.org/10.1007/s10856-020-6359-y] [PMID: 32060634]
[57]
Li A, Gong T, Yang X, Guo Y. Interpenetrating network gels with tunable physical properties: Glucono-δ-lactone induced gelation of mixed Alg/gellan sol systems. Int J Biol Macromol 2020; 151: 257-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.107] [PMID: 32057870]
[58]
Nido PJ, Migo V, Maguyon-Detras MC, Alfafara C. Process optimization potassium nanofertilizer production via ionotropic pre-gelation using alginate-chitosan carrier. MATEC Web of Conferences. 268: 05001.
[59]
Estrela N, Franquelim HG, Lopes C, et al. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins 2015; 83(11): 2039-51.
[http://dx.doi.org/10.1002/prot.24921] [PMID: 26344410]
[60]
Fu S, Thacker A, Sperger DM, et al. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech 2011; 12(2): 453-60.
[http://dx.doi.org/10.1208/s12249-011-9587-0] [PMID: 21437788]
[61]
Javedan G, Shidfar F, Davoodi SH, et al. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol Nutr Food Res 2016; 60(12): 2665-77.
[http://dx.doi.org/10.1002/mnfr.201600112] [PMID: 27466783]
[62]
Sachan N, Pushkar S, Jha A, Bhattcharya A. Sodium alginate: The wonder polymer for controlled drug delivery. J Pharm Res 2009; 2(8)
[63]
Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998; 16(5): 224-30.
[http://dx.doi.org/10.1016/S0167-7799(98)01191-3] [PMID: 9621462]
[64]
Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001; 22(6): 511-21.
[http://dx.doi.org/10.1016/S0142-9612(00)00201-5] [PMID: 11219714]
[65]
Crow BB, Nelson KD. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers 2006; 81(6): 419-27.
[http://dx.doi.org/10.1002/bip.20442] [PMID: 16419061]
[66]
Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/7697031]
[67]
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6(8): 623-33.
[http://dx.doi.org/10.1002/mabi.200600069] [PMID: 16881042]
[68]
Singh B, Sharma V, Chauhan D. Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery. Chem Eng Res Des 2010; 88(8): 997-1012.
[http://dx.doi.org/10.1016/j.cherd.2010.01.017]
[69]
Kumar Giri T, Thakur D, Alexander A, Badwaik H, Krishna TD, Tripathi DK. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: Present status and applications. Curr Drug Deliv 2012; 9(6): 539-55.
[http://dx.doi.org/10.2174/156720112803529800] [PMID: 22998675]
[70]
Yadav C, Saini A, Zhang W, et al. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 2021; 166: 1586-616.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.038] [PMID: 33186649]
[71]
Jørgensen T, Sletmoen M, Draget K, Stokke B. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization. Biomacromolecules 2007; 8(8): 2388-97.
[http://dx.doi.org/10.1021/bm070208d]
[72]
Mohammadhosseini M, Sarker SD, Akbarzadeh A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J Ethnopharmacol 2017; 199: 257-315.
[http://dx.doi.org/10.1016/j.jep.2017.02.010] [PMID: 28179115]
[73]
Hay ID, Ur Rehman Z, Ghafoor A, Rehm BHA. Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 2010; 85(6): 752-9.
[http://dx.doi.org/10.1002/jctb.2372]
[74]
Ravi Kumar MNV, Kumar N. Polymeric controlled drug-delivery systems: Perspective issues and opportunities. Drug Dev Ind Pharm 2001; 27(1): 1-30.
[http://dx.doi.org/10.1081/DDC-100000124] [PMID: 11247530]
[75]
Shilpa A, Agrawal SS, Ray AR. Controlled delivery of drugs from alginate matrix. J Macromol Sci Part C Polym Rev 2003; 43(2): 187-221.
[http://dx.doi.org/10.1081/MC-120020160]
[76]
Dodero A, Alberti S, Gaggero G, et al. An up-to-date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv Mat Interfaces 2021; 8(22): 2100809.
[http://dx.doi.org/10.1002/admi.202100809]
[77]
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 2019; 25(11): 1312-34.
[http://dx.doi.org/10.2174/1381612825666190425163424] [PMID: 31465282]
[78]
Kim C, Kim H, Park H, Lee KY. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr Polym 2019; 223: 115045.
[http://dx.doi.org/10.1016/j.carbpol.2019.115045] [PMID: 31426959]
[79]
Matai I, Gopinath P. Chemically cross-linked hybrid nanogels of alginate and PAMAM dendrimers as efficient anticancer drug delivery vehicles. ACS Biomater Sci Eng 2016; 2(2): 213-23.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00392] [PMID: 33418634]
[80]
Zhang HF, Ma L, Su F, et al. pH and reduction dual-responsive feather keratin-sodium alginate nanogels with high drug loading capacity for tumor-targeting DOX delivery. Polym Test 2021; 103: 107375.
[http://dx.doi.org/10.1016/j.polymertesting.2021.107375]
[81]
Suhail M, Rosenholm JM, Minhas MU, et al. Nanogels as drug-delivery systems: A comprehensive overview. Ther Deliv 2019; 10(11): 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[82]
Xu W, Wang J, Li Q, et al. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy. J Mater Chem B Mater Biol Med 2021; 9(38): 8031-7.
[http://dx.doi.org/10.1039/D1TB00788B] [PMID: 34486010]
[83]
Jia X, Pei M, Zhao X, Tian K, Zhou T, Liu P. PEGylated oxidized alginate-dox prodrug conjugate nanoparticles cross-linked with fluorescent carbon dots for tumor theranostics. ACS Biomater Sci Eng 2016; 2(9): 1641-8.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00443] [PMID: 33440597]
[84]
Sarika PR, James NR. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels. Mater Sci Eng C 2016; 68: 251-7.
[http://dx.doi.org/10.1016/j.msec.2016.05.046]
[85]
Sultana F, Manirujjaman M, Haque MI-U, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci 2013; 3: 95-105.
[http://dx.doi.org/10.7324/JAPS.2013.38.S15]
[86]
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 2022; 11(2): 135.
[http://dx.doi.org/10.3390/antibiotics11020135] [PMID: 35203738]
[87]
Maleki DS, Alipour M, Dalir AE, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36(3): 1156-81.
[http://dx.doi.org/10.1002/ptr.7389] [PMID: 35129230]
[88]
Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH. Curcumin nanoformulations for colorectal cancer: A review. Front Pharmacol 2019; 10: 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[89]
Zhang Y, Rauf Khan A, Fu M, et al. Advances in curcumin-loaded nanopreparations: Improving bioavailability and overcoming inherent drawbacks. J Drug Target 2019; 27(9): 917-31.
[http://dx.doi.org/10.1080/1061186X.2019.1572158] [PMID: 30672353]
[90]
Cano-Sarmiento C, Téllez-Medina DI, Viveros-Contreras R, et al. Zeta potential of food matrices. Food Eng Rev 2018; 10(3): 113-38.
[http://dx.doi.org/10.1007/s12393-018-9176-z]
[91]
Malhotra A, Coupland JN. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocoll 2004; 18(1): 101-8.
[http://dx.doi.org/10.1016/S0268-005X(03)00047-X]
[92]
Thakur D, Jain A, Ghoshal G, Shivhare US, Katare OP. Microencapsulation of β-carotene based on casein/guar gum blend using zeta potential-yield stress phenomenon: An approach to enhance photo-stability and retention of functionality. AAPS PharmSciTech 2017; 18(5): 1447-59.
[http://dx.doi.org/10.1208/s12249-017-0806-1] [PMID: 28550604]
[93]
Abdouss H, Pourmadadi M, Zahedi P, et al. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. Int J Biol Macromol 2023; 242(Pt 3): 125134.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125134] [PMID: 37257532]
[94]
Reeves A, Vinogradov SV, Morrissey P, Chernin M, Ahmed MM. Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol Cell Pharmacol 2015; 7(3): 25-40.
[http://dx.doi.org/10.4255/mcpharmacol.15.04] [PMID: 26937266]
[95]
Peng N, Ding X, Wang Z, et al. Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohydr Polym 2019; 204: 32-41.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.084] [PMID: 30366540]
[96]
Dalvadi H, Jayvadan P. Chronpharmaceutics, pulsatile drug delivery system as current trend, Chronpharmaceutics/Asian. J Pharm Sci 2010; 5: 204-30.
[97]
Do HD, Couillaud BM, Doan BT, Corvis Y, Mignet N. Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Adv Drug Deliv Rev 2019; 138: 3-17.
[http://dx.doi.org/10.1016/j.addr.2018.10.006] [PMID: 30321618]
[98]
Nguyen DH, Choi J. Disulfide-crosslinked heparin-pluronic nanogels as a redox-sensitive nanocarrier for intracellular protein delivery. J Bioact Compat Polym 2011; 26(3): 287-300.
[http://dx.doi.org/10.1177/0883911511406031]
[99]
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240: 109-26.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[100]
Dukhopelnykov EV, Blyzniuk YN, Skuratovska AA, Bereznyak EG, Gladkovskaya NA. Interaction of doxorubicin delivered by superparamagnetic iron oxide nanoparticles with DNA. Colloids Surf B Biointerfaces 2022; 219: 112815.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112815] [PMID: 36108366]
[101]
Khaledian M, Nourbakhsh MS, Saber R, Hashemzadeh H, Darvishi MH. Preparation and evaluation of doxorubicin-loaded PLA-PEG-FA copolymer containing superparamagnetic iron oxide nanoparticles (SPIONs) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int J Nanomedicine 2020; 15: 6167-82.
[http://dx.doi.org/10.2147/IJN.S261638] [PMID: 32922000]
[102]
Jie L, Lang D, Kang X, Yang Z, Du Y, Ying X. Superparamagnetic iron oxide nanoparticles/doxorubicin-loaded starch-octanoic micelles for targeted tumor therapy. J Nanosci Nanotechnol 2019; 19(9): 5456-62.
[http://dx.doi.org/10.1166/jnn.2019.16548] [PMID: 30961696]
[103]
Di Trani N, Silvestri A, Sizovs A, et al. Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery. Lab Chip 2020; 20(9): 1562-76.
[http://dx.doi.org/10.1039/D0LC00121J] [PMID: 32249279]
[104]
Haritha M, Suresh CH. Hydrogen bonds of OC-NH motif in rings in drugs: A molecular electrostatic potential analysis. J Comput Chem 2023; 44(17): 1550-9.
[http://dx.doi.org/10.1002/jcc.27107] [PMID: 36971443]
[105]
Chen Y, Zhang F, Wang Q, et al. The synthesis of LA-Fe3O4 @PDA-PEG-DOX for photothermal therapy–chemotherapy. Dalton Trans 2018; 47(7): 2435-43.
[http://dx.doi.org/10.1039/C7DT04080F] [PMID: 29379913]
[106]
Gheena S, Ezhilarasan D. Syringic acid triggers reactive oxygen species–mediated cytotoxicity in HepG2 cells. Hum Exp Toxicol 2019; 38(6): 694-702.
[http://dx.doi.org/10.1177/0960327119839173] [PMID: 30924378]
[107]
Kan S, Cheung W, Zhou Y, Ho W. Enhancement of doxorubicin cytotoxicity by tanshinone IIA in HepG2 human hepatoma cells. Planta Med 2014; 80(1): 70-6.
[http://dx.doi.org/10.1055/s-0033-1360126] [PMID: 24414309]
[108]
Xu W, Zheng S, Sun H, et al. Green-step fabrication of gliadin/sodium caseinate nanogels for methotrexate release, cytotoxicity and cell phagocytosis. J Drug Deliv Sci Technol 2022; 67: 103028.
[http://dx.doi.org/10.1016/j.jddst.2021.103028]
[109]
Yu G, Li H, Yang S, Wen J, Niu J, Zu Y. ssDNA aptamer specifically targets and selectively delivers cytotoxic drug doxorubicin to HepG2 cells. PLoS One 2016; 11(1): e0147674.
[http://dx.doi.org/10.1371/journal.pone.0147674] [PMID: 26808385]
[110]
Gallo E, Diaferia C, Rosa E, Smaldone G, Morelli G, Accardo A. Peptide-based hydrogels and nanogels for delivery of doxorubicin. Int J Nanomedicine 2021; 16: 1617-30.
[http://dx.doi.org/10.2147/IJN.S296272] [PMID: 33688182]
[111]
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328: 171-91.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.033] [PMID: 32866591]
[112]
Balde A, Kim SK, Benjakul S, Nazeer RA. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. Int J Biol Macromol 2022; 220: 1464-79.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.116] [PMID: 36116588]
[113]
Papagiannopoulos A, Sotiropoulos K. Current advances of polysaccharide-based nanogels and microgels in food and biomedical sciences. Polymers 2022; 14(4): 813.
[http://dx.doi.org/10.3390/polym14040813] [PMID: 35215726]
[114]
Chen X, Chen L, Yao X, et al. Dual responsive supramolecular nanogels for intracellular drug delivery. Chem Commun 2014; 50(29): 3789-91.
[http://dx.doi.org/10.1039/c4cc00016a] [PMID: 24519486]
[115]
Leriche G, Chisholm L, Wagner A. Cleavable linkers in chemical biology. Bioorg Med Chem 2012; 20(2): 571-82.
[http://dx.doi.org/10.1016/j.bmc.2011.07.048] [PMID: 21880494]
[116]
Zhou T, Li J, Jia X, Zhao X, Liu P. pH/Reduction dual-responsive oxidized alginate-doxorubicin (mPEG-OAL-DOX/Cys) prodrug nanohydrogels: Effect of complexation with cyclodextrins. Langmuir 2018; 34(1): 416-24.
[http://dx.doi.org/10.1021/acs.langmuir.7b03990] [PMID: 29237263]
[117]
Sun Z, Yi Z, Zhang H, et al. Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr Polym 2017; 175: 159-69.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.078] [PMID: 28917852]
[118]
Gierszewska-Drużyńska M, Ostrowska-Czubenko J. The effect of ionic crosslinking on thermal properties of hydrogel chitosan membranes. Prog Chem Appl Chitin Deriv 2010; XV: 25-32.
[119]
Neerooa BNHM, Ooi LT, Shameli K, et al. Development of polymer-assisted nanoparticles and nanogels for cancer therapy: An update. Gels 2021; 7(2): 60.
[http://dx.doi.org/10.3390/gels7020060] [PMID: 34067587]
[120]
Démoulins T, Milona P, McCullough KC. Alginate-coated chitosan nanogels differentially modulate class-A and class-B CpG-ODN targeting of dendritic cells and intracellular delivery. Nanomedicine 2014; 10(8): 1739-49.
[http://dx.doi.org/10.1016/j.nano.2014.06.003] [PMID: 24941461]
[121]
Su M, Zhu Y, Chen J, et al. Microfluidic synthesis of manganese-alginate nanogels with self-supplying H2O2 capability for synergistic chemo/chemodynamic therapy and boosting anticancer immunity. Chem Eng J 2022; 435: 134926.
[http://dx.doi.org/10.1016/j.cej.2022.134926]
[122]
Bazban-Shotorbani S, Dashtimoghadam E, Karkhaneh A, Hasani-Sadrabadi MM, Jacob KI. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery. Langmuir 2016; 32(19): 4996-5003.
[http://dx.doi.org/10.1021/acs.langmuir.5b04645] [PMID: 26938744]
[123]
Shad PM, Karizi SZ, Javan RS, et al. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol In Vitro 2020; 65: 104756.
[http://dx.doi.org/10.1016/j.tiv.2019.104756] [PMID: 31884114]
[124]
Zhang B, Luo J, Fang Y. Access to functionalized alkynylcyclopropanes via reductive radical-polar crossover-based reactions of 1,3-enynes with alkyl radicals. Org Biomol Chem 2023; 21(4): 732-7.
[http://dx.doi.org/10.1039/D2OB02155B] [PMID: 36601995]
[125]
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6(10): 3634-57.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.004] [PMID: 33898869]
[126]
Yang Z, Ding J. A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block. Macromol Rapid Commun 2008; 29(9): 751-6.
[http://dx.doi.org/10.1002/marc.200700872]
[127]
Zhang YX, Chen YF, Shen XY, Hu JJ, Jan JS. Reduction- and ph-sensitive lipoic acid-modified poly(l-lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer 2016; 86: 32-41.
[http://dx.doi.org/10.1016/j.polymer.2016.01.030]
[128]
Zhao Y, Simon C, Daoud Attieh M, Haupt K, Falcimaigne-Cordin A. Reduction-responsive molecularly imprinted nanogels for drug delivery applications. RSC Advances 2020; 10(10): 5978-87.
[http://dx.doi.org/10.1039/C9RA07512G] [PMID: 35497405]
[129]
Pawar SN. Chemical modification of alginate. In: Venkatesan J, Anil S, Kim S-KBT-SP, Eds. Elsevier. 2017; pp. 111-55.
[130]
Jia X, Zhao X, Tian K, et al. Fluorescent copolymer-based prodrug for ph-triggered intracellular release of DOX. Biomacromolecules 2015; 16(11): 3624-31.
[http://dx.doi.org/10.1021/acs.biomac.5b01070] [PMID: 26461275]
[131]
Chen L, Xue Y, Xia X, et al. A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. J Mater Chem B Mater Biol Med 2015; 3(46): 8949-62.
[http://dx.doi.org/10.1039/C5TB01851J] [PMID: 32263027]
[132]
Wang QS, Gao LN, Zhu XN, et al. Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics 2019; 9(21): 6239-55.
[http://dx.doi.org/10.7150/thno.35972] [PMID: 31534548]
[133]
Zhou K, Wang X, Chen D, et al. Enhanced   treatment   effects of tilmicosin   against Staphylococcus aureus  cow   mastitis by self- assembly sodium alginate-chitosan nanogel. Pharmaceutics 2019; 11(10): 524.
[http://dx.doi.org/10.3390/pharmaceutics11100524] [PMID: 31614726]
[134]
Mirrahimi M, Abed Z, Beik J, et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 2019; 143: 178-85.
[http://dx.doi.org/10.1016/j.phrs.2019.01.005] [PMID: 30611856]
[135]
Xu D, Qiao T, Wang Y, Wang QS, Cui YL. Alginate nanogels- based thermosensitive hydrogel to improve antidepressant-like effects of albiflorin via intranasal delivery. Drug Deliv 2021; 28(1): 2137-49.
[http://dx.doi.org/10.1080/10717544.2021.1986604] [PMID: 34617853]
[136]
Chang S, Qin D, Yan R, et al. Temperature and pH dual responsive nanogels of modified sodium alginate and NIPAM for berberine loading and release. ACS Omega 2021; 6(2): 1119-28.
[http://dx.doi.org/10.1021/acsomega.0c03965] [PMID: 33490771]
[137]
Shahbazizadeh S, Naji-Tabasi S, Shahidi-Noghabi M. Development of soy protein/sodium alginate nanogel-based cress seed gum hydrogel for oral delivery of curcumin. Chem Biol Technol Agric 2022; 9(1): 41.
[http://dx.doi.org/10.1186/s40538-022-00304-4]
[138]
Ji P, Zhou B, Zhan Y, et al. Multistimulative nanogels with enhanced thermosensitivity for intracellular therapeutic delivery. ACS Appl Mater Interfaces 2017; 9(45): 39143-51.
[http://dx.doi.org/10.1021/acsami.7b08209] [PMID: 29072441]
[139]
Sang G, Bardajee GR, Mirshokraie A, Didehban K. A thermo/pH/magnetic-responsive nanogel based on sodium alginate by modifying magnetic graphene oxide: Preparation, characterization, and drug delivery. Iran Polym J 2018; 27(3): 137-44.
[http://dx.doi.org/10.1007/s13726-017-0592-3]
[140]
Zhou T, Li J, Liu P. Ionically crosslinked alginate-based nanohydrogels for tumor-specific intracellular triggered release: Effect of chemical modification. Colloids Surf A Physicochem Eng Asp 2018; 553: 180-6.
[http://dx.doi.org/10.1016/j.colsurfa.2018.05.061]
[141]
Hayati M, Rezanejade Bardajee G, Ramezani M, Mizani F. Temperature/pH/magnetic triple sensitive nanogel for doxorubicin anticancer drug delivery. Inorg Nano-Met Chem 2020; 50(11): 1189-200.
[http://dx.doi.org/10.1080/24701556.2020.1737821]
[142]
Liu M, Song X, Wen Y, Zhu JL, Li J. Injectable thermoresponsive hydrogel formed by alginate-g-Poly(N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl Mater Interfaces 2017; 9(41): 35673-82.
[http://dx.doi.org/10.1021/acsami.7b12849] [PMID: 28937214]
[143]
Narayanan KB, Bhaskar R, Han SS. Recent advances in the biomedical applications of functionalized nanogels. Pharmaceutics 2022; 14(12): 2832.
[http://dx.doi.org/10.3390/pharmaceutics14122832]
[144]
Bardajee GR, Hooshyar Z. A novel thermo-sensitive nanogel composing of poly(N-isopropylacrylamide) grafted onto alginate-modified graphene oxide for hydrophilic anticancer drug delivery. J Indian Chem Soc 2018; 15(1): 121-9.
[http://dx.doi.org/10.1007/s13738-017-1215-9]
[145]
Chen YB, Zhang YB, Wang YL, et al. A novel inhalable quercetin-alginate nanogel as a promising therapy for acute lung injury. J Nanobiotechnol 2022; 20(1): 272.
[http://dx.doi.org/10.1186/s12951-022-01452-3] [PMID: 35690763]
[146]
Zhao FQ, Wang GF, Xu D, Zhang HY, Cui YL, Wang QS. Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. Int J Biol Macromol 2021; 168: 93-104.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.204] [PMID: 33278444]
[147]
Bourgat Y, Mikolai C, Stiesch M, Klahn P, Menzel H. Enzyme-responsive nanoparticles and coatings made from alginate/peptide ciprofloxacin conjugates as drug release system. Antibiotics 2021; 10(6): 653.
[http://dx.doi.org/10.3390/antibiotics10060653]
[148]
Lin X, Guan X, Wu Y, et al. An alginate/poly(N-isopropylacrylamide)-based composite hydrogel dressing with stepwise delivery of drug and growth factor for wound repair. Mater Sci Eng C 2020; 115: 111123.
[http://dx.doi.org/10.1016/j.msec.2020.111123] [PMID: 32600722]
[149]
Il Kim M, Park CY, Seo JM, et al. In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for imageable drug-delivery system. ACS Appl Mater Interfaces 2021; 13(31): 36697-708.
[http://dx.doi.org/10.1021/acsami.1c02286] [PMID: 34313117]
[150]
Shaikh MAJ, Alharbi KS, Almalki WH, et al. Sodium alginate based drug delivery in management of breast cancer. Carbohydr Polym 2022; 292: 119689.
[http://dx.doi.org/10.1016/j.carbpol.2022.119689] [PMID: 35725179]
[151]
Cong Z, Shi Y, Wang Y, et al. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol 2018; 107(Pt A): 855-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.065] [PMID: 28935541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy