Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

多酚没食子丹苷与阿尔茨海默病相关淀粉样多肽的相互作用:从分子观察到生理意义

卷 20, 期 9, 2023

发表于: 15 December, 2023

页: [603 - 617] 页: 15

弟呕挨: 10.2174/0115672050277001231213073043

价格: $65

conference banner
摘要

多酚是植物中大量存在的天然化合物。众所周知,它们对人体健康有许多好处,包括抗氧化特性和抗炎活性。有趣的是,许多研究表明,多酚还可以调节与疾病状态相关的淀粉样蛋白原纤维的形成,并可以防止细胞毒性低聚物物种的形成。在这篇综述中,我们强调了四种具有高构象灵活性、低毒性和多靶标性的可水解没食子单宁(HGTs)的众多作用,例如单宁酸、五没食子酰葡萄糖、胶原蛋白和1,3,6-三- o没食子酰-β- d -葡萄糖,对与阿尔茨海默病(AD)相关的淀粉样蛋白聚集的影响。这些hgt已显示出在不同水平上减少AD相关淀粉样原纤维形成的有趣能力,包括由淀粉样β肽、微管蛋白相关单位和胰岛淀粉样多肽组装的淀粉样原纤维。hgt还被证明可以分解预先形成的原纤维,并减轻小鼠的认知能力下降。最后,本文强调了进一步研究这些天然存在的hgt作为有前途的支架的重要性,以设计能够干扰与AD发病机制相关的蛋白毒性低聚物和聚集体形成的分子。

关键词: 阿尔茨海默病、多酚、没食子丹宁、淀粉样原纤维、淀粉样β肽、tau蛋白、胰岛淀粉样多肽(IAPP)。

Next »
[1]
Gauthier, S.; Webster, C.; Servaes, S.; Morais, J.; Rosa-Neto, P. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support; Alzheimer’s disease international: London, England, 2022.
[2]
Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther., 2023, 8(1), 248.
[PMID: 37386015]
[3]
van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L.D.; Iwatsubo, T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med., 2023, 388(1), 9-21.
[PMID: 36449413]
[4]
Ly, H.; Verma, N.; Sharma, S.; Kotiya, D.; Despa, S.; Abner, E.L.; Nelson, P.T.; Jicha, G.A.; Wilcock, D.M.; Goldstein, L.B.; Guerreiro, R.; Brás, J.; Hanson, A.J.; Craft, S.; Murray, A.J.; Biessels, G.J.; Troakes, C.; Zetterberg, H.; Hardy, J.; Lashley, T.; Aesg; Despa, F. The association of circulating amylin with β-amyloid in familial Alzheimer’s disease. Alzheimers Dement., 2021, 7(1), e12130.
[PMID: 33521236]
[5]
Kotiya, D.; Leibold, N.; Verma, N.; Jicha, G.A.; Goldstein, L.B.; Despa, F. Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. J. Biol. Chem., 2023, 299(5), 104682.
[PMID: 37030503]
[6]
Knowles, T.P.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[PMID: 24854788]
[7]
Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem., 2017, 86, 27-68.
[PMID: 28498720]
[8]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[PMID: 32162523]
[9]
Lecour, S.; Lamont, K.T. Natural polyphenols and cardioprotection. Mini Rev. Med. Chem., 2011, 11(14), 1191-1199.
[PMID: 22070680]
[10]
Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24(13), 2452.
[PMID: 31277395]
[11]
Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 2013, 72, 1-20.
[PMID: 23774057]
[12]
Saini, N; Gahlawat, S; Lather, V. Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent. Plant Biotechnol, 2017, 255, 270.
[13]
Jucá, M.M.; Cysne Filho, F.M.S.; de Almeida, J.C.; Mesquita, D.D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; Vasconcelos, S.M.M. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res., 2020, 34(5), 692-705.
[PMID: 30445839]
[14]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[PMID: 30746536]
[15]
Mutabaruka, R.; Hairiah, K.; Cadisch, G. Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol. Biochem., 2007, 39(7), 1479-1492.
[16]
Cunningham, D.F.; O’Connor, B. Proline specific peptidases. Biochim Biophys Acta, 1997, 1343(2), 160-186.
[17]
Chung, S-K.; Nam, J-A.; Jeon, S-Y.; Kim, S-I.; Lee, H-J.; Chung, T.H.; Song, K.S. A prolyl endopeptidase-inhibiting antioxidant from Phyllanthus ussurensis. Arch. Pharm. Res., 2003, 26(12), 1024-1028.
[PMID: 14723335]
[18]
Fujiwara, H.; Tabuchi, M.; Yamaguchi, T.; Iwasaki, K.; Furukawa, K.; Sekiguchi, K.; Ikarashi, Y.; Kudo, Y.; Higuchi, M.; Saido, T.C.; Maeda, S.; Takashima, A.; Hara, M.; Yaegashi, N.; Kase, Y.; Arai, H. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J. Neurochem., 2009, 109(6), 1648-1657.
[PMID: 19457098]
[19]
Freyssin, A.; Page, G.; Fauconneau, B.; Rioux Bilan, A. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen. Res., 2018, 13(6), 955-961.
[PMID: 29926816]
[20]
Gaudreault, R.; Mousseau, N. Mitigating Alzheimer’s disease with natural polyphenols: A review. Curr. Alzheimer Res., 2019, 16(6), 529-543.
[PMID: 30873922]
[21]
Gaudreault, R.; Hervé, V.; van de Ven, T.G.M.; Mousseau, N.; Ramassamy, C. Polyphenol-peptide interactions in mitigation of alzheimer’s disease: Role of biosurface-induced aggregation. J. Alzheimers Dis., 2021, 81(1), 33-55.
[PMID: 33749653]
[22]
Li, Q.; Tu, Y.; Zhu, C.; Luo, W.; Huang, W.; Liu, W. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Ind. Crops Prod., 2017, 108, 512-519.
[23]
Chen, S-Y.; Gao, Y.; Sun, J-Y.; Meng, X-L.; Yang, D.; Fan, L-H.; Xiang, L.; Wang, P. Traditional Chinese medicine: Role in reducing β-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of Alzheimer’s disease. Front. Pharmacol., 2020, 11, 497.
[PMID: 32390843]
[24]
Wang, Z-Y.; Liu, J.; Zhu, Z.; Su, C-F.; Sreenivasmurthy, S.G.; Iyaswamy, A.; Lu, J.H.; Chen, G.; Song, J.X.; Li, M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed. Pharmacother., 2021, 133, 110968.
[PMID: 33189067]
[25]
Wu, T-Y.; Chen, C-P.; Jinn, T-R. Traditional Chinese medicines and Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2011, 50(2), 131-135.
[PMID: 21791295]
[26]
Gea-González, A.; Hernández-García, S.; Henarejos-Escudero, P.; Martínez-Rodríguez, P.; García-Carmona, F.; Gandía-Herrero, F. Polyphenols from traditional Chinese medicine and Mediterranean diet are effective against Aβ toxicity in vitro and in vivo in Caenorhabditis elegans. Food Funct., 2022, 13(3), 1206-1217.
[PMID: 35018947]
[27]
Fernández, M.; Gobartt, A.L.; Balañá, M. Behavioural symptoms in patients with Alzheimer’s disease and their association with cognitive impairment. BMC Neurol., 2010, 10(1), 87.
[PMID: 20920205]
[28]
Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), a006296.
[PMID: 23028126]
[29]
Gómez-Isla, T.; Frosch, M.P. Lesions without symptoms: Understanding resilience to Alzheimer disease neuropathological changes. Nat. Rev. Neurol., 2022, 18(6), 323-332.
[PMID: 35332316]
[30]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[PMID: 9343467]
[31]
Langella, S.; Barksdale, N.G.; Vasquez, D.; Aguillon, D.; Chen, Y.; Su, Y.; Acosta-Baena, N.; Acosta-Uribe, J.; Baena, A.Y.; Garcia-Ospina, G.; Giraldo-Chica, M.; Tirado, V.; Muñoz, C.; Ríos-Romenets, S.; Guzman-Martínez, C.; Oliveira, G.; Yang, H.S.; Vila-Castelar, C.; Pruzin, J.J.; Ghisays, V.; Arboleda-Velasquez, J.F.; Kosik, K.S.; Reiman, E.M.; Lopera, F.; Quiroz, Y.T. Effect of apolipoprotein genotype and educational attainment on cognitive function in autosomal dominant Alzheimer’s disease. Nat. Commun., 2023, 14(1), 5120.
[PMID: 37612284]
[32]
Crean, S.; Ward, A.; Mercaldi, C.J.; Collins, J.M.; Cook, M.N.; Baker, N.L.; Arrighi, H.M. Apolipoprotein E ε4 prevalence in Alzheimer’s disease patients varies across global populations: A systematic literature review and meta-analysis. Dement. Geriatr. Cogn. Disord., 2011, 31(1), 20-30.
[PMID: 21124030]
[33]
Liu, C-C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[PMID: 23296339]
[34]
Maniv, I.; Sarji, M.; Bdarneh, A.; Feldman, A.; Ankawa, R.; Koren, E.; Magid-Gold, I.; Reis, N.; Soteriou, D.; Salomon-Zimri, S.; Lavy, T.; Kesselman, E.; Koifman, N.; Kurz, T.; Kleifeld, O.; Michaelson, D.; van Leeuwen, F.W.; Verheijen, B.M.; Fuchs, Y.; Glickman, M.H. Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model. Nat. Commun., 2023, 14(1), 5922.
[PMID: 37739965]
[35]
Wang, C.; Najm, R.; Xu, Q.; Jeong, D.E.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; Miller, B.L.; Malloy, M.J.; Huang, Y. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med., 2018, 24(5), 647-657.
[PMID: 29632371]
[36]
Ju, Y-E.S.; McLeland, J.S.; Toedebusch, C.D.; Xiong, C.; Fagan, A.M.; Duntley, S.P.; Morris, J.C.; Holtzman, D.M. Sleep quality and preclinical Alzheimer disease. JAMA Neurol., 2013, 70(5), 587-593.
[PMID: 23479184]
[37]
Steele, M.; Stuchbury, G.; Münch, G. The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition. Exp. Gerontol., 2007, 42(1-2), 28-36.
[PMID: 16839733]
[38]
Physical activity and Alzheimer disease: A protective association. Mayo Clinic Proceedings; Santos-Lozano, A.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Quindós-Rubial, M.; Fiuza-Luces, C.; Cristi-Montero, C., Eds.; Elsevier, 2016.
[39]
Buchanan, L.E.; Carr, J.K.; Fluitt, A.M.; Hoganson, A.J.; Moran, S.D.; de Pablo, J.J.; Skinner, J.L.; Zanni, M.T. Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy. Proc. Natl. Acad. Sci., 2014, 111(16), 5796-5801.
[PMID: 24550484]
[40]
Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis., 2023, 14(3), 176.
[PMID: 36859484]
[41]
Roberts, G.W.; Lofthouse, R.; Allsop, D.; Landon, M.; Kidd, M.; Prusiner, S.B.; Crow, T.J. CNS amyloid proteins in neurodegenerative diseases. Neurology, 1988, 38(10), 1534-1540.
[PMID: 2901696]
[42]
Sun, X.; Chen, W-D.; Wang, Y-D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol., 2015, 6, 221.
[PMID: 26483691]
[43]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[PMID: 27025652]
[44]
Brothers, H.M.; Gosztyla, M.L.; Robinson, S.R. The physiological roles of amyloid-β peptide hint at new ways to treat alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 118.
[PMID: 29922148]
[45]
Tamagno, E.; Guglielmotto, M.; Monteleone, D.; Tabaton, M. Amyloid-β production: Major link between oxidative stress and BACE1. Neurotox. Res., 2012, 22(3), 208-219.
[PMID: 22002808]
[46]
Jarrett, J.T.; Lansbury, P.T., Jr Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 1993, 73(6), 1055-1058.
[PMID: 8513491]
[47]
Sengupta, U.; Nilson, A.N.; Kayed, R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine, 2016, 6, 42-49.
[PMID: 27211547]
[48]
Kumar, D.K.; Choi, S.H.; Washicosky, K.J.; Eimer, W.A.; Tucker, S.; Ghofrani, J.; Lefkowitz, A.; McColl, G.; Goldstein, L.E.; Tanzi, R.E.; Moir, R.D. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med., 2016, 8(340), 340ra72.
[PMID: 27225182]
[49]
Morley, J.E.; Farr, S.; Nguyen, A.; Xu, F. what is the physiological function of amyloid-Beta protein?; Springer, 2019.
[50]
Koppensteiner, P.; Trinchese, F.; Fà, M.; Puzzo, D.; Gulisano, W.; Yan, S.; Poussin, A.; Liu, S.; Orozco, I.; Dale, E.; Teich, A.F.; Palmeri, A.; Ninan, I.; Boehm, S.; Arancio, O. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: An early index of Alzheimer’s disease. Sci. Rep., 2016, 6, 32553.
[PMID: 27581852]
[51]
Xiang, Y.; Bu, X.L.; Liu, Y.H.; Zhu, C.; Shen, L.L.; Jiao, S.S.; Zhu, X.Y.; Giunta, B.; Tan, J.; Song, W.H.; Zhou, H.D.; Zhou, X.F.; Wang, Y.J. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol., 2015, 130(4), 487-499.
[PMID: 26363791]
[52]
Ovod, V.; Ramsey, K.N.; Mawuenyega, K.G.; Bollinger, J.G.; Hicks, T.; Schneider, T.; Sullivan, M.; Paumier, K.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.; Fagan, A.M.; Patterson, B.W.; Bateman, R.J. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement., 2017, 13(8), 841-849.
[PMID: 28734653]
[53]
Cirrito, J.R.; May, P.C.; O’Dell, M.A.; Taylor, J.W.; Parsadanian, M.; Cramer, J.W.; Audia, J.E.; Nissen, J.S.; Bales, K.R.; Paul, S.M.; DeMattos, R.B.; Holtzman, D.M. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J. Neurosci., 2003, 23(26), 8844-8853.
[PMID: 14523085]
[54]
Patterson, B.; Elbert, D.; Mawuenyega, K. Age and amyloid effects on human CNS amyloid-beta kinetics HHS public access author manuscript. Ann. Neurol., 2015, 78(3), 439-453.
[PMID: 26040676]
[55]
Hellstrand, E.; Boland, B.; Walsh, D.M.; Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci., 2010, 1(1), 13-18.
[PMID: 22778803]
[56]
Iljina, M.; Garcia, G.A.; Dear, A.J.; Flint, J.; Narayan, P.; Michaels, T.C.; Dobson, C.M.; Frenkel, D.; Knowles, T.P.; Klenerman, D. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci. Rep., 2016, 6, 28658.
[PMID: 27346247]
[57]
Novo, M.; Freire, S.; Al-Soufi, W. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers. Sci. Rep., 2018, 8(1), 1783.
[PMID: 29379133]
[58]
Glabe, C.G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging, 2006, 27(4), 570-575.
[PMID: 16481071]
[59]
Zhang, X.; Fu, Z.; Meng, L.; He, M.; Zhang, Z. The early events that initiate β-amyloid aggregation in alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 359.
[PMID: 30542277]
[60]
Curk, S.; Krausser, J.; Meisl, G.; Frenkel, D.; Linse, S.; Michaels, T.C. Self-replication of Abeta42 aggregates occurs on small and isolated fibril sites. bioRxiv, 2023, 2023.07.
[61]
Scheidt, T.; Łapińska, U.; Kumita, J.R.; Whiten, D.R.; Klenerman, D.; Wilson, M.R.; Cohen, S.I.A.; Linse, S.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J.; Arosio, P. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci. Adv., 2019, 5(4), eaau3112.
[PMID: 31001578]
[62]
Aprile, F.A.; Sormanni, P.; Perni, M.; Arosio, P.; Linse, S.; Knowles, T.P.J.; Dobson, C.M.; Vendruscolo, M. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Sci. Adv., 2017, 3(6), e1700488.
[PMID: 28691099]
[63]
Habchi, J.; Arosio, P.; Perni, M.; Costa, A.R.; Yagi-Utsumi, M.; Joshi, P.; Chia, S.; Cohen, S.I.; Müller, M.B.; Linse, S.; Nollen, E.A.; Dobson, C.M.; Knowles, T.P.; Vendruscolo, M. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. Sci. Adv., 2016, 2(2), e1501244.
[PMID: 26933687]
[64]
Krafft, G.A.; Jerecic, J.; Siemers, E.; Cline, E.N. ACU193: An immunotherapeutic poised to test the amyloid β oligomer hypothesis of Alzheimer’s disease. Front. Neurosci., 2022, 16, 848215.
[PMID: 35557606]
[65]
Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 101-112.
[PMID: 17245412]
[66]
Yang, T.; Li, S.; Xu, H.; Walsh, D.M.; Selkoe, D.J. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci., 2017, 37(1), 152-163.
[PMID: 28053038]
[67]
Tomic, J.L.; Pensalfini, A.; Head, E.; Glabe, C.G. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol. Dis., 2009, 35(3), 352-358.
[PMID: 19523517]
[68]
Gandy, S.; Simon, A.J.; Steele, J.W.; Lublin, A.L.; Lah, J.J.; Walker, L.C.; Levey, A.I.; Krafft, G.A.; Levy, E.; Checler, F.; Glabe, C.; Bilker, W.B.; Abel, T.; Schmeidler, J.; Ehrlich, M.E. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann. Neurol., 2010, 68(2), 220-230.
[PMID: 20641005]
[69]
Paranjape, G.S.; Gouwens, L.K.; Osborn, D.C.; Nichols, M.R. Isolated amyloid-β(1-42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem. Neurosci., 2012, 3(4), 302-311.
[PMID: 22860196]
[70]
Zhao, L.N.; Long, H.W.; Mu, Y.; Chew, L.Y. The toxicity of amyloid β oligomers. Int. J. Mol. Sci., 2012, 13(6), 7303-7327.
[PMID: 22837695]
[71]
Bi, T.M.; Daggett, V. Focus: Medical technology: The role of α-sheet in amyloid oligomer aggregation and toxicity. Yale J. Biol. Med., 2018, 91(3), 247-255.
[PMID: 30258312]
[72]
Shea, D.; Hsu, C-C.; Bi, T.M.; Paranjapye, N.; Childers, M.C.; Cochran, J.; Tomberlin, C.P.; Wang, L.; Paris, D.; Zonderman, J.; Varani, G.; Link, C.D.; Mullan, M.; Daggett, V. α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer’s disease. Proc. Natl. Acad. Sci., 2019, 116(18), 8895-8900.
[PMID: 31004062]
[73]
Pauling, L.; Corey, R.B. Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proc. Natl. Acad. Sci, 1951, 37(11), 729-740.
[PMID: 16578412]
[74]
Balupuri, A.; Choi, K-E.; Kang, N.S. Aggregation mechanism of Alzheimer’s amyloid β-peptide mediated by α-strand/α-sheet structure. Int. J. Mol. Sci., 2020, 21(3), 1094.
[PMID: 32046006]
[75]
Du, X.; Wang, X.; Geng, M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7(1), 2.
[PMID: 29423193]
[76]
Michalska, P.; León, R. When it comes to an end: Oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants, 2020, 9(8), 740.
[PMID: 32806679]
[77]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[PMID: 29080524]
[78]
Somin, S.; Kulasiri, D.; Samarasinghe, S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: A review of related concepts and strategies for the development of computational modelling. Transl. Neurodegener., 2023, 12(1), 11.
[PMID: 36907887]
[79]
Lesné, S.E.; Sherman, M.A.; Grant, M.; Kuskowski, M.; Schneider, J.A.; Bennett, D.A.; Ashe, K.H. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain, 2013, 136(Pt 5), 1383-1398.
[PMID: 23576130]
[80]
Esparza, T.J.; Zhao, H.; Cirrito, J.R.; Cairns, N.J.; Bateman, R.J.; Holtzman, D.M.; Brody, D.L. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann. Neurol., 2013, 73(1), 104-119.
[PMID: 23225543]
[81]
Liu, F.; Sun, J.; Wang, X.; Jin, S.; Sun, F.; Wang, T.; Yuan, B.; Qiu, W.; Ma, C. Focal-type, but not diffuse-type, amyloid beta plaques are correlated with alzheimer’s neuropathology, cognitive dysfunction, and neuroinflammation in the human hippocampus. Neurosci. Bull., 2022, 38(10), 1125-1138.
[PMID: 36028642]
[82]
Mandelkow, E-M.; Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006247.
[PMID: 22762014]
[83]
Mukrasch, M.D.; Bibow, S.; Korukottu, J.; Jeganathan, S.; Biernat, J.; Griesinger, C.; Mandelkow, E.; Zweckstetter, M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol., 2009, 7(2), e34.
[PMID: 19226187]
[84]
Avila, J.; Jiménez, J.S.; Sayas, C.L.; Bolós, M.; Zabala, J.C.; Rivas, G.; Hernández, F. Tau Structures. Front. Aging Neurosci., 2016, 8, 262.
[PMID: 27877124]
[85]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[PMID: 26631930]
[86]
Kovacs, G.G. Tauopathies. Handb. Clin. Neurol., 2017, 145, 355-368.
[PMID: 28987182]
[87]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol., 2021, 69, 131-138.
[PMID: 33892381]
[88]
Alquezar, C.; Arya, S.; Kao, A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol., 2021, 11, 595532.
[PMID: 33488497]
[89]
Ganguly, P.; Do, T.D.; Larini, L.; LaPointe, N.E.; Sercel, A.J.; Shade, M.F.; Feinstein, S.C.; Bowers, M.T.; Shea, J.E. Tau assembly: The dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B, 2015, 119(13), 4582-4593.
[PMID: 25775228]
[90]
Derreumaux, P.; Man, V.H.; Wang, J.; Nguyen, P.H. Tau R3–R4 domain dimer of the wild type and phosphorylated ser356 sequences. I. In solution by atomistic simulations. J. Phys. Chem. B, 2020, 124(15), 2975-2983.
[PMID: 32216358]
[91]
Morris, M.; Maeda, S.; Vossel, K.; Mucke, L. The many faces of tau. Neuron, 2011, 70(3), 410-426.
[PMID: 21555069]
[92]
What Happens to the Brain in Alzheimer’s Disease? 2017; National Insitute on Aging (NIA), 2017.
[93]
Hu, Y.; Hu, X.; Lu, Y.; Shi, S.; Yang, D.; Yao, T. New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome. ACS Chem. Neurosci., 2020, 11(21), 3623-3634.
[PMID: 33048528]
[94]
Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol., 2020, 163, 1599-1617.
[PMID: 32784025]
[95]
Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 2020, 23(10), 1183-1193.
[PMID: 32778792]
[96]
Bright, J.; Hussain, S.; Dang, V.; Wright, S.; Cooper, B.; Byun, T.; Ramos, C.; Singh, A.; Parry, G.; Stagliano, N.; Griswold-Prenner, I. Human secreted tau increases amyloid-beta production. Neurobiol. Aging, 2015, 36(2), 693-709.
[PMID: 25442111]
[97]
Westermark, P.; Andersson, A.; Westermark, G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev., 2011, 91(3), 795-826.
[PMID: 21742788]
[98]
Kiriyama, Y.; Nochi, H. Role and cytotoxicity of amylin and protection of pancreatic islet β-cells from amylin cytotoxicity. Cells, 2018, 7(8), 95.
[PMID: 30082607]
[99]
Marzban, L.; Trigo-Gonzalez, G.; Verchere, C.B. Processing of pro-islet amyloid polypeptide in the constitutive and regulated secretory pathways of β cells. Mol. Endocrinol., 2005, 19(8), 2154-2163.
[PMID: 15802374]
[100]
Mollet, A.; Gilg, S.; Riediger, T.; Lutz, T.A. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav., 2004, 81(1), 149-155.
[PMID: 15059694]
[101]
Sexton, P.M.; Paxinos, G.; Kenney, M.A.; Wookey, P.J.; Beaumont, K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience, 1994, 62(2), 553-567.
[PMID: 7830897]
[102]
Clementi, G.; Caruso, A.; Cutuli, V.M.; de Bernardis, E.; Prato, A.; Amico-Roxas, M. Amylin given by central or peripheral routes decreases gastric emptying and intestinal transit in the rat. Experientia, 1996, 52(7), 677-679.
[PMID: 8698109]
[103]
Chapman, I.; Parker, B.; Doran, S.; Feinle-Bisset, C.; Wishart, J.; Strobel, S.; Wang, Y.; Burns, C.; Lush, C.; Weyer, C.; Horowitz, M. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia, 2005, 48(5), 838-848.
[PMID: 15843914]
[104]
Hollander, P.; Maggs, D.G.; Ruggles, J.A.; Fineman, M.; Shen, L.; Kolterman, O.G.; Weyer, C. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes. Res., 2004, 12(4), 661-668.
[PMID: 15090634]
[105]
Scherbaum, W.A. The role of amylin in the physiology of glycemic control. Exp. Clin. Endocrinol. Diabetes, 1998, 106(2), 97-102.
[PMID: 9628238]
[106]
Nguyen, P.T.; Andraka, N.; De Carufel, C.A.; Bourgault, S. Mechanistic contributions of biological cofactors in islet amyloid polypeptide amyloidogenesis. J. Diabetes Res., 2015, 2015, 515307.
[PMID: 26576436]
[107]
Nguyen, P.T.; Zottig, X.; Sebastiao, M.; Arnold, A.A.; Marcotte, I.; Bourgault, S. Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Commun. Biol., 2021, 4(1), 939.
[PMID: 34354242]
[108]
Bonner-Weir, S.; O’Brien, T.D. Islets in type 2 diabetes: In honor of Dr. Robert C. Turner. Diabetes, 2008, 57(11), 2899-2904.
[PMID: 18971437]
[109]
Tu, L.H.; Raleigh, D.P. Role of aromatic interactions in amyloid formation by islet amyloid polypeptide. Biochemistry, 2013, 52(2), 333-342.
[PMID: 23256729]
[110]
Godin, E.; Nguyen, P.T.; Zottig, X.; Bourgault, S. Identification of a hinge residue controlling islet amyloid polypeptide self-assembly and cytotoxicity. J. Biol. Chem., 2019, 294(21), 8452-8463.
[PMID: 30975901]
[111]
Nguyen, P.T.; Zottig, X.; Sebastiao, M.; Bourgault, S. Role of site-specific asparagine deamidation in islet amyloid polypeptide amyloidogenesis: Key contributions of residues 14 and 21. Biochemistry, 2017, 56(29), 3808-3817.
[PMID: 28665109]
[112]
Doran, T.M.; Kamens, A.J.; Byrnes, N.K.; Nilsson, B.L. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly. Proteins, 2012, 80(4), 1053-1065.
[PMID: 22253015]
[113]
Westermark, P.; Engström, U.; Johnson, K.H.; Westermark, G.T.; Betsholtz, C. Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci., 1990, 87(13), 5036-5040.
[PMID: 2195544]
[114]
Fortier, M.; Côté-Cyr, M.; Nguyen, V.; Babych, M.; Nguyen, P.T.; Gaudreault, R.; Bourgault, S. Contribution of the 12-17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Front. Mol. Biosci., 2022, 9, 1017336.
[PMID: 36262476]
[115]
Royall, D.R.; Palmer, R.F. Blood-based protein mediators of senility with replications across biofluids and cohorts. Brain Commun., 2019, 2(1), fcz036.
[PMID: 32954311]
[116]
Ge, X.; Yang, Y.; Sun, Y.; Cao, W.; Ding, F. Islet amyloid polypeptide promotes amyloid-beta aggregation by binding-induced helix-unfolding of the amyloidogenic core. ACS Chem. Neurosci., 2018, 9(5), 967-975.
[PMID: 29378116]
[117]
Srodulski, S.; Sharma, S.; Bachstetter, A.B.; Brelsfoard, J.M.; Pascual, C.; Xie, X.S.; Saatman, K.E.; Van Eldik, L.J.; Despa, F. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol. Neurodegener., 2014, 9(1), 30.
[PMID: 25149184]
[118]
Phan, H.T.T.; Samarat, K.; Takamura, Y.; Azo-Oussou, A.F.; Nakazono, Y.; Vestergaard, M.C. Polyphenols modulate Alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients, 2019, 11(4), 756.
[PMID: 30935135]
[119]
Gaudreault, R.; Safari, S.; van de Ven, T.; Junghanns, M. Control of deposition risks in high-silica boiler waters: A novel approach using purified tannin chemistry. AWT Annual Convention and Exposition, San Diego, CA2016.
[120]
Torres-León, C.; Ventura-Sobrevilla, J.; Serna-Cock, L.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.; Aguilar, C.N. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J. Funct. Foods, 2017, 37, 176-189.
[121]
Cho, J-Y.; Sohn, M-J.; Lee, J.; Kim, W-G. Isolation and identification of pentagalloylglucose with broad-spectrum antibacterial activity from Rhus trichocarpa Miquel. Food Chem., 2010, 123(2), 501-506.
[122]
Al-Sayed, E.; Singab, A-N.; Ayoub, N.; Martiskainen, O.; Sinkkonen, J.; Pihlaja, K. HPLC–PDA–ESI–MS/MS profiling and chemopreventive potential of Eucalyptus gomphocephala DC. Food Chem., 2012, 133(3), 1017-1024.
[123]
Wen, C.; Dechsupa, N.; Yu, Z.; Zhang, X.; Liang, S.; Lei, X.; Xu, T.; Gao, X.; Hu, Q.; Innuan, P.; Kantapan, J.; Lü, M. Pentagalloyl glucose: A review of anticancer properties, molecular targets, mechanisms of action, pharmacokinetics, and safety profile. Molecules, 2023, 28(12), 4856.
[PMID: 37375411]
[124]
Rosas, E.C.; Correa, L.B.; Pádua, Tde.A.; Costa, T.E.M.M.; Mazzei, J.L.; Heringer, A.P.; Bizarro, C.A.; Kaplan, M.A.; Figueiredo, M.R.; Henriques, M.G. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J. Ethnopharmacol., 2015, 175, 490-498.
[PMID: 26453933]
[125]
Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Chomnawang, M.T. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus. Molecules, 2011, 16(8), 6255-6270.
[PMID: 21788933]
[126]
Hu, H.; Lee, H-J.; Jiang, C.; Zhang, J.; Wang, L.; Zhao, Y.; Xiang, Q.; Lee, E.O.; Kim, S.H.; Lü, J. Penta-1,2,3,4,6-O-galloyl-β-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol. Cancer Ther., 2008, 7(9), 2681-2691.
[PMID: 18790750]
[127]
Huh, J-E.; Lee, E-O.; Kim, M-S.; Kang, K-S.; Kim, C-H.; Cha, B-C.; Surh, Y.J.; Kim, S.H. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis, 2005, 26(8), 1436-1445.
[PMID: 15845650]
[128]
Bi, J.H.; Jiang, Y.H.; Ye, S.J.; Wu, M.R.; Yi, Y.; Wang, H.X.; Wang, L.M. Investigation of the inhibition effect of 1,2,3,4,6-pentagalloyl-β-D-glucose on gastric cancer cells based on a network pharmacology approach and experimental validation. Front. Oncol., 2022, 12, 934958.
[PMID: 35992839]
[129]
Lee, S-J.; Lee, H.M.; Ji, S-T.; Lee, S-R.; Mar, W.; Gho, Y.S. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett., 2004, 208(1), 89-94.
[PMID: 15105050]
[130]
Li, Y.; Kim, J.; Li, J.; Liu, F.; Liu, X.; Himmeldirk, K.; Ren, Y.; Wagner, T.E.; Chen, X. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem. Biophys. Res. Commun., 2005, 336(2), 430-437.
[PMID: 16137651]
[131]
de Almeida, N.E.C.; Do, T.D.; LaPointe, N.E.; Tro, M.; Feinstein, S.C.; Shea, J-E.; Bowers, M.T. 1, 2, 3, 4, 6-penta-O-galloyl-β-d-glucopyranose binds to the N-terminal metal binding region to inhibit amyloid β-protein oligomer and fibril formation. Int. J. Mass Spectrom., 2017, 420, 24-34.
[PMID: 29056865]
[132]
Hu, Y.; Yang, D.; Tu, Y.; Chai, K.; Chu, L.; Shi, S.; Yao, T. Dynamic-inspired perspective on the molecular inhibitor of Tau aggregation by glucose gallates based on human neurons. ACS Chem. Neurosci., 2021, 12(21), 4162-4174.
[PMID: 34649422]
[133]
Bruno, E.; Pereira, C.; Roman, K.P.; Takiguchi, M.; Kao, P-Y.; Nogaj, L.A.; Moffet, D.A. IAPP aggregation and cellular toxicity are inhibited by 1,2,3,4,6-penta-O-galloyl-β-D-glucose. Amyloid, 2013, 20(1), 34-38.
[PMID: 23339420]
[134]
Reinke, A.A.; Gestwicki, J.E. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: Influence of linker length and flexibility. Chem. Biol. Drug Des., 2007, 70(3), 206-215.
[PMID: 17718715]
[135]
Wiebe, H.; Nguyen, P.T.; Bourgault, S.; van de Ven, T.G.M.; Gaudreault, R. Adsorption of Tannic Acid onto Gold Surfaces. Langmuir, 2023, 39(16), 5851-5860.
[PMID: 37036269]
[136]
Wang, S-C.; Chen, Y.; Wang, Y-C.; Wang, W-J.; Yang, C-S.; Tsai, C-L.; Hou, M.H.; Chen, H.F.; Shen, Y.C.; Hung, M.C. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Am. J. Cancer Res., 2020, 10(12), 4538-4546.
[PMID: 33415017]
[137]
Haddad, M.; Gaudreault, R.; Sasseville, G.; Nguyen, P.T.; Wiebe, H.; Van De Ven, T.; Bourgault, S.; Mousseau, N.; Ramassamy, C. Molecular interactions of tannic acid with proteins associated with SARS-CoV-2 infectivity. Int. J. Mol. Sci., 2022, 23(5), 2643.
[PMID: 35269785]
[138]
Rahim, M.A.; Ejima, H.; Cho, K.L.; Kempe, K.; Müllner, M.; Best, J.P. Coordination-driven multistep assembly of metal–polyphenol films and capsules. Chem. Mater., 2014, 26(4), 1645-1653.
[139]
Mori, T.; Rezai-Zadeh, K.; Koyama, N.; Arendash, G.W.; Yamaguchi, H.; Kakuda, N.; Horikoshi-Sakuraba, Y.; Tan, J.; Town, T. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J. Biol. Chem., 2012, 287(9), 6912-6927.
[PMID: 22219198]
[140]
Ono, K; Hasegawa, K; Naiki, H; Yamada, M Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer's β-amyloid fibrils in vitro. Biochim Biophys Acta Mol Basis Dis BBA-MOL BASIS DIS, 2004, 1690(3), 193-202.
[141]
Yao, J.; Gao, X.; Sun, W.; Yao, T.; Shi, S.; Ji, L. Molecular hairpin: A possible model for inhibition of tau aggregation by tannic acid. Biochemistry, 2013, 52(11), 1893-1902.
[PMID: 23442089]
[142]
Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother., 2018, 99, 43-50.
[PMID: 29324311]
[143]
Schmidt, O.T.; Lademann, R. Corilagin, ein weiterer kristallisierter Gerbstoff aus Dividivi. X. Mitteilung über natürliche Gerbstoffe. Justus Liebigs Ann. Chem., 1951, 571(3), 232-237.
[144]
Yamada, H.; Nagao, K.; Dokei, K.; Kasai, Y.; Michihata, N. Total synthesis of (-)-corilagin. J. Am. Chem. Soc., 2008, 130(24), 7566-7567.
[PMID: 18505255]
[145]
Wu, N.; Zu, Y.; Fu, Y.; Kong, Y.; Zhao, J.; Li, X.; Li, J.; Wink, M.; Efferth, T. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L. J. Agric. Food Chem., 2010, 58(8), 4737-4743.
[PMID: 20205393]
[146]
Reddy, B.U.; Mullick, R.; Kumar, A.; Sharma, G.; Bag, P.; Roy, C.L.; Sudha, G.; Tandon, H.; Dave, P.; Shukla, A.; Srinivasan, P.; Nandhitha, M.; Srinivasan, N.; Das, S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res., 2018, 150, 47-59.
[PMID: 29224736]
[147]
Zhao, L.; Zhang, S.L.; Tao, J.Y.; Pang, R.; Jin, F.; Guo, Y.J.; Dong, J.H.; Ye, P.; Zhao, H.Y.; Zheng, G.H. Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-D-glucose) in vitro. Int. Immunopharmacol., 2008, 8(7), 1059-1064.
[PMID: 18486919]
[148]
Guo, Y.J.; Zhao, L.; Li, X.F.; Mei, Y.W.; Zhang, S.L.; Tao, J.Y.; Zhou, Y.; Dong, J.H. Effect of Corilagin on anti-inflammation in HSV-1 encephalitis and HSV-1 infected microglias. Eur. J. Pharmacol., 2010, 635(1-3), 79-86.
[PMID: 20338162]
[149]
Youn, K.; Lee, S.; Jeong, W.S.; Ho, C.T.; Jun, M. Protective role of corilagin on Aβ25-35-induced neurotoxicity: Suppression of NF-κB signaling pathway. J. Med. Food, 2016, 19(10), 901-911.
[PMID: 27654707]
[150]
Huang, J.; Lei, Y.; Lei, S.; Gong, X. Cardioprotective effects of corilagin on doxorubicin induced cardiotoxicity via P13K/Akt and NF-κB signaling pathways in a rat model. Toxicol. Mech. Methods, 2022, 32(2), 79-86.
[PMID: 34369273]
[151]
Cheng, J-T.; Lin, T-C.; Hsu, F-L. Antihypertensive effect of corilagin in the rat. Can. J. Physiol. Pharmacol., 1995, 73(10), 1425-1429.
[PMID: 8748933]
[152]
Lin, T-c.; Cheng, J-T Antihypertensive activity of corilagin and chebulinic acid, tannins from lumnitzera, racemosa. J. Nat. Prod., 1993, 56(4), 629-632.
[153]
Jia, L.; Jin, H.; Zhou, J.; Chen, L.; Lu, Y.; Ming, Y.; Yu, Y. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement. Altern. Med., 2013, 13, 33.
[PMID: 23410205]
[154]
Gupta, A.; Singh, A.K.; Kumar, R.; Ganguly, R.; Rana, H.K.; Pandey, P.K.; Sethi, G.; Bishayee, A.; Pandey, A.K. Corilagin in cancer: A critical evaluation of anticancer activities and molecular mechanisms. Molecules, 2019, 24(18), 3399.
[PMID: 31546767]
[155]
Yeo, S.G.; Song, J.H.; Hong, E.H.; Lee, B.R.; Kwon, Y.S.; Chang, S.Y.; Kim, S.H.; Lee, S.W.; Park, J.H.; Ko, H.J. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Arch. Pharm. Res., 2015, 38(2), 193-202.
[PMID: 24752860]
[156]
Tan, S.; Su, Y.; Huang, L.; Deng, S.; Yan, G.; Yang, X.; Chen, R.; Xian, Y.; Liang, J.; Liu, Q.; Cheng, J. Corilagin attenuates osteoclastic osteolysis by enhancing HO-1 and inhibiting ROS. J. Biochem. Mol. Toxicol., 2022, 36(7), e23049.
[PMID: 35307913]
[157]
Binette, V.; Côté, S.; Haddad, M.; Nguyen, P.T.; Bélanger, S.; Bourgault, S.; Ramassamy, C.; Gaudreault, R.; Mousseau, N. Corilagin and 1,3,6-Tri-O-galloy-β-D-glucose: potential inhibitors of SARS-CoV-2 variants. Phys. Chem. Chem. Phys., 2021, 23(27), 14873-14888.
[PMID: 34223589]
[158]
Gaudreault, R.; van de Ven, T.G.; Whitehead, M. Mechanisms of flocculation with poly (ethylene oxide) and novel cofactors. Colloids Surf. A Physicochem. Eng. Asp., 2005, 268(1-3), 131-146.
[159]
Lee, S-H.; Jun, M.; Choi, J-Y.; Yang, E-J.; Hur, J-M.; Bae, K.; Seong, Y.H.; Huh, T.L.; Song, K.S. Plant phenolics as prolyl endopeptidase inhibitors. Arch. Pharm. Res., 2007, 30(7), 827-833.
[PMID: 17703733]
[160]
Youn, K.; Jun, M. In vitro BACE1 inhibitory activity of geraniin and corilagin from Geranium thunbergii. Planta Med., 2013, 79(12), 1038-1042.
[PMID: 23877922]
[161]
Lakey-Beitia, J.; Berrocal, R.; Rao, K.S.; Durant, A.A. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol. Neurobiol., 2015, 51(2), 466-479.
[PMID: 24826916]
[162]
Matsuo, Y; Iki, M; Okubo, C; Saito, Y; Tanaka, T. Conformationally flexible ellagitannins: Conformational analysis of davidiin and punicafolin via DFT calculation of 1H NMR coupling constants. ChemRxiv, 2023.
[163]
Gaudreault, R.; van de ven, T.G.; Whitehead, M.A. Molecular modeling of poly(ethylene oxide) model cofactors; 1,3,6-tri-O-galloyl-beta- d-glucose and corilagin. J. Mol. Model., 2002, 8(3), 73-80.
[PMID: 12111394]
[164]
Pauvert, Y.; Gaudreault, R.; Charette, A.B. Improved total synthesis of 1, 3, 6-Trigalloyl-β-d-glucose from glucose. Synthesis, 2023, 55(15), 2325-2332.
[165]
Li, X.; Liu, J.; Chen, B.; Chen, Y.; Dai, W.; Li, Y.; Zhu, M. Covalent bridging of corilagin improves antiferroptosis activity: Comparison with 1, 3, 6-Tri-O-galloyl-β-d-glucopyranose. ACS Med. Chem. Lett., 2020, 11(11), 2232-2237.
[PMID: 33214834]
[166]
Meier, D.T.; Entrup, L.; Templin, A.T.; Hogan, M.F.; Mellati, M.; Zraika, S.; Hull, R.L.; Kahn, S.E. The S20G substitution in hIAPP is more amyloidogenic and cytotoxic than wild-type hIAPP in mouse islets. Diabetologia, 2016, 59(10), 2166-2171.
[PMID: 27393137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy