Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment

Author(s): Aditya Singh, Vaseem A. Ansari*, Tarique Mahmood, Farogh Ahsan and Shubhrat Maheshwari

Volume 17, Issue 3, 2024

Published on: 11 December, 2023

Page: [196 - 204] Pages: 9

DOI: 10.2174/0118746098243327231117113748

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.

Keywords: Dementia, cognitive impairment, neurodegenerative, biomarkers, memory, fibrils, neurons, disease.

Graphical Abstract
[1]
Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov Today 2009; 14(3-4): 147-54.
[http://dx.doi.org/10.1016/j.drudis.2008.12.005] [PMID: 19135549]
[2]
Xie L, Li J, Xie L, Bourne PE. Drug discovery using chemical systems biology: Identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLOS Comput Biol 2009; 5(5): e1000387.
[http://dx.doi.org/10.1371/journal.pcbi.1000387] [PMID: 19436720]
[3]
Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci USA 2007; 104(21): 8685-90.
[http://dx.doi.org/10.1073/pnas.0701361104] [PMID: 17502601]
[4]
Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol Syst Biol 2007; 3(1): 124.
[http://dx.doi.org/10.1038/msb4100163] [PMID: 17625512]
[5]
Hu G, Agarwal P. Human disease-drug network based on genomic expression profiles. PLoS One 2009; 4(8): e6536.
[http://dx.doi.org/10.1371/journal.pone.0006536] [PMID: 19657382]
[6]
Stegmaier P, Krull M, Voss N, Kel AE, Wingender E. Molecular mechanistic associations of human diseases. BMC Syst Biol 2010; 4(1): 124.
[http://dx.doi.org/10.1186/1752-0509-4-124] [PMID: 20815942]
[7]
Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell 2011; 144(6): 986-98.
[http://dx.doi.org/10.1016/j.cell.2011.02.016] [PMID: 21414488]
[8]
Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLOS Comput Biol 2009; 5(4): e1000353.
[http://dx.doi.org/10.1371/journal.pcbi.1000353] [PMID: 19360091]
[9]
Li GW, Xie XS. Central dogma at the single-molecule level in living cells. Nature 2011; 475(7356): 308-15.
[http://dx.doi.org/10.1038/nature10315] [PMID: 21776076]
[10]
Fenimore PW, Frauenfelder H, McMahon BH, Parak FG. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci 2002; 99(25): 16047-51.
[http://dx.doi.org/10.1073/pnas.212637899] [PMID: 12444262]
[11]
Fitzpatrick AWP, Debelouchina GT, Bayro MJ, et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc Natl Acad Sci 2013; 110(14): 5468-73.
[http://dx.doi.org/10.1073/pnas.1219476110] [PMID: 23513222]
[12]
Jiménez JL, Guijarro JI, Orlova E, et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 1999; 18(4): 815-21.
[http://dx.doi.org/10.1093/emboj/18.4.815] [PMID: 10022824]
[13]
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[14]
Cicero CE, Mostile G, Vasta R, et al. Metals and neurodegenerative diseases. A systematic review. Environ Res 2017; 159: 82-94.
[http://dx.doi.org/10.1016/j.envres.2017.07.048] [PMID: 28777965]
[15]
Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 2015; 66(Pt B): 75-80.
[http://dx.doi.org/10.1016/j.mcn.2015.03.001] [PMID: 25748121]
[16]
Rezazadeh M, Khorrami A, Yeghaneh T, et al. Genetic factors affecting late-onset Alzheimer’s disease susceptibility. Neuromolecular Med 2016; 18(1): 37-49.
[http://dx.doi.org/10.1007/s12017-015-8376-4] [PMID: 26553058]
[17]
Hornberger M, Piguet O. Episodic memory in frontotemporal dementia: A critical review. Brain 2012; 135(3): 678-92.
[http://dx.doi.org/10.1093/brain/aws011] [PMID: 22366790]
[18]
Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016; 188(16): 1157-65.
[http://dx.doi.org/10.1503/cmaj.151179] [PMID: 27221269]
[19]
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and treatment response in Parkinson’s disease: an update on pharmacogenetic studies. Neuromolecular Med 2018; 20(1): 1-17.
[http://dx.doi.org/10.1007/s12017-017-8473-7] [PMID: 29305687]
[20]
Schapira AHV. Glucocerebrosidase and Parkinson disease: Recent advances. Mol Cell Neurosci 2015; 66(Pt A): 37-42.
[http://dx.doi.org/10.1016/j.mcn.2015.03.013] [PMID: 25802027]
[21]
Marques O, Outeiro TF. Alpha-synuclein: From secretion to dysfunction and death. Cell Death Dis 2012; 3(7): e350-0.
[http://dx.doi.org/10.1038/cddis.2012.94] [PMID: 22825468]
[22]
Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol 2016; 53(6): 4094-125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[23]
Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018; 10(4): a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[24]
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson’s disease. J Chem Neuroanat 2020; 104: 101752.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101752] [PMID: 31996329]
[25]
Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106: 94-100.
[http://dx.doi.org/10.1016/j.neuint.2017.02.006] [PMID: 28219641]
[26]
Thrash-Williams B, Karuppagounder SS, Bhattacharya D, Ahuja M, Suppiramaniam V, Dhanasekaran M. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid. Life Sci 2016; 154: 24-9.
[http://dx.doi.org/10.1016/j.lfs.2016.02.072] [PMID: 26926078]
[27]
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9: 69.
[http://dx.doi.org/10.3389/fnins.2015.00069] [PMID: 25788874]
[28]
Pfrieger FW. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players. Front Aging Neurosci 2021; 13: 766587.
[http://dx.doi.org/10.3389/fnagi.2021.766587] [PMID: 34803658]
[29]
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154(2): 204-19.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[30]
Montero-Odasso M, Pieruccini-Faria F, Bartha R, et al. Motor phenotype in neurodegenerative disorders: Gait and balance platform study design protocol for the Ontario Neurodegenerative Research Initiative (ONDRI). J Alzheimers Dis 2017; 59(2): 707-21.
[http://dx.doi.org/10.3233/JAD-170149] [PMID: 28671116]
[31]
Guo JL, Lee VMY. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014; 20(2): 130-8.
[http://dx.doi.org/10.1038/nm.3457] [PMID: 24504409]
[32]
Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[33]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Alzheimer Dis Assoc Disord 1988; 2(2): 134.
[34]
Wimo A, Jönsson L, Bond J, Prince M, Winblad B, International AD. The worldwide economic impact of dementia 2010. Alzheimers Dement 2013; 9(1): 1-11.e3.
[http://dx.doi.org/10.1016/j.jalz.2012.11.006] [PMID: 23305821]
[35]
Goodman RA, Lochner KA, Thambisetty M, Wingo TS, Posner SF, Ling SM. Prevalence of dementia subtypes in United States Medicare fee‐for‐service beneficiaries, 2011–2013. Alzheimers Dement 2017; 13(1): 28-37.
[http://dx.doi.org/10.1016/j.jalz.2016.04.002] [PMID: 27172148]
[36]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[37]
Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002; 295(5556): 865-8.
[http://dx.doi.org/10.1126/science.1067389] [PMID: 11823645]
[38]
Varma H, Lo D, Stockwell B. High throughput screening for neurodegeneration and complex disease phenotypes. Comb Chem High Throughput Screen 2008; 11(3): 238-48.
[http://dx.doi.org/10.2174/138620708783877753] [PMID: 18336216]
[39]
Przedborski S, Vila M, Jackson-Lewis V. Series Introduction: Neurodegeneration: What is it and where are we? J Clin Invest 2003; 111(1): 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[40]
Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011; 72(2): 126-33.
[http://dx.doi.org/10.4088/JCP.10m06382oli] [PMID: 21382304]
[41]
Herrero MT, Morelli M. Multiple mechanisms of neurodegeneration and progression. Prog Neurobiol 2017; 155: 1-1.
[http://dx.doi.org/10.1016/j.pneurobio.2017.06.001] [PMID: 28629600]
[42]
Davis AA, Leyns CEG, Holtzman DM. Intercellular spread of protein aggregates in neurodegenerative disease. Annu Rev Cell Dev Biol 2018; 34(1): 545-68.
[http://dx.doi.org/10.1146/annurev-cellbio-100617-062636] [PMID: 30044648]
[43]
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (?) is a major antigenic component of paired helical filaments in Alzheimer disease. Alzheimer Dis Assoc Disord 1987; 1(3): 203.
[http://dx.doi.org/10.1097/00002093-198701030-00022]
[44]
Kosik KS, Selkoe DL. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proceedings of the National Academy of Sciences. 4044-8.
[45]
Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human. tau. gene. Biochemistry 1992; 31(43): 10626-33.
[http://dx.doi.org/10.1021/bi00158a027] [PMID: 1420178]
[46]
Smith CJ, Anderton BH, Davis DR, Gallo JM. Tau isoform expression and phosphorylation state during differentiation of cultured neuronal cells. FEBS Lett 1995; 375(3): 243-8.
[http://dx.doi.org/10.1016/0014-5793(95)01221-Y] [PMID: 7498509]
[47]
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol Neurodegener 2012; 7(1): 52.
[http://dx.doi.org/10.1186/1750-1326-7-52] [PMID: 23039869]
[48]
D’Adamo P, Menegon A, Lo Nigro C, et al. Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet 1998; 19(2): 134-9.
[http://dx.doi.org/10.1038/487] [PMID: 9620768]
[49]
Hol EM, Roelofs RF, Moraal E, et al. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 2003; 8(9): 786-96.
[http://dx.doi.org/10.1038/sj.mp.4001379] [PMID: 12931206]
[50]
Andersen K, Launer LJ, Dewey ME, et al. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. Neurology 1999; 53(9): 1992-7.
[http://dx.doi.org/10.1212/WNL.53.9.1992] [PMID: 10599770]
[51]
Zhu H, Ding Q. Lower expression level of two RAGE alternative splicing isoforms in Alzheimer’s disease. Neurosci Lett 2015; 597: 66-70.
[http://dx.doi.org/10.1016/j.neulet.2015.04.032] [PMID: 25912778]
[52]
Fu RH, Liu SP, Huang SJ, et al. Aberrant alternative splicing events in Parkinson’s disease. Cell Transplant 2013; 22(4): 653-61.
[http://dx.doi.org/10.3727/096368912X655154] [PMID: 23127794]
[53]
Hoyer W, Cherny D, Subramaniam V, Jovin TM. Impact of the acidic C-terminal region comprising amino acids 109-140 on α-synuclein aggregation in vitro. Biochemistry 2004; 43(51): 16233-42.
[http://dx.doi.org/10.1021/bi048453u] [PMID: 15610017]
[54]
Brody KM, Taylor JM, Wilson GR, Delatycki MB, Lockhart PJ. Regional and cellular localisation of Parkin Co-Regulated Gene in developing and adult mouse brain. Brain Res 2008; 1201: 177-86.
[http://dx.doi.org/10.1016/j.brainres.2008.01.050] [PMID: 18295750]
[55]
Wilson GR, Wang HX, Egan GF, et al. Deletion of the Parkin co-regulated gene causes defects in ependymal ciliary motility and hydrocephalus in the quakingviable mutant mouse. Hum Mol Genet 2010; 19(8): 1593-602.
[http://dx.doi.org/10.1093/hmg/ddq031] [PMID: 20106870]
[56]
Gwozdzinska P. Hypercapnia impairs ENaC cell surface expression and function by promoting phosphorylation and polyubiquitination of ENaC beta-subunit in alveolar epithelial cells. Doctoral dissertation, Dissertation, Gießen, Justus-Liebig-Universität 2018.
[57]
Gazit E. The “Correctly Folded” state of proteins: is it a metastable state? Angew Chem Int Ed 2002; 41(2): 257-9.
[http://dx.doi.org/10.1002/1521-3773(20020118)41:2<257:AID-ANIE257>3.0.CO;2-M] [PMID: 12491403]
[58]
Perczel A, Hudáky P, Pálfi VK. Dead-end street of protein folding: thermodynamic rationale of amyloid fibril formation. J Am Chem Soc 2007; 129(48): 14959-65.
[http://dx.doi.org/10.1021/ja0747122] [PMID: 17997554]
[59]
Xue WF, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci 2008; 105(26): 8926-31.
[http://dx.doi.org/10.1073/pnas.0711664105] [PMID: 18579777]
[60]
Knowles TPJ, Waudby CA, Devlin GL, et al. An analytical solution to the kinetics of breakable filament assembly. Science 2009; 326(5959): 1533-7.
[http://dx.doi.org/10.1126/science.1178250] [PMID: 20007899]
[61]
Buell AK, Dhulesia A, White DA, Knowles TPJ, Dobson CM, Welland ME. Detailed analysis of the energy barriers for amyloid fibril growth. Angew Chem Int Ed 2012; 51(21): 5247-51.
[http://dx.doi.org/10.1002/anie.201108040] [PMID: 22489083]
[62]
Jarrett JT, Lansbury PT Jr. Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 1992; 31(49): 12345-52.
[http://dx.doi.org/10.1021/bi00164a008] [PMID: 1463722]
[63]
Törnquist M, Michaels TCT, Sanagavarapu K, et al. Secondary nucleation in amyloid formation. Chem Commun 2018; 54(63): 8667-84.
[http://dx.doi.org/10.1039/C8CC02204F] [PMID: 29978862]
[64]
Linse S. Monomer-dependent secondary nucleation in amyloid formation. Biophys Rev 2017; 9(4): 329-38.
[http://dx.doi.org/10.1007/s12551-017-0289-z] [PMID: 28812278]
[65]
Li D, Kaner RB. How nucleation affects the aggregation of nanoparticles. J Mater Chem 2007; 17(22): 2279-82.
[http://dx.doi.org/10.1039/b700699c]
[66]
Librizzi F, Rischel C. The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways. Protein Sci 2005; 14(12): 3129-34.
[http://dx.doi.org/10.1110/ps.051692305] [PMID: 16322584]
[67]
Camino JD, Gracia P, Chen SW, et al. The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chem Sci 2020; 11(43): 11902-14.
[http://dx.doi.org/10.1039/D0SC05297C] [PMID: 33520152]
[68]
Wang C, Shah N, Thakur G, Zhou F, Leblanc RM. α-Synuclein in α-helical conformation at air–water interface: implication of conformation and orientation changes during its accumulation/aggregation. Chem Commun 2010; 46(36): 6702-4.
[http://dx.doi.org/10.1039/c0cc02098b] [PMID: 20714568]
[69]
Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 2002; 41(23): 7385-90.
[http://dx.doi.org/10.1021/bi0255874] [PMID: 12044171]
[70]
Flach TL, Ng G, Hari A, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 2011; 17(4): 479-87.
[http://dx.doi.org/10.1038/nm.2306] [PMID: 21399646]
[71]
Dorsey MP, Nguelifack BM, Yates EA. Colorimetric detection of mutant β-Amyloid(1–40) membrane-active aggregation with biosensing vesicles. ACS Appl Bio Mater 2019; 2(11): 4966-77.
[http://dx.doi.org/10.1021/acsabm.9b00694] [PMID: 35021496]
[72]
Pronchik J, He X, Giurleo JT, Talaga DS. In vitroformation of amyloid from α-synuclein is dominated by reactions at hydrophobic interfaces. J Am Chem Soc 2010; 132(28): 9797-803.
[http://dx.doi.org/10.1021/ja102896h] [PMID: 20578692]
[73]
Necula M, Chirita CN, Kuret J. Rapid anionic micelle-mediated α-synuclein fibrillization in vitro. J Biol Chem 2003; 278(47): 46674-80.
[http://dx.doi.org/10.1074/jbc.M308231200] [PMID: 14506232]
[74]
Galvagnion C, Brown JWP, Ouberai MM, et al. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc Natl Acad Sci 2016; 113(26): 7065-70.
[http://dx.doi.org/10.1073/pnas.1601899113] [PMID: 27298346]
[75]
Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 2017; 8(1): 275.
[http://dx.doi.org/10.1038/s41467-017-00480-0] [PMID: 28819146]
[76]
Babinchak WM, Haider R, Dumm BK, et al. The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain. J Biol Chem 2019; 294(16): 6306-17.
[http://dx.doi.org/10.1074/jbc.RA118.007222] [PMID: 30814253]
[77]
Beckmann ND. Multiscale Approaches to Complex Human Diseases. Doctoral dissertation, Icahn School of Medicine at Mount Sinai 2018.
[78]
Alberti S, Dormann D. Liquid-liquid phase separation in disease. Annu Rev Genet 2019; 53(1): 171-94.
[http://dx.doi.org/10.1146/annurev-genet-112618-043527] [PMID: 31430179]
[79]
Grossberg GT, Manes F, Allegri RF, et al. The safety, tolerability, and efficacy of once-daily memantine (28 mg): a multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs 2013; 27(6): 469-78.
[http://dx.doi.org/10.1007/s40263-013-0077-7] [PMID: 23733403]
[80]
Littlejohns TJ, Henley WE, Lang IA, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology 2014; 83(10): 920-8.
[http://dx.doi.org/10.1212/WNL.0000000000000755] [PMID: 25098535]
[81]
Gupta PP, Pandey RD, Jha D, Shrivastav V, Kumar S. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: A meta-analysis of randomized clinical trials. Am J Alzheimers Dis Other Demen 2015; 30(2): 178-82.
[http://dx.doi.org/10.1177/1533317514542644] [PMID: 25024454]
[82]
Lee LK, Shahar S, Chin AV, Yusoff NAM. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225(3): 605-12.
[http://dx.doi.org/10.1007/s00213-012-2848-0] [PMID: 22932777]
[83]
Bo Y, Zhang X, Wang Y, et al. The n-3 polyunsaturated fatty acids supplementation improved the cognitive function in the chinese elderly with mild cognitive impairment: A double-blind randomized controlled trial. Nutrients 2017; 9(1): 54.
[http://dx.doi.org/10.3390/nu9010054] [PMID: 28075381]
[84]
Gorelick PB, Furie KL, Iadecola C, et al. Defining optimal brain health in adults: A Presidential Advisory From the American Heart Association/American Stroke Association. Stroke 2017; 48(10): e284-303.
[http://dx.doi.org/10.1161/STR.0000000000000148] [PMID: 28883125]
[85]
Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[86]
Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimer’s disease: Identification of novel therapeutic targets. Alzheimers Res Ther 2013; 5(5): 49.
[http://dx.doi.org/10.1186/alzrt214] [PMID: 24152385]
[87]
Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 322-33.
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[88]
Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R. Neurodegeneration: Microglia: Nf-kappab signaling pathways. Drug Res 2022; 72(9): 496-9.
[http://dx.doi.org/10.1055/a-1915-4861] [PMID: 36055286]
[89]
Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R. Dendrimers: A neuroprotective lead in alzheimer disease: A review on its synthetic approach and applications. Drug Res 2022; 72(8): 417-23.
[http://dx.doi.org/10.1055/a-1886-3208] [PMID: 35931069]
[90]
Greenamyre JT. The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 1986; 43(10): 1058-63.
[http://dx.doi.org/10.1001/archneur.1986.00520100062016] [PMID: 2428340]
[91]
Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 311-21.
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[92]
Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s Disease. N Engl J Med 2018; 378(4): 321-30.
[http://dx.doi.org/10.1056/NEJMoa1705971] [PMID: 29365294]
[93]
Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 2014; 6(9): 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[94]
Kennedy ME, Stamford AW, Chen X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med 2016; 8(363): 363ra150.
[http://dx.doi.org/10.1126/scitranslmed.aad9704] [PMID: 27807285]
[95]
Perry D, Sperling R, Katz R, et al. Building a roadmap for developing combination therapies for Alzheimer’s disease. Expert Rev Neurother 2015; 15(3): 327-33.
[http://dx.doi.org/10.1586/14737175.2015.996551] [PMID: 25708309]
[96]
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 2015; 21(6): 394-402.
[http://dx.doi.org/10.1016/j.molmed.2015.03.003] [PMID: 25846560]
[97]
Panza F, Solfrizzi V, Seripa D, et al. Tau-based therapeutics for Alzheimer’s disease: Active and passive immunotherapy. Immunotherapy 2016; 8(9): 1119-34.
[http://dx.doi.org/10.2217/imt-2016-0019] [PMID: 27485083]
[98]
Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 2017; 16(2): 123-34.
[http://dx.doi.org/10.1016/S1474-4422(16)30331-3] [PMID: 27955995]
[99]
Butterworth RF, Héroux M. Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiamine-dependent enzymes. J Neurochem 1989; 52(4): 1079-84.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb01850.x] [PMID: 2564421]
[100]
Do Carmo S, Cuello A. Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 2013; 8(1): 37.
[http://dx.doi.org/10.1186/1750-1326-8-37] [PMID: 24161192]
[101]
Carter J, Thrasher S, Thornicroft G. Cognitive impairment and clozapine. Br J Psychiatry 1994; 164(1): 132-3.
[http://dx.doi.org/10.1192/bjp.164.1.132b] [PMID: 8137103]
[102]
Chandler MJ, DeLeo J, Carney JM. An unanesthetized-gerbil model of cerebral ischemia-induced behavioral changes. J Pharmacol Methods 1985; 14(2): 137-46.
[http://dx.doi.org/10.1016/0160-5402(85)90051-8] [PMID: 4033141]
[103]
Wei G, Nie H. β-Asarone prevents autophagy and synaptic loss by reducing 941 ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 1552; 942: 41-54.
[104]
Chui DH, Tanahashi H, Ozawa K, et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 1999; 5(5): 560-4.
[http://dx.doi.org/10.1038/8438] [PMID: 10229234]
[105]
Citron M, Westaway D, Xia W, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 1997; 3(1): 67-72.
[http://dx.doi.org/10.1038/nm0197-67] [PMID: 8986743]
[106]
Clandinin MT, Cheema S, Field CJ, Baracos VE. Dietary lipids influence insulin action. Ann N Y Acad Sci 1993; 683(1 Dietary Lipid): 151-63.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb35701.x] [PMID: 8352437]
[107]
Collier TJ, Gash DM, Sladek JR Jr. Transplantation of norepinephrine neurons into aged rats improves performance of a learned task. Brain Res 1988; 448(1): 77-87.
[http://dx.doi.org/10.1016/0006-8993(88)91103-1] [PMID: 3390719]
[108]
de Souza Silva MA, Lenz B, Rotter A, et al. Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. Proc Natl Acad Sci 2013; 110(37): 15097-102.
[http://dx.doi.org/10.1073/pnas.1306884110] [PMID: 23983264]
[109]
Desrumaux C, Pisoni A, Meunier J, et al. Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology 2013; 38(5): 817-25.
[http://dx.doi.org/10.1038/npp.2012.247] [PMID: 23303044]
[110]
Dhingra D, Parle M, Kulkarni SK. Effect of combination of insulin with dextrose, D (-) fructose and diet on learning and memory in mice. Indian J Pharmacol 2003; 35(3): 151-6.
[111]
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther 2014; 142(2): 244-57.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.009] [PMID: 24362083]
[112]
Bhattacharya SK, Kumar A, Jaiswal AK. Effect of Mentat®, a herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. Fitoterapia 1995; 66(3): 216-22.
[113]
Bales KR, Liu F, Wu S, et al. Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J Neurosci 2009; 29(21): 6771-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0887-09.2009] [PMID: 19474305]
[114]
Fisher A, Hanin I. Potential animal models for senile dementia of Alzheimer’s type, with emphasis on AF64A-induced cholinotoxicity. Annu Rev Pharmacol Toxicol 1986; 26(1): 161-81.
[http://dx.doi.org/10.1146/annurev.pa.26.040186.001113] [PMID: 3087271]
[115]
Flood JF, Morley JE. Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 1998; 22(1): 1-20.
[http://dx.doi.org/10.1016/S0149-7634(96)00063-2] [PMID: 9491937]
[116]
Ganguly R, Guha D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian J Med Res 2008; 128(6): 744-51.
[PMID: 19246799]
[117]
Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Retracted: Deposition of iron and β‐amyloid plaques is associated with cortical cellular damage in rabbits fed with long‐term cholesterol‐enriched diets. J Neurochem 2006; 99(2): 438-49.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04079.x] [PMID: 17029598]
[118]
Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Dysregulation of protein phosphorylation/dephosphorylation in Alzheimer’s disease: A therapeutic target. J Biomed Biotechnol 2006; 2006(3): 1-11.
[http://dx.doi.org/10.1155/JBB/2006/31825] [PMID: 17047304]
[119]
Hu ZY, Liu G, Cheng XR, et al. JD-30, an active fraction extracted from Danggui–Shaoyao–San, decreases β-amyloid content and deposition, improves LTP reduction and prevents spatial cognition impairment in SAMP8 mice. Exp Gerontol 2012; 47(1): 14-22.
[http://dx.doi.org/10.1016/j.exger.2011.09.009] [PMID: 22063923]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy