Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Insight into the Promising Therapeutic Potential of Chicoric Acid

Author(s): Ahsas Goyal*, Nandini Dubey, Anant Agrawal, Rashmi Sharma and Aanchal Verma

Volume 25, Issue 13, 2024

Published on: 11 December, 2023

Page: [1708 - 1718] Pages: 11

DOI: 10.2174/0113892010280616231127075921

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.

Keywords: Chicoric acid, hydroxycinnamic acid, chicory, cancer, inflammation, oxidative stress.

Graphical Abstract
[1]
Ahn, H.R.; Lee, H.J.; Kim, K.A.; Kim, C.Y.; Nho, C.W.; Jang, H.; Pan, C.H.; Lee, C.Y.; Jung, S.H. Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage. J. Agric. Food Chem., 2014, 62(6), 1310-1323.
[http://dx.doi.org/10.1021/jf4046232] [PMID: 24428171]
[2]
Peng, Y.; Sun, Q.; Park, Y. The bioactive effects of chicoric acid as a functional food ingredient. J. Med. Food, 2019, 22(7), 645-652.
[http://dx.doi.org/10.1089/jmf.2018.0211] [PMID: 30897018]
[3]
Lee, J.; Scagel, C.F. Chicoric acid: Chemistry, distribution, and production. Front Chem., 2013, 1, 40.
[http://dx.doi.org/10.3389/fchem.2013.00040] [PMID: 24790967]
[4]
Bauer, R. Immunomodulatory Agents from Plants; Springer: Berlin, Heidelberg, 1999, pp. 41-88.
[http://dx.doi.org/10.1007/978-3-0348-8763-2_2]
[5]
Birt, D.F.; Widrlechner, M.P.; LaLone, C.A.; Wu, L.; Bae, J.; Solco, A.K.S.; Kraus, G.A.; Murphy, P.A.; Wurtele, E.S.; Leng, Q.; Hebert, S.C.; Maury, W.J.; Price, J.P. Echinacea in infection. Am. J. Clin. Nutr., 2008, 87(2), 488S-492S.
[http://dx.doi.org/10.1093/ajcn/87.2.488S] [PMID: 18258644]
[6]
Zhang, Y.; Tang, T.; He, H.; Wu, H.; Hu, Z. Influence of several postharvest processing methods on polyphenol oxidase activity and cichoric acid content of Echinacea purpurea roots. Ind. Crops Prod., 2011, 34(1), 873-881.
[http://dx.doi.org/10.1016/j.indcrop.2011.02.010]
[7]
Peng, Y.; Sun, Q.; Gao, R.; Park, Y. AAK-2 and SKN-1 are involved in chicoric-acid-induced lifespan extension in Caenorhabditis elegans. J. Agric. Food Chem., 2019, 67(33), 9178-9186.
[http://dx.doi.org/10.1021/acs.jafc.9b00705] [PMID: 30835107]
[8]
Barrett, B. Medicinal properties of Echinacea: A critical review. Phytomedicine, 2003, 10(1), 66-86.
[http://dx.doi.org/10.1078/094471103321648692] [PMID: 12622467]
[9]
Nandagopal, S.; Kumari, B.R. Phytochemical and antibacterial studies of Chicory (Cichorium intybus L.)-A multipurpose medicinal plant. Adv. Biol. Res. (Faisalabad), 2007, 1(1-2), 17-21.
[10]
Street, R.A.; Sidana, J.; Prinsloo, G. Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/579319] [PMID: 24379887]
[11]
Sanzini, E.; Badea, M.; Santos, A.D.; Restani, P.; Sievers, H. Quality control of plant food supplements. Food Funct., 2011, 2(12), 740-746.
[http://dx.doi.org/10.1039/c1fo10112a] [PMID: 21847499]
[12]
National Center for Biotechnology Information 2023. PubChem compound summary for CID 5281764, chicoric acid. Available From: em.ncbi.nlm.nih.gov/compound/Chicoric-acid
[13]
Ritota, M.; Casciani, L.; Valentini, M. PGI chicory (Cichorium intybus L.) traceability by means of HRMAS‐NMR spectroscopy: A preliminary study. J. Sci. Food Agric., 2013, 93(7), 1665-1672.
[http://dx.doi.org/10.1002/jsfa.5947] [PMID: 23152184]
[14]
Nuissier, G.; Rezzonico, B.; Grignon-Dubois, M. Chicoric acid from Syringodium filiforme. Food Chem., 2010, 120(3), 783-788.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.010]
[15]
Juśkiewicz, J.; Zduńczyk, Z.; Żary-Sikorska, E.; Król, B.; Milala, J.; Jurgoński, A. Effect of the dietary polyphenolic fraction of chicory root, peel, seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. Br. J. Nutr., 2011, 105(5), 710-720.
[http://dx.doi.org/10.1017/S0007114510004344] [PMID: 21134333]
[16]
Mancek, B.; Kreft, S. Determination of cichoric acid content in dried press juice of purple coneflower (Echinacea purpurea) with capillary electrophoresis. Talanta, 2005, 66(5), 1094-1097.
[http://dx.doi.org/10.1016/j.talanta.2005.01.028] [PMID: 18970094]
[17]
Baum, B.R.; Mechanda, S.; Livesey, J.F.; Binns, S.E.; Arnason, J.T. Predicting quantitative phytochemical markers in single Echinacea plants or clones from their DNA fingerprints. Phytochemistry, 2001, 56(6), 543-549.
[http://dx.doi.org/10.1016/S0031-9422(00)00425-8] [PMID: 11281131]
[18]
Agatonovic-Kustrin, S.; Loescher, C.M.; Singh, R. Quantification of phenylpropanoids in commercial Echinacea products using TLC with video densitometry as detection technique and ANN for data modelling. Phytochem. Anal., 2013, 24(4), 303-308.
[http://dx.doi.org/10.1002/pca.2411] [PMID: 23172832]
[19]
Liu, Z.; Qu, J.; Ke, F.; Zhang, H.; Zhang, Y.; Zhang, Q.; Li, Q.; Bi, K.; Xu, H. Material basis elucidation and quantification of dandelion through spectrum-effect relationship study between UHPLC fingerprint and antioxidant activity via multivariate statistical analysis. Molecules, 2022, 27(9), 2632.
[http://dx.doi.org/10.3390/molecules27092632] [PMID: 35565983]
[20]
Wang, F.S.; Fan, J.G.; Zhang, Z.; Gao, B.; Wang, H.Y. The global burden of liver disease: The major impact of China. Hepatology, 2014, 60(6), 2099-2108.
[http://dx.doi.org/10.1002/hep.27406] [PMID: 25164003]
[21]
Ding, X.; Jian, T.; Li, J.; Lv, H.; Tong, B.; Li, J.; Meng, X.; Ren, B.; Chen, J. Chicoric acid ameliorates nonalcoholic fatty liver disease via the AMPK/Nrf2/NFκB signaling pathway and restores gut microbiota in high-fat-diet-fed mice. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/9734560] [PMID: 33204402]
[22]
Mohammadi, M.; Abbasalipourkabir, R.; Ziamajidi, N. Fish oil and chicoric acid combination protects better against palmitate-induced lipid accumulation via regulating AMPK-mediated SREBP-1/FAS and PPARα/UCP2 pathways. Arch. Physiol. Biochem., 2023, 129(1), 1-9.
[http://dx.doi.org/10.1080/13813455.2020.1789881] [PMID: 32654534]
[23]
Guo, R.; Zhao, B.; Wang, Y.; Wu, D.; Wang, Y.; Yu, Y.; Yan, Y.; Zhang, W.; Liu, Z.; Liu, X. Cichoric acid prevents free-fatty-acid-induced lipid metabolism disorders via regulating Bmal1 in HepG2 cells. Agric. J. Agric. Food Chem., 2018, 66(37), 9667-9678.
[http://dx.doi.org/10.1021/acs.jafc.8b02147] [PMID: 30036051]
[24]
Kim, M.; Yoo, G.; Randy, A.; Kim, H.S.; Nho, C.W. Chicoric acid attenuate a nonalcoholic steatohepatitis by inhibiting key regulators of lipid metabolism, fibrosis, oxidation, and inflammation in mice with methionine and choline deficiency. Mol. Nutr. Food Res., 2017, 61(5), 1600632.
[http://dx.doi.org/10.1002/mnfr.201600632] [PMID: 27981809]
[25]
Hussein, O.E.; Hozayen, W.G.; Bin-Jumah, M.N.; Germoush, M.O.; Abd El-Twab, S.M.; Mahmoud, A.M. Chicoric acid prevents methotrexate hepatotoxicity via attenuation of oxidative stress and inflammation and up-regulation of PPARγ and Nrf2/HO-1 signaling. Environ. Sci. Pollut. Res. Int., 2020, 27(17), 20725-20735.
[http://dx.doi.org/10.1007/s11356-020-08557-y] [PMID: 32246423]
[26]
Ma, J.; Li, M.; Kalavagunta, P.K.; Li, J.; He, Q.; Zhang, Y.; Ahmad, O.; Yin, H.; Wang, T.; Shang, J. Protective effects of cichoric acid on H2O2-induced oxidative injury in hepatocytes and larval zebrafish models. Biomed. Pharmacother., 2018, 104, 679-685.
[http://dx.doi.org/10.1016/j.biopha.2018.05.081] [PMID: 29803928]
[27]
Siew, E.D.; Davenport, A. The growth of acute kidney injury: A rising tide or just closer attention to detail? Kidney Int., 2015, 87(1), 46-61.
[http://dx.doi.org/10.1038/ki.2014.293] [PMID: 25229340]
[28]
Sanz, A.B.; Sanchez-Niño, M.D.; Martín-Cleary, C.; Ortiz, A.; Ramos, A.M. Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin. Drug Discov., 2013, 8(7), 879-895.
[http://dx.doi.org/10.1517/17460441.2013.793667] [PMID: 23627598]
[29]
Abd El-Twab, S.M.; Hussein, O.E.; Hozayen, W.G.; Bin-Jumah, M.; Mahmoud, A.M. Chicoric acid prevents methotrexate-induced kidney injury by suppressing NF-κB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. Inflamm. Res., 2019, 68(6), 511-523.
[http://dx.doi.org/10.1007/s00011-019-01241-z] [PMID: 31037316]
[30]
Ding, X.; Jian, T.; Gai, Y.; Niu, G.; Liu, Y.; Meng, X.; Li, J.; Lyu, H.; Ren, B.; Chen, J. Chicoric acid attenuated renal tubular injury in HFD-induced chronic kidney disease mice through the promotion of mitophagy via the Nrf2/PINK/Parkin pathway. J. Chen. J. Agric. Food Chem., 2022, 70(9), 2923-2935.
[http://dx.doi.org/10.1021/acs.jafc.1c07795] [PMID: 35195395]
[31]
Roy, P.S.; Saikia, B.J. Cancer and cure: A critical analysis. Indian J. Cancer, 2016, 53(3), 441-442.
[http://dx.doi.org/10.4103/0019-509X.200658] [PMID: 28244479]
[32]
Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864.
[PMID: 29949179]
[33]
Sun, X.; Zhang, X.; Zhai, H.; Zhang, D.; Ma, S. Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK. Biomed. Pharmacother., 2019, 118, 109144.
[http://dx.doi.org/10.1016/j.biopha.2019.109144] [PMID: 31545234]
[34]
Tsai, Y.L.; Chiu, C.C.; Yi-Fu Chen, J. Chan, K.C.; Lin, S.D. Cytotoxic effects of Echinacea purpurea flower extracts and cichoric acid on human colon cancer cells through induction of apoptosis. J. Ethnopharmacol., 2012, 143(3), 914-919.
[http://dx.doi.org/10.1016/j.jep.2012.08.032] [PMID: 22971663]
[35]
Garabadu, D.; Agrawal, N.; Sharma, A.; Sharma, S. Mitochondrial metabolism: A common link between neuroinflammation and neurodegeneration. Behav. Pharmacol., 2019, 30(8), 641-651.
[http://dx.doi.org/10.1097/FBP.0000000000000505] [PMID: 31625975]
[36]
Garabadu, D.; Agrawal, N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med., 2020, 22(2), 314-330.
[http://dx.doi.org/10.1007/s12017-019-08590-2] [PMID: 31916219]
[37]
Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240.
[http://dx.doi.org/10.1111/cbdd.14210] [PMID: 36752710]
[38]
Verma, A.; Goyal, A. Reformative Effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574.
[http://dx.doi.org/10.1007/s43450-022-00277-3]
[39]
Wang, N.; Li, R.; Feng, B.; Cheng, Y.; Guo, Y.; Qian, H. Chicoric acid prevents neuroinflammation and neurodegeneration in a mouse Parkinson’s disease model: Immune response and transcriptome profile of the spleen and colon. Int. J. Mol. Sci., 2022, 23(4), 2031.
[http://dx.doi.org/10.3390/ijms23042031] [PMID: 35216146]
[40]
Wang, N.; Feng, B.N.; Hu, B.; Cheng, Y.L.; Guo, Y.H.; Qian, H. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway. Food Funct., 2022, 13(4), 2019-2032.
[http://dx.doi.org/10.1039/D1FO02216D] [PMID: 35103734]
[41]
Liu, Q.; Hu, Y.; Cao, Y.; Song, G.; Liu, Z.; Liu, X. Chicoric acid ameliorates lipopolysaccharide-induced oxidative stress via promoting the Keap1/Nrf2 transcriptional signaling pathway in BV-2 microglial cells and mouse brain. J. Agric. Food Chem., 2017, 65(2), 338-347.
[http://dx.doi.org/10.1021/acs.jafc.6b04873] [PMID: 28002939]
[42]
Kour, K.; Bani, S. Chicoric acid regulates behavioral and biochemical alterations induced by chronic stress in experimental Swiss albino mice. Pharmacol. Biochem. Behav., 2011, 99(3), 342-348.
[http://dx.doi.org/10.1016/j.pbb.2011.05.008] [PMID: 21620882]
[43]
Arab Sadeghabadi, Z.; Ziamajidi, N.; Abbasalipourkabir, R.; Mohseni, R. Garlic (Allium sativum) increases SIRT1 and SIRT2 gene expressions in the kidney and liver tissues of STZ- and STZ+niacinamide-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol., 2018, 29(5), 463-467.
[http://dx.doi.org/10.1515/jbcpp-2017-0079] [PMID: 29672269]
[44]
Mohseni, R. ArabSadeghabadi, Z.; Ziamajidi, N.; Abbasalipourkabir, R.; RezaeiFarimani, A. Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res. Lett., 2019, 14(1), 227.
[http://dx.doi.org/10.1186/s11671-019-3042-7] [PMID: 31290033]
[45]
Wen, H.; Gris, D.; Lei, Y.; Jha, S.; Zhang, L.; Huang, M.T.H.; Brickey, W.J.; Ting, J.P.Y. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol., 2011, 12(5), 408-415.
[http://dx.doi.org/10.1038/ni.2022] [PMID: 21478880]
[46]
Arion, W.J.; Canfield, W.K.; Ramos, F.C.; Schindler, P.W.; Burger, H.J.; Hemmerle, H.; Schubert, G.; Below, P.; Herling, A.W. Chlorogenic acid and hydroxynitrobenzaldehyde: New inhibitors of hepatic glucose 6-phosphatase. Arch. Biochem. Biophys., 1997, 339(2), 315-322.
[http://dx.doi.org/10.1006/abbi.1996.9874] [PMID: 9056264]
[47]
Hemmerle, H.; Burger, H.J.; Below, P.; Schubert, G.; Rippel, R.; Schindler, P.W.; Paulus, E.; Herling, A.W. Chlorogenic acid and synthetic chlorogenic acid derivatives: Novel inhibitors of hepatic glucose-6-phosphate translocase. J. Med. Chem., 1997, 40(2), 137-145.
[http://dx.doi.org/10.1021/jm9607360] [PMID: 9003513]
[48]
Hsu, F.L.; Chen, Y.C.; Cheng, J.T. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats. Planta Med., 2000, 66(3), 228-230.
[http://dx.doi.org/10.1055/s-2000-8561] [PMID: 10821047]
[49]
Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; Di Felice, M.; Scaccini, C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med., 1995, 19(5), 541-552.
[http://dx.doi.org/10.1016/0891-5849(95)00052-Y] [PMID: 8529913]
[50]
Tousch, D.; Lajoix, A.D.; Hosy, E.; Azay-Milhau, J.; Ferrare, K.; Jahannault, C.; Cros, G.; Petit, P. Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem. Biophys. Res. Commun., 2008, 377(1), 131-135.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.088] [PMID: 18834859]
[51]
Zhu, D.; Wang, Y.; Du, Q.; Liu, Z.; Liu, X. Cichoric acid reverses insulin resistance and suppresses inflammatory responses in the glucosamine-induced HepG2 cells. J. Agric. Food Chem., 2015, 63(51), 10903-10913.
[http://dx.doi.org/10.1021/acs.jafc.5b04533] [PMID: 26592089]
[52]
Zhu, D.; Zhang, X.; Niu, Y.; Diao, Z.; Ren, B.; Li, X.; Liu, Z.; Liu, X. Cichoric acid improved hyperglycaemia and restored muscle injury via activating antioxidant response in MLD-STZ-induced diabetic mice. Food Chem. Toxicol., 2017, 107(Pt A), 138-149.
[http://dx.doi.org/10.1016/j.fct.2017.06.041] [PMID: 28655651]
[53]
Azay-Milhau, J.; Ferrare, K.; Leroy, J.; Aubaterre, J.; Tournier, M.; Lajoix, A.D.; Tousch, D. Antihyperglycemic effect of a natural chicoric acid extract of chicory (Cichorium intybus L.): A comparative in vitro study with the effects of caffeic and ferulic acids. J. Ethnopharmacol., 2013, 150(2), 755-760.
[http://dx.doi.org/10.1016/j.jep.2013.09.046] [PMID: 24126061]
[54]
Casanova, L.M.; Espíndola-Netto, J.M.; Tinoco, L.W.; Sola-Penna, M.; Costa, S.S. The use of NMR metabolite profiling and in vivo hypoglycemic assay for comparison of unfractionated aqueous leaf extracts of two ocimum species. Chem. Biodivers., 2016, 13(6), 686-694.
[http://dx.doi.org/10.1002/cbdv.201500180] [PMID: 27218231]
[55]
Sadeghabadi, Z.A.; Ziamajidi, N.; Abbasalipourkabir, R.; Mohseni, R.; Borzouei, S. Palmitate-induced IL6 expression ameliorated by chicoric acid through AMPK and SIRT1-mediated pathway in the PBMCs of newly diagnosed type 2 diabetes patients and healthy subjects. Cytokine, 2019, 116, 106-114.
[http://dx.doi.org/10.1016/j.cyto.2018.12.012] [PMID: 30690290]
[56]
Sadeghabadi, Z.A.; Samani, K.G.; Yaghubi, F.; Mohseni, R. Chicoric acid ameliorates palmitate-induced sphingosine 1-phosphate signaling pathway in the PBMCs of patients with newly diagnosed type 2 diabetes. J. Diabetes Metab. Disord., 2022, 22(1), 307-314.
[http://dx.doi.org/10.1007/s40200-022-01134-9] [PMID: 37255837]
[57]
Qu, Y.; Shen, Y.; Teng, L.; Huang, Y.; Yang, Y.; Jian, X.; Fan, S.; Wu, P.; Fu, Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int. Immunopharmacol., 2022, 111, 109129.
[http://dx.doi.org/10.1016/j.intimp.2022.109129] [PMID: 35961266]
[58]
Tsai, K.L.; Kao, C.L.; Hung, C.H.; Cheng, Y.H.; Lin, H.C.; Chu, P.M. Chicoric acid is a potent anti-atherosclerotic ingredient by anti-oxidant action and anti-inflammation capacity. Oncotarget, 2017, 8(18), 29600-29612.
[http://dx.doi.org/10.18632/oncotarget.16768] [PMID: 28410194]
[59]
Lu, Q.B.; Wan, M.Y.; Wang, P.Y.; Zhang, C.X.; Xu, D.Y.; Liao, X.; Sun, H.J. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol., 2018, 14, 656-668.
[http://dx.doi.org/10.1016/j.redox.2017.11.012] [PMID: 29175753]
[60]
Chang, X.; Dong, S.; Bai, W.; Di, Y.; Gu, R.; Liu, F.; Zhao, B.; Wang, Y.; Liu, X. Methylated metabolites of chicoric acid ameliorate hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells. J. Agric. Food Chem., 2021, 69(7), 2179-2189.
[http://dx.doi.org/10.1021/acs.jafc.0c07521] [PMID: 33577312]
[61]
Wu, H.; Luo, D.; Li, C.; Zhang, H.; Shunxian, A.; Zhang, Y.; Sun, C. Chicoric acid improves heart and blood responses to hypobaric hypoxia in tibetan yaks. Am. J. Chin. Med., 2018, 46(2), 339-355.
[http://dx.doi.org/10.1142/S0192415X18500179] [PMID: 29433395]
[62]
Zhang, W.; Zhao, M.; Pu, Z.; Yin, Q.; Shui, Y. Chicoric acid presented nlrp3-mediated pyroptosis through mitochondrial damage by pdpk1 ubiquitination in an acute lung injury model. Am. J. Chin. Med., 2023, 51(6), 1431-1457.
[http://dx.doi.org/10.1142/S0192415X23500659] [PMID: 37530505]
[63]
Li, Z.; Feng, H.; Han, L.; Ding, L.; Shen, B.; Tian, Y.; Zhao, L.; Jin, M.; Wang, Q.; Qin, H.; Cheng, J.; Liu, G. Chicoric acid ameliorate inflammation and oxidative stress in Lipopolysaccharide and D ‐galactosamine induced acute liver injury. J. Cell. Mol. Med., 2020, 24(5), 3022-3033.
[http://dx.doi.org/10.1111/jcmm.14935] [PMID: 31989756]
[64]
Landmann, M.; Kanuri, G.; Spruss, A.; Stahl, C.; Bergheim, I. Oral intake of chicoric acid reduces acute alcohol-induced hepatic steatosis in mice. Nutrition, 2014, 30(7-8), 882-889.
[http://dx.doi.org/10.1016/j.nut.2013.11.015] [PMID: 24985007]
[65]
Liu, Q.; Fang, J.; Chen, P.; Die, Y.; Wang, J.; Liu, Z.; Liu, X. Chicoric acid improves neuron survival against inflammation by promoting mitochondrial function and energy metabolism. Food Funct., 2019, 10(9), 6157-6169.
[http://dx.doi.org/10.1039/C9FO01417A] [PMID: 31501849]
[66]
Jia, L.; Chen, Y.; Tian, Y.H.; Zhang, G. MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo. Exp. Ther. Med., 2018, 15(2), 1640-1646.
[PMID: 29434748]
[67]
Mu, Y.; Yu, J.; Ji, W.; Chen, L.; Wang, X.; Yan, B. Alleviation of Pb2+ pollution-induced oxidative stress and toxicity in microglial cells and zebrafish larvae by chicoric acid. Ecotoxicol. Environ. Saf., 2019, 180, 396-402.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.040] [PMID: 31108416]
[68]
Jiang, L.; Li, W.; Wang, Y.; Zhang, X.; Yu, D.; Yin, Y.; Xie, Z.; Yuan, Y. Effects of cichoric acid extract from Echinacea purpurea on collagen-induced arthritis in rats. Am. J. Chin. Med., 2014, 42(3), 679-692.
[http://dx.doi.org/10.1142/S0192415X1450044X] [PMID: 24871659]
[69]
Ma, X.; Zhang, J.; Wu, Z.; Wang, X. Chicoric acid attenuates hyperglycemia-induced endothelial dysfunction through AMPK-dependent inhibition of oxidative/nitrative stresses. J. Recept. Signal Transduct. Res., 2021, 41(4), 378-392.
[http://dx.doi.org/10.1080/10799893.2020.1817076] [PMID: 32900249]
[70]
Schlernitzauer, A.; Oiry, C.; Hamad, R.; Galas, S.; Cortade, F.; Chabi, B.; Casas, F.; Pessemesse, L.; Fouret, G.; Feillet-Coudray, C.; Cros, G.; Cabello, G.; Magous, R.; Wrutniak-Cabello, C. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS One, 2013, 8(11), e78788.
[http://dx.doi.org/10.1371/journal.pone.0078788] [PMID: 24244361]
[71]
Kim, J.S.; Lee, H.; Jung, C.H.; Lee, S.J.; Ha, T.Y.; Ahn, J. Chicoric acid mitigates impaired insulin sensitivity by improving mitochondrial function. Biosci. Biotechnol. Biochem., 2018, 82(7), 1197-1206.
[http://dx.doi.org/10.1080/09168451.2018.1451742] [PMID: 29557265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy