Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Analysis of Anti-Cancer Effects in Grapefruit-based Drug Development: A Narrative Review

Author(s): Jeetendra Kumar Gupta, Kuldeep Singh*, Shivendra Kumar and Girdhar Khandelwal

Volume 5, 2024

Published on: 06 December, 2023

Article ID: e061223224232 Pages: 11

DOI: 10.2174/0126659786260551231127042822

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Cancer remains a significant global health concern, and natural compounds found in fruits and vegetables have shown potential anti-cancer effects. Grapefruit (Citrus paradisi) has gained attention due to its rich phytochemical composition and biological activities, including anti-cancer properties. This narrative review analyzes the literature on grapefruit-based drug development and its potential as an adjunctive or alternative therapeutic strategy for cancer treatment. Grapefruit-derived compounds have been extensively studied for their anti-cancer effects, with preclinical studies showing promising outcomes in inhibiting cancer cell growth and proliferation. Compounds made from grapefruit also have anti-cancer effects. They do this in a number of ways, such as by affecting the cell cycle, apoptosis, angiogenesis, metastasis, and key signalling pathways. Petrified grapefruit compounds have potential synergistic effects with conventional chemotherapy drugs, enhancing cytotoxic effects while reducing adverse side effects. They have shown promising results in overcoming drug resistance, a major obstacle in cancer treatment. However, challenges such as bioavailability, drug interactions, and variability in compound composition remain. Overall, grapefruit-derived compounds possess significant anti-cancer properties and warrant further investigation for clinical application.

Keywords: Grapefruit, Citrus paradisi, anti-cancer effects, drug development, phytochemicals, natural compounds, preclinical studies, mechanism of action, synergistic effects, drug resistance, therapeutic strategy.

[1]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366.
[2]
Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants, 2022, 11(2)
[3]
Hung, W.L.; Suh, J.H.; Wang, Y. Chemistry and health effects of furanocoumarins in grapefruit. J. Food Drug Anal., 2017, 25(1), 71-83.
[PMID: 28911545]
[4]
Cuevas-Cianca, S.I.; Romero-Castillo, C.; Gálvez-Romero, J.L.; Juárez, Z.N.; Hernández, L.R. Antioxidant and anti-inflammatory compounds from edible plants with anti-cancer activity and their potential use as drugs. Molecules, 2023, 28(3), 1488.
[http://dx.doi.org/10.3390/molecules28031488]
[5]
Kaur, M.; Agarwal, C.; Agarwal, R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. J. Nutr., 1806, 139(9), 1806S.
[6]
Zughaibi, T.A.; Suhail, M.; Tarique, M.; Tabrez, S. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach. Int. J. Mol. Sci., 2021, 22(22)
[7]
Pezzani, R; Salehi, B; Vitalini, S; Iriti, M; Zuñiga, FA; Sharifi‐Rad, J Synergistic effects of plant derivatives and conventional chemotherapeutic agents: An update on the cancer perspective.Medicina, 2019, 55(4)
[8]
Ko, J.H.; Arfuso, F.; Sethi, G.; Ahn, K.S. Pharmacological utilization of bergamottin, derived from grapefruits, in cancer prevention and therapy. Int. J. Mol., 2018, 19(12), 4048.
[9]
Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 2018, 9(AUG), 777.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738]
[10]
Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054.
[http://dx.doi.org/10.1016/j.biopha.2022.113054] [PMID: 35658225]
[11]
Ghanbari-Movahed, M.; Jackson, G.; Farzaei, M.H.; Bishayee, A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front. Pharmacol., 2021, 12, 639840.
[http://dx.doi.org/10.3389/fphar.2021.639840] [PMID: 33854437]
[12]
Cirmi, S.; Maugeri, A.; Ferlazzo, N.; Gangemi, S.; Calapai, G.; Schumacher, U. Anticancer potential of citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Front. Pharmacol., 2017, 8, 420.
[http://dx.doi.org/10.3389/fphar.2017.00420]
[13]
Costa, E.; Ferreira-Gonçalves, T.; Chasqueira, G.; Cabrita, A.S.; Figueiredo, I.V.; Reis, C.P. Experimental models as refined translational tools for breast cancer research. Sci. Pharm., 2020, 88(3), 32.
[http://dx.doi.org/10.3390/scipharm88030032]
[14]
Sharma, P.; Vishvakarma, R.; Gautam, K.; Vimal, A.; Kumar Gaur, V.; Farooqui, A.; Varjani, S.; Younis, K. Valorization of citrus peel waste for the sustainable production of value-added products. Bioresour. Technol., 2022, 351, 127064.
[http://dx.doi.org/10.1016/j.biortech.2022.127064] [PMID: 35351555]
[15]
Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci., 2018, 19(1)
[16]
Majnooni, M.B.; Fakhri, S.; Ghanadian, S.M.; Bahrami, G.; Mansouri, K.; Iranpanah, A. Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways. Metabolites, 2023, 13(3)
[17]
Suganya, K.; Poornima, A.; Sumathi, S.; Chigurupati, S.; Alyamani, N.M.; Ghazi Felemban, S.; Bhatia, S.; Al-Harrasi, A.; Sayed Moawad, A. Rutin induces endoplasmic reticulum stress-associated apoptosis in human triple-negative breast carcinoma MDA-MB-231 cells – in vitro and in silico docking studies. Arab. J. Chem., 2022, 15(9), 104021.
[http://dx.doi.org/10.1016/j.arabjc.2022.104021]
[18]
Bailey, D.G.; Dresser, G.; Arnold, J.M.O. Grapefruit-medication interactions: Forbidden fruit or avoidable consequences? CMAJ, 2013, 185(4), 309-316.
[19]
Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E. Zhou, T Role of ROS and nutritional antioxidants in human diseases. Front. Physiol., 2018, 9, 00477.
[http://dx.doi.org/10.3389/fphys.2018.00477]
[20]
Gangwar, V.; Garg, A.; Lomore, K.; Korla, K.; Bhat, S.S.; Rao, R.P. Immunomodulatory effects of a concoction of natural bioactive compounds-mechanistic insights. Biomed, 1522, 9, 1522.
[21]
Talib, W.H.; Abuawad, A.; Thiab, S.; Alshweiat, A.; Mahmod, A.I. Flavonoid-based nanomedicines to target tumor microenvironment. OpenNano, 2022, 8, 100081.
[http://dx.doi.org/10.1016/j.onano.2022.100081]
[22]
Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines, 2022, 10(7)
[23]
Woźniak, M.; Krajewski, R.; Makuch, S.; Agrawal, S. Phytochemicals in gynecological cancer prevention. Int. J. Mol. Sci., 2021, 22, 1219.
[http://dx.doi.org/10.3390/ijms22031219]
[24]
Arora, I.; Sharma, M.; Tollefsbol, T.O. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int. J. Mol. Sci., 2019, 20(18), 4567.
[http://dx.doi.org/10.3390/ijms20184567]
[25]
Turner, T.; Burri, B.J. Potential nutritional benefits of current citrus consumption. Agric, 2013, 3, 170-187.
[http://dx.doi.org/10.3390/agriculture3010170]
[26]
Pizzino, G; Irrera, N; Cucinotta, M; Pallio, G; Mannino, F Arcoraci, V Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell Longev., 2017, 2017
[27]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecule, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901]
[28]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2)
[http://dx.doi.org/10.3390/ijms19020448]
[29]
Wen, W.; Lu, J.; Zhang, K.; Chen, S. Grape seed extract (GSE) inhibits angiogenesis via suppressing VEGFR signaling pathway. Cancer Prev. Res., 2008, 2(7), 554.
[30]
Fujioka, K.; Greenway, F.; Sheard, J.; Ying, Y. The effects of grapefruit on weight and insulin resistance: Relationship to the metabolic syndrome. J. Med. Food, 2006, 9(1), 49-54.
[http://dx.doi.org/10.1089/jmf.2006.9.49] [PMID: 16579728]
[31]
Chan, W.J.J.; Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V.; Harnett, J.E. Interactions between natural products and cancer treatments: Underlying mechanisms and clinical importance. Cancer Chemother. Pharmacol., 2023, 91(2), 103-119.
[http://dx.doi.org/10.1007/s00280-023-04504-z] [PMID: 36707434]
[32]
Trombetta, D.; Cimino, F.; Cristani, M.; Mandalari, G.; Saija, A.; Ginestra, G.; Speciale, A.; Chirafisi, J.; Bisignano, G.; Waldron, K.; Narbad, A.; Faulds, C.B. in vitro protective effects of two extracts from bergamot peels on human endothelial cells exposed to tumor necrosis factor-α (TNF-α). J. Agric. Food Chem., 2010, 58(14), 8430-8436.
[http://dx.doi.org/10.1021/jf1008605] [PMID: 20578719]
[33]
Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Mol. A J. Synth. Chem. Nat. Prod. Chem., 2017, 22(1), 70.
[34]
Uckoo, R.M.; Jayaprakasha, G.K.; Balasubramaniam, V.M.; Patil, B.S. Grapefruit (Citrus paradisi Macfad) phytochemicals composition is modulated by household processing techniques. J. Food Sci., 2012, 77(9), C921-C926.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02865.x] [PMID: 22957912]
[35]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270.
[http://dx.doi.org/10.4161/oxim.2.5.9498]
[36]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118.
[37]
Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J., 2015, 9(1), 68.
[http://dx.doi.org/10.1186/s13065-015-0145-9]
[38]
Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[39]
Lefranc, F.; Tabanca, N.; Kiss, R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin. Cancer Biol., 2017, 46, 14-32.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.004] [PMID: 28602819]
[40]
Haque, A.; Brazeau, D.; Amin, A.R. Perspectives for natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer, 2021, 149, 165.
[http://dx.doi.org/10.1016/j.ejca.2021.03.009]
[41]
Hanley, M.J.; Cancalon, P.; Widmer, W.W.; Greenblatt, D.J. The effect of grapefruit juice on drug disposition. Expert Opin. Drug Metab. Toxicol., 2011, 7(3), 267.
[http://dx.doi.org/10.1517/17425255.2011.553189]
[42]
Alomar, M.J. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm. J., 2014, 22(2), 83.
[43]
Sousa-Pimenta, M.; Estevinho, L.M.; Szopa, A.; Basit, M.; Khan, K.; Armaghan, M.; Ibrayeva, M.; Sönmez Gürer, E.; Calina, D.; Hano, C.; Sharifi-Rad, J. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel. Front. Pharmacol., 2023, 14, 1157306.
[http://dx.doi.org/10.3389/fphar.2023.1157306] [PMID: 37229270]
[44]
Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A. The second life of citrus fruit waste: A valuable source of bioactive compounds. Molecule, 2021, 26(19), 5991.
[http://dx.doi.org/10.3390/molecules26195991]
[45]
Kiani, J.; Imam, S.Z. Medicinal importance of grapefruit juice and its interaction with various drugs. Nutr. J., 2007, 6, 33.
[http://dx.doi.org/10.1186/1475-2891-6-33]
[46]
Koziolek, M.; Alcaro, S.; Augustijns, P.; Basit, A.W.; Grimm, M.; Hens, B.; Hoad, C.L.; Jedamzik, P.; Madla, C.M.; Maliepaard, M.; Marciani, L.; Maruca, A.; Parrott, N.; Pávek, P.; Porter, C.J.H.; Reppas, C.; van Riet-Nales, D.; Rubbens, J.; Statelova, M.; Trevaskis, N.L.; Valentová, K.; Vertzoni, M.; Čepo, D.V.; Corsetti, M. The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur. J. Pharm. Sci., 2019, 134, 31-59.
[http://dx.doi.org/10.1016/j.ejps.2019.04.003] [PMID: 30974173]
[47]
Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; Keszthelyi, D.; Koziolek, M.; Madla, C.M.; Matthys, C.; McCoubrey, L.E.; Mitra, A.; Reppas, C.; Stappaerts, J.; Steenackers, N.; Trevaskis, N.L.; Vanuytsel, T.; Vertzoni, M.; Weitschies, W.; Wilson, C.; Augustijns, P. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci., 2021, 162, 105812.
[http://dx.doi.org/10.1016/j.ejps.2021.105812] [PMID: 33753215]
[48]
Lim, G.E.; Li, T.; Buttar, H.S. Interactions of grapefruit juice and cardiovascular medications: A potential risk of toxicity. Exp. Clin. Cardiol., 2003, 8(2), 99.
[49]
Murtaza, G.; Ullah, N.; Mukhtar, F.; Nawazish, S.; Muneer, S. Phytotherapeutics: The emerging role of intestinal and hepatocellular transporters in drug interactions with botanical supplements. Molecule, 1699, 22, 1699.
[50]
Diepgen, T.L.; Drexler, H. Occupational skin cancer; Springer, 2012.
[http://dx.doi.org/10.1007/978-3-642-02035-3_10]
[51]
Sochorova, L.; Prusova, B.; Cebova, M.; Jurikova, T.; Mlcek, J.; Adamkova, A. Health effects of grape seed and skin extracts and their influence on biochemical markers. Molecule, 2020, 25(22), 5311.
[http://dx.doi.org/10.3390/molecules25225311]
[52]
Epidermal changes following application of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate to human skin transplanted to nude mice studied with histological species markers. Available from: https://pubmed.ncbi.nlm.nih.gov/3079587/(Cited 2023 Jul 19)
[53]
Mittal, A.; Elmets, C.A.; Katiyar, S.K. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: Relationship to decreased fat and lipid peroxidation. Carcinogenesis, 2003, 24(8), 1379-1388.
[http://dx.doi.org/10.1093/carcin/bgg095] [PMID: 12807737]
[54]
Syed Alwi, S.S.; Cavell, B.E.; Donlevy, A.; Packham, G. Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent. Cell Stress Chaperones, 2012, 17(5), 529.
[http://dx.doi.org/10.1007/s12192-012-0329-3]
[55]
Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics, 2016, 3, 16018.
[http://dx.doi.org/10.1038/mto.2016.18] [PMID: 27525306]
[56]
Ettarh, R.; Cullen, A.; Calamai, A. NSAIDs and cell proliferation in colorectal cancer. Pharmaceuticals, 2010, 3(7), 2007-2021.
[http://dx.doi.org/10.3390/ph3072007]
[57]
Hudson, T.S.; Perkins, S.N.; Hursting, S.D.; Young, H.A.; Kim, Y.S. Wang, TC Inhibition of androgen-responsive LNCaP prostate cancer cell tumor xenograft growth by dietary phenethyl isothiocyanate correlates with decreased angiogenesis and inhibition of cell attachment. Int. J. Oncol., 2012, 40(4), 1113.
[http://dx.doi.org/10.3892/ijo.2012.1335]
[58]
Zhang, X.; Li, N.; Zhu, Y.; Wen, W. The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma. Cancer Med., 2022, 11(4), 931-943.
[http://dx.doi.org/10.1002/cam4.4521] [PMID: 34981659]
[59]
Joshi, V.B.; Gutierrez Ruiz, O.L.; Razidlo, G.L. The cell biology of metastatic invasion in pancreatic cancer: Updates and mechanistic insights. Cancers, 2023, 15, 2169.
[60]
Dobbin, Z.C.; Landen, C.N. The importance of the pi3k/akt/mtor pathway in the progression of ovarian cancer. Int. J. Mol. Sci., 2013, 14(4), 8213-8227.
[61]
Kleffel, S.; Posch, C.; Barthel, S.R.; Mueller, H.; Schlapbach, C.; Guenova, E.; Elco, C.P.; Lee, N.; Juneja, V.R.; Zhan, Q.; Lian, C.G.; Thomi, R.; Hoetzenecker, W.; Cozzio, A.; Dummer, R.; Mihm, M.C., Jr; Flaherty, K.T.; Frank, M.H.; Murphy, G.F.; Sharpe, A.H.; Kupper, T.S.; Schatton, T. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell, 2015, 162(6), 1242-1256.
[http://dx.doi.org/10.1016/j.cell.2015.08.052] [PMID: 26359984]
[62]
Michalkova, R.; Kello, M.; Cizmarikova, M.; Bardelcikova, A.; Mirossay, L.; Mojzis, J. Chalcones and gastrointestinal cancers: Experimental evidence. Int. J. Mol. Sci., 2023, 24, 5964.
[63]
Tagde, P.; Tagde, P.; Tagde, S.; Bhattacharya, T.; Garg, V.; Akter, R.; Rahman, M.H.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Akhtar, M.F.; Saleem, A.; Altyar, A.E.; Kaushik, D.; Abdel-Daim, M.M. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed. Pharmacother., 2021, 141, 111928.
[http://dx.doi.org/10.1016/j.biopha.2021.111928] [PMID: 34323701]
[64]
Chimento, A.; De Luca, A.; D’Amico, M.; De Amicis, F.; Pezzi, V. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in cancer therapy. Int. J. Mol. Sci., 1680, 24, 1680.
[65]
Jha, N.K.; Arfin, S.; Jha, S.K.; Kar, R.; Dey, A.; Gundamaraju, R.; Ashraf, G.M.; Gupta, P.K.; Dhanasekaran, S.; Abomughaid, M.M.; Das, S.S.; Singh, S.K.; Dua, K.; Roychoudhury, S.; Kumar, D.; Ruokolainen, J.; Ojha, S.; Kesari, K.K. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Semin. Cancer Biol., 2022, 86(Pt 2), 1086-1104.
[http://dx.doi.org/10.1016/j.semcancer.2022.02.022] [PMID: 35218902]
[66]
Zhang, M.; Liang, L.; He, J.; He, Z.; Yue, C.; Jin, X.; Gao, M.; Xiao, S.; Zhou, Y. Fra-1 inhibits cell growth and the warburg effect in cervical cancer cells via STAT1 regulation of the p53 signaling pathway. Front. Cell Dev. Biol., 2020, 8, 579629.
[http://dx.doi.org/10.3389/fcell.2020.579629] [PMID: 33102485]
[67]
Morshedi, K.; Borran, S.; Ebrahimi, M.S. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phyther. Res., 2021, 35(9), 4834-97.
[68]
Li, Z.; Wei, J.; Chen, B.; Wang, Y.; Yang, S.; Wu, K. The role of MMP-9 and MMP-9 inhibition in different types of thyroid carcinoma. Molecule, 2023, 28(9), 3705.
[69]
Yang, C.; Tian, Y.; Zhao, F.; Chen, Z.; Su, P.; Li, Y. Bone microenvironment and osteosarcoma metastasis. Int. J. Mol. Sci., 2020, 21, 6985.
[http://dx.doi.org/10.3390/ijms21196985]
[70]
Pandey, P.; Khan, F.; Upadhyay, T.K.; Giri, P.P. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review. Chem. Biol. Drug Des., 2023, 102(1), 201-216.
[http://dx.doi.org/10.1111/cbdd.14233] [PMID: 36929632]
[71]
Martin, C.E.; List, K. Cell-surface anchored serine proteases in cancer progression and metastasis. Cancer Metastasis Rev., 2019, 38(3), 357.
[http://dx.doi.org/10.1007/s10555-019-09811-7]
[72]
Dong, Y; Yang, H; Hua, H. MicroRNA-641 inhibits endometrial cancer progression via targeting AP1G1. Evidence-based Complement Altern. Med., 2022, 2022
[http://dx.doi.org/10.1155/2022/7918596]
[73]
Diaz, T.; Navarro, A.; Ferrer, G.; Gel, B.; Gaya, A.; Artells, R. Lestaurtinib inhibition of the JAK/STAT signaling pathway in hodgkin lymphoma inhibits proliferation and induces apoptosis. PLoS One, 2011, 6(4), 18856.
[74]
Rubio, C.; Romo-Parra, H.; Gatica, F.; Rodríguez-Quintero, P.; Morales, Z. A molecular approach of caloric restriction and vitamins for cancer prevention. Anticancer. Agents Med. Chem., 2023, 23(5), 571-584.
[http://dx.doi.org/10.2174/1871520622666220819092503] [PMID: 35986549]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy