Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation

Author(s): Kadja Luana Chagas Monteiro, Thiago Mendonça de Aquino and Edeildo Ferreira da Silva-Júnior*

Volume 23, Issue 10, 2024

Published on: 28 November, 2023

Page: [1234 - 1250] Pages: 17

DOI: 10.2174/0118715273273539231114095300

Price: $65

conference banner
Abstract

Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.

Keywords: Alzheimer’s disease, neurodegeneration, flavonoids, polyphenols, tau protein, cognitive decline, learning and memory.

Graphical Abstract
[1]
Sweeney P, Park H, Baumann M, et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl Neurodegener 2017; 6(1): 6.
[http://dx.doi.org/10.1186/s40035-017-0077-5] [PMID: 28293421]
[2]
Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 2003; 4(1): 49-60.
[http://dx.doi.org/10.1038/nrn1007] [PMID: 12511861]
[3]
Kocahan S, Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci 2017; 15(1): 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[4]
Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 2009; 16(6): 574-81.
[http://dx.doi.org/10.1038/nsmb.1591] [PMID: 19491934]
[5]
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15(6): 384-96.
[http://dx.doi.org/10.1038/nrm3810] [PMID: 24854788]
[6]
Kallijärvi J, Haltia M, Baumann MH. Amphoterin includes a sequence motif which is homologous to the Alzheimer’s β-amyloid peptide (Abeta), forms amyloid fibrils in vitro, and binds avidly to Abeta. Biochemistry 2001; 40(34): 10032-7.
[http://dx.doi.org/10.1021/bi002095n] [PMID: 11513581]
[7]
Chen B, Retzlaff M, Roos T, Frydman J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011; 3(8): a004374-4.
[http://dx.doi.org/10.1101/cshperspect.a004374] [PMID: 21746797]
[8]
Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[9]
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261(13): 6084-9.
[http://dx.doi.org/10.1016/S0021-9258(17)38495-8] [PMID: 3084478]
[10]
Dawkins E, Small DH. Insights into the physiological function of the β‐amyloid precursor protein: Beyond Alzheimer’s disease. J Neurochem 2014; 129(5): 756-69.
[http://dx.doi.org/10.1111/jnc.12675] [PMID: 24517464]
[11]
Hayden EY, Teplow DB. Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 2013; 5(6): 60.
[http://dx.doi.org/10.1186/alzrt226] [PMID: 24289820]
[12]
Taneja V, Verma M, Vats A. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 2015; 18(2): 138-45.
[http://dx.doi.org/10.4103/0972-2327.144284] [PMID: 26019408]
[13]
Ono K, Tsuji M. Protofibrils of Amyloid-β are important targets of a disease-modifying approach for Alzheimer’s disease. Int J Mol Sci 2020; 21(3): 952.
[http://dx.doi.org/10.3390/ijms21030952] [PMID: 32023927]
[14]
Rambaran RN, Serpell LC. Amyloid fibrils. Prion 2008; 2(3): 112-7.
[http://dx.doi.org/10.4161/pri.2.3.7488] [PMID: 19158505]
[15]
Zempel H, Mandelkow E. Lost after translation: Missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 2014; 37(12): 721-32.
[http://dx.doi.org/10.1016/j.tins.2014.08.004] [PMID: 25223701]
[16]
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2021; 167: 382-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.192] [PMID: 33278431]
[17]
Monteiro KLC, Alcântara MGS, de Aquino TM, da Silva-Júnior EF. Tau protein aggregation in Alzheimer’s disease: Recent advances in the development of novel therapeutic agents. Curr Pharm Des 2020; 26(15): 1682-92.
[http://dx.doi.org/10.2174/1381612826666200414164038] [PMID: 32286939]
[18]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[19]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[20]
Karch CM, Cruchaga C, Goate AM. Alzheimer’s disease genetics: From the bench to the clinic. Neuron 2014; 83(1): 11-26.
[http://dx.doi.org/10.1016/j.neuron.2014.05.041] [PMID: 24991952]
[21]
Bejanin A, Schonhaut DR, La Joie R, et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 2017; 140(12): 3286-300.
[http://dx.doi.org/10.1093/brain/awx243] [PMID: 29053874]
[22]
Lee JC, Kim SJ, Hong S, Kim Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019; 51(5): 1-10.
[http://dx.doi.org/10.1038/s12276-019-0250-2] [PMID: 31073121]
[23]
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural compounds as inhibitors of Aβ peptide aggregation: Chemical requirements and molecular mechanisms. Front Neurosci 2020; 14: 619667.
[http://dx.doi.org/10.3389/fnins.2020.619667] [PMID: 33414705]
[24]
David B, Wolfender JL, Dias DA. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem Rev 2015; 14(2): 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[25]
Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2017; 35(2): 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[26]
Giorgetti S, Greco C, Tortora P, Aprile F. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Int J Mol Sci 2018; 19(9): 2677.
[http://dx.doi.org/10.3390/ijms19092677] [PMID: 30205618]
[27]
Andrich K, Bieschke J. The effect of (−)-Epigallo-catechin-(3)-gallate on amyloidogenic proteins suggests a common mechanism. Adv Exp Med Biol 2015.
[28]
Martinez Pomier K, Ahmed R, Melacini G. Catechins as tools to understand the molecular basis of neurodegeneration. Molecules 2020; 25(16): 3571.
[http://dx.doi.org/10.3390/molecules25163571] [PMID: 32781559]
[29]
Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG. Nicotine inhibits amyloid formation by the β-peptide. Biochemistry 1996; 35(42): 13568-78.
[http://dx.doi.org/10.1021/bi9617264] [PMID: 8885836]
[30]
Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging 2011; 32(5): 834-44.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.015] [PMID: 19464074]
[31]
Nordberg A, Hellström-Lindahl E, Lee M, et al. Chronic nicotine treatment reduces β‐amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J Neurochem 2002; 81(3): 655-8.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00874.x] [PMID: 12065674]
[32]
Lahiri DK, Utsuki T, Chen D, et al. Nicotine reduces the secretion of Alzheimer’s β-amyloid precursor protein containing β-amyloid peptide in the rat without altering synaptic proteins. Ann N Y Acad Sci 2002; 965(1): 364-72.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04178.x] [PMID: 12105112]
[33]
Jones GMM, Sahakian BJ, Levy R, Warburton DM, Gray JA. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in alzheimer’s disease. Psychopharmacology 1992; 108(4): 485-94.
[http://dx.doi.org/10.1007/BF02247426] [PMID: 1410164]
[34]
Wilson AL, Langley LK, Monley J, et al. Nicotine patches in Alzheimer’s disease: Pilot study on learning, memory, and safety. Pharmacol Biochem Behav 1995; 51(2-3): 509-14.
[http://dx.doi.org/10.1016/0091-3057(95)00043-V] [PMID: 7667377]
[35]
White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology 1999; 143(2): 158-65.
[http://dx.doi.org/10.1007/s002130050931] [PMID: 10326778]
[36]
Alhowail A. Molecular insights into the benefits of nicotine on memory and cognition (Review). Mol Med Rep 2021; 23(6): 398.
[http://dx.doi.org/10.3892/mmr.2021.12037] [PMID: 33786606]
[37]
Cordero JG, García-Escudero R, Avila J, Gargini R, García-Escudero V. Benefit of oleuropein aglycone for Alzheimer’s Disease by promoting autophagy. Oxid Med Cell Longev 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/5010741] [PMID: 29675133]
[38]
Rigacci S, Guidotti V, Bucciantini M, Nichino D, Relini A, Berti A, et al. Aβ(1-42) aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr Alzheimer Res 2011; 8(8): 841-52.
[http://dx.doi.org/10.2174/156720511798192682] [PMID: 21592051]
[39]
Pantano D, Luccarini I, Nardiello P, Servili M, Stefani M, Casamenti F. Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology. Br J Clin Pharmacol 2017; 83(1): 54-62.
[http://dx.doi.org/10.1111/bcp.12993] [PMID: 27131215]
[40]
Kostomoiri M, Fragkouli A, Sagnou M, et al. Oleuropein, an anti-oxidant polyphenol constituent of olive promotes α-secretase cleavage of the amyloid precursor protein (AβPP). Cell Mol Neurobiol 2013; 33(1): 147-54.
[http://dx.doi.org/10.1007/s10571-012-9880-9] [PMID: 23053546]
[41]
Luccarini I, Ed Dami T, Grossi C, Rigacci S, Stefani M, Casamenti F. Oleuropein aglycone counteracts Aβ42 toxicity in the rat brain. Neurosci Lett 2014; 558: 67-72.
[http://dx.doi.org/10.1016/j.neulet.2013.10.062] [PMID: 24211687]
[42]
Leri M, Nosi D, Natalello A, et al. The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies. J Nutr Biochem 2016; 30: 153-66.
[http://dx.doi.org/10.1016/j.jnutbio.2015.12.009] [PMID: 27012632]
[43]
Leri M, Natalello A, Bruzzone E, Stefani M, Bucciantini M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ1-42 aggregation. Food Chem Toxicol 2019; 129: 1-12.
[http://dx.doi.org/10.1016/j.fct.2019.04.015] [PMID: 30995514]
[44]
Bazoti FN, Bergquist J, Markides KE, Tsarbopoulos A. Noncovalent interaction between amyloid-β-peptide (1-40) and oleuropein studied by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2006; 17(4): 568-75.
[http://dx.doi.org/10.1016/j.jasms.2005.11.016] [PMID: 16503156]
[45]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 2012; 18(1): 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[46]
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005; 280(45): 37377-82.
[http://dx.doi.org/10.1074/jbc.M508246200] [PMID: 16162502]
[47]
Jeon SY, Kwon SH, Seong YH, et al. β-secretase (BACE1)-inhibiting stilbenoids from Smilax Rhizoma. Phytomedicine 2007; 14(6): 403-8.
[http://dx.doi.org/10.1016/j.phymed.2006.09.003] [PMID: 17084604]
[48]
Ge JF, Qiao JP, Qi CC, Wang CW, Zhou JN. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 2012; 61(7): 1192-201.
[http://dx.doi.org/10.1016/j.neuint.2012.08.012] [PMID: 22981725]
[49]
Andrade S, Loureiro JA, Coelho MAN, do Carmo Pereira M. Interaction studies of amyloid beta-peptide with the natural compound resveratrol. In 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG). 1-3.
[http://dx.doi.org/10.1109/ENBENG.2015.7088833]
[50]
Lu C, Guo Y, Yan J, et al. Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. J Med Chem 2013; 56(14): 5843-59.
[http://dx.doi.org/10.1021/jm400567s] [PMID: 23799643]
[51]
Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 2015; 310: 641-9.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.006] [PMID: 26454022]
[52]
Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 2009; 54(2): 111-8.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[53]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[54]
Zhu CW, Grossman H, Neugroschl J, et al. A randomized, double‐blind, placebo‐controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement 2018; 4(1): 609-16.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[55]
He X, Li Z, Rizak JD, et al. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front Neurosci 2017; 10: 598.
[http://dx.doi.org/10.3389/fnins.2016.00598] [PMID: 28197064]
[56]
Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003; 62(2): 121-5.
[http://dx.doi.org/10.1016/S0031-9422(02)00513-7] [PMID: 12482446]
[57]
Yan JJ, Jung JS, Kim TK, et al. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull 2013; 36(1): 140-3.
[http://dx.doi.org/10.1248/bpb.b12-00798] [PMID: 23075678]
[58]
Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity. J Pharmacol Exp Ther 2006; 317(3): 1143-9.
[http://dx.doi.org/10.1124/jpet.105.099317] [PMID: 16495207]
[59]
Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25-35. Behav Brain Res 2007; 180(2): 139-45.
[http://dx.doi.org/10.1016/j.bbr.2007.03.001] [PMID: 17420060]
[60]
Yamamoto S, Kayama T, Noguchi-Shinohara M, Hamaguchi T, Yamada M, Abe K, et al. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food 2021; 5(1): 1.
[61]
Mori T, Koyama N, Guillot-Sestier MV, Tan J, Town T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS One 2013; 8(2): e55774.
[http://dx.doi.org/10.1371/journal.pone.0055774] [PMID: 23409038]
[62]
Cui L, Zhang Y, Cao H, et al. Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimers Dis 2013; 37(1): 19-28.
[http://dx.doi.org/10.3233/JAD-130164] [PMID: 23727899]
[63]
Ono K, Hirohata M, Yamada M. Ferulic acid destabilizes preformed β-amyloid fibrils in vitro. Biochem Biophys Res Commun 2005; 336(2): 444-9.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.148] [PMID: 16153607]
[64]
Cornejo A, Aguilar Sandoval F, Caballero L, et al. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem 2017; 32(1): 945-53.
[http://dx.doi.org/10.1080/14756366.2017.1347783] [PMID: 28701064]
[65]
Hase T, Shishido S, Yamamoto S, et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep 2019; 9(1): 8711.
[http://dx.doi.org/10.1038/s41598-019-45168-1] [PMID: 31213631]
[66]
Jayamani J, Shanmugam G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur J Med Chem 2014; 85: 352-8.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.111] [PMID: 25105923]
[67]
Hajipour S, Sarkaki A, Farbood Y, Eidi A, Mortazavi P, Valizadeh Z. Effect of gallic acid on dementia type of alzheimer disease in rats: Electrophysiological and histological studies. Basic Clin Neurosci J 2016; 7(2)
[68]
Ekundayo BE, Obafemi TO, Afolabi BA, et al. Gallic acid and hesperidin elevate neurotransmitters level and protect against oxidative stress, inflammation and apoptosis in aluminum chloride-induced Alzheimer’s disease in rats. Pharmacological Research-Modern Chinese Medicine 2022; 5: 100193.
[http://dx.doi.org/10.1016/j.prmcm.2022.100193]
[69]
Mori T, Koyama N, Yokoo T, et al. Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J Biol Chem 2020; 295(48): 16251-66.
[http://dx.doi.org/10.1074/jbc.RA119.012330] [PMID: 32913125]
[70]
Yu M, Chen X, Liu J, et al. Gallic acid disruption of Aβ1-42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol Dis 2019; 124: 67-80.
[http://dx.doi.org/10.1016/j.nbd.2018.11.009] [PMID: 30447302]
[71]
Ogunsuyi OB, Oboh G, Oluokun OO, Ademiluyi AO, Ogunruku OO. Gallic acid protects against neurochemical alterations in transgenic Drosophila model of Alzheimer’s disease. Advances in Traditional Medicine 2020; 20(1): 89-98.
[http://dx.doi.org/10.1007/s13596-019-00393-x]
[72]
Papandreou MA, Kanakis CD, Polissiou MG, et al. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 2006; 54(23): 8762-8.
[http://dx.doi.org/10.1021/jf061932a] [PMID: 17090119]
[73]
Samarghandian S, Azimi-Nezhad M, Samini F, Farkhondeh T. The role of saffron in attenuating age-related oxidative damage in rat hippocampus. Recent Pat Food Nutr Agric 2017; 8(3): 183-9.
[PMID: 28552059]
[74]
Akhondzadeh S, Shafiee Sabet M, Harirchian MH, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 2010; 207(4): 637-43.
[http://dx.doi.org/10.1007/s00213-009-1706-1] [PMID: 19838862]
[75]
Akhondzadeh S, Sabet MS, Harirchian MH, et al. ORIGINAL ARTICLE: Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: A 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther 2010; 35(5): 581-8.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01133.x] [PMID: 20831681]
[76]
Ghahghaei A, Bathaie S, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro. Cell Mol Biol Lett 2013; 18(3): 328-39.
[http://dx.doi.org/10.2478/s11658-013-0092-1] [PMID: 23737042]
[77]
Baluchnejadmojarad T, Mohamadi-Zarch SM, Roghani M. Safranal, an active ingredient of saffron, attenuates cognitive deficits in amyloid β-induced rat model of Alzheimer’s disease: Underlying mechanisms. Metab Brain Dis 2019; 34(6): 1747-59.
[http://dx.doi.org/10.1007/s11011-019-00481-6] [PMID: 31422512]
[78]
Zandi N, Pazoki B, Momeni Roudsari N, et al. Prospects of Saffron and its derivatives in Alzheimer’s Disease. Arch Iran Med 2021; 24(3): 233-52.
[http://dx.doi.org/10.34172/aim.2021.35] [PMID: 33878882]
[79]
Wang Q, Yu X, Patal K, et al. Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 2013; 4(6): 1004-15.
[http://dx.doi.org/10.1021/cn400051e] [PMID: 23506133]
[80]
Dong M, Zhao W, Hu D, Ai H, Kang B. N-Terminus binding preference for either tanshinone or analogue in both inhibition of amyloid aggregation and disaggregation of preformed amyloid fibrils—toward introducing a kind of novel anti-alzheimer compounds. ACS Chem Neurosci 2017; 8(7): 1577-88.
[http://dx.doi.org/10.1021/acschemneuro.7b00080] [PMID: 28406293]
[81]
Geng L, Liu W, Chen Y. Tanshinone IIA attenuates Aβ-induced neurotoxicity by down-regulating COX-2 expression and PGE2 synthesis via inactivation of NF-κB pathway in SH-SY5Y cells. J Biol Res 2019; 26(1): 15.
[http://dx.doi.org/10.1186/s40709-019-0102-1] [PMID: 31754613]
[82]
Yu T, Paudel P, Seong SH, Kim JA, Jung HA, Choi JS. Computational insights into β-site amyloid precursor protein enzyme 1 (BACE1) inhibition by tanshinones and salvianolic acids from Salvia miltiorrhiza via molecular docking simulations. Comput Biol Chem 2018; 74: 273-85.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.008] [PMID: 29679864]
[83]
Durairajan SSK, Yuan Q, Xie L, et al. Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty. Neurochem Int 2008; 52(4-5): 741-50.
[http://dx.doi.org/10.1016/j.neuint.2007.09.006] [PMID: 17964692]
[84]
Liu J, Wang Y, Guo J, Sun J, Sun Q. Salvianolic Acid B improves cognitive impairment by inhibiting neuroinflammation and decreasing Aβ level in Porphyromonas gingivalis -infected mice. Aging 2020; 12(11): 10117-28.
[http://dx.doi.org/10.18632/aging.103306] [PMID: 32516126]
[85]
Reddy PH, Manczak M, Yin X, et al. Protective Effects of Indian spice curcumin against amyloid-β in Alzheimer’s Disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[86]
Hamaguchi T, Ono K, Yamada M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci Ther 2010; 16(5): 285-97.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[87]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[88]
Yanagisawa D, Taguchi H, Yamamoto A, Shirai N, Hirao K, Tooyama I. Curcuminoid binds to amyloid-β1-42 oligomer and fibril. J Alzheimers Dis 2011; 24(s2) (Suppl. 2): 33-42.
[http://dx.doi.org/10.3233/JAD-2011-102100] [PMID: 21335654]
[89]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[90]
Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am J Pathol 2009; 175(6): 2557-65.
[http://dx.doi.org/10.2353/ajpath.2009.090417] [PMID: 19893028]
[91]
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti‐amyloidogenic effects for Alzheimer’s β‐amyloid fibrils in vitro. J Neurosci Res 2004; 75(6): 742-50.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[92]
Wang P, Su C, Li R, et al. Retracted: Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res 2014; 92(2): 218-31.
[http://dx.doi.org/10.1002/jnr.23322] [PMID: 24273069]
[93]
Veldman ER, Jia Z, Halldin C, Svedberg MM. Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue. Neurosci Lett 2016; 630: 183-8.
[http://dx.doi.org/10.1016/j.neulet.2016.07.045] [PMID: 27461789]
[94]
Baum L, Lam CWK, Cheung SKK, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28(1): 110-3.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[95]
Masuda Y, Fukuchi M, Yatagawa T, et al. Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid β-protein fibrils. Bioorg Med Chem 2011; 19(20): 5967-74.
[http://dx.doi.org/10.1016/j.bmc.2011.08.052] [PMID: 21924918]
[96]
Okuda M, Hijikuro I, Fujita Y, et al. Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors. Bioorg Med Chem Lett 2016; 26(20): 5024-8.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.092] [PMID: 27624076]
[97]
Bijari N, Balalaie S, Akbari V, et al. Effective suppression of the modified PHF6 peptide/1N4R Tau amyloid aggregation by intact curcumin, not its degradation products: Another evidence for the pigment as preventive/therapeutic “functional food”. Int J Biol Macromol 2018; 120(Pt A): 1009-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.175] [PMID: 30172816]
[98]
Miyasaka T, Xie C, Yoshimura S, et al. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol Aging 2016; 39: 69-81.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.004] [PMID: 26923403]
[99]
Ahmad B, Lapidus LJ. Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate. J Biol Chem 2012; 287(12): 9193-9.
[http://dx.doi.org/10.1074/jbc.M111.325548] [PMID: 22267729]
[100]
Youn K, Ho CT, Jun M. Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s disease: an overview of pre-clinical studies focused on β-amyloid peptide. Food Sci Hum Wellness 2022; 11(3): 483-93.
[http://dx.doi.org/10.1016/j.fshw.2021.12.006]
[101]
Taniguchi S, Suzuki N, Masuda M, et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 2005; 280(9): 7614-23.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[102]
Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005; 25(38): 8807-14.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[103]
Bieschke J, Russ J, Friedrich RP, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 2010; 107(17): 7710-5.
[http://dx.doi.org/10.1073/pnas.0910723107] [PMID: 20385841]
[104]
Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008; 15(6): 558-66.
[http://dx.doi.org/10.1038/nsmb.1437] [PMID: 18511942]
[105]
Lopez del Amo JM, Fink U, Dasari M, et al. Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Aβ oligomers. J Mol Biol 2012; 421(4-5): 517-24.
[http://dx.doi.org/10.1016/j.jmb.2012.01.013] [PMID: 22300765]
[106]
Palhano FL, Lee J, Grimster NP, Kelly JW. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc 2013; 135(20): 7503-10.
[http://dx.doi.org/10.1021/ja3115696] [PMID: 23611538]
[107]
Liu FF, Dong XY, He L, Middelberg APJ, Sun Y. Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (-)-epigallocatechin-3-gallate probed by molecular simulations. J Phys Chem B 2011; 115(41): 11879-87.
[http://dx.doi.org/10.1021/jp202640b] [PMID: 21899367]
[108]
Zhan C, Chen Y, Tang Y, Wei G. Green Tea Extracts EGCG and EGC display distinct mechanisms in disrupting Aβ 42 protofibril. ACS Chem Neurosci 2020; 11(12): 1841-51.
[http://dx.doi.org/10.1021/acschemneuro.0c00277] [PMID: 32441920]
[109]
Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998; 19(10): 1771-6.
[http://dx.doi.org/10.1093/carcin/19.10.1771] [PMID: 9806157]
[110]
Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules 2020; 25(22): 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[111]
Brüll V, Burak C, Stoffel-Wagner B, et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: A randomised double-blinded placebo-controlled cross-over trial. Br J Nutr 2015; 114(8): 1263-77.
[http://dx.doi.org/10.1017/S0007114515002950] [PMID: 26328470]
[112]
Zhang XW, Chen JY, Ouyang D, Lu JH. Quercetin in animal Models of Alzheimer’s Disease: A systematic review of preclinical studies. Int J Mol Sci 2020; 21(2): 493.
[http://dx.doi.org/10.3390/ijms21020493] [PMID: 31941000]
[113]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s Disease. Biomolecules 2019; 10(1): 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[114]
Kim H, Park BS, Lee KG, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 2005; 53(22): 8537-41.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
[115]
Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 2011; 89(25-26): 939-45.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[116]
Regitz C, Marie Dußling L, Wenzel U. Amyloid‐beta (A β 1-42)‐induced paralysis inC aenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 2014; 58(10): 1931-40.
[http://dx.doi.org/10.1002/mnfr.201400014] [PMID: 25066301]
[117]
Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015; 93: 134-45.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[118]
Kim JH, Lee J, Lee S, Cho EJ. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Applied Biological Chemistry 2016; 59(5): 721-8.
[http://dx.doi.org/10.1007/s13765-016-0217-0]
[119]
Zhang X, Hu J, Zhong L, et al. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice. Neuropharmacology 2016; 108: 179-92.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.032] [PMID: 27114256]
[120]
Wang DM, Li SQ, Wu WL, Zhu XY, Wang Y, Yuan HY. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res 2014; 39(8): 1533-43.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[121]
Chen J, Deng X, Liu N, et al. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods 2016; 22: 463-76.
[http://dx.doi.org/10.1016/j.jff.2016.01.036]
[122]
Kumar S, Krishnakumar VG, Morya V, Gupta S, Datta B. Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int J Biol Macromol 2019; 138: 168-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.081] [PMID: 31306707]
[123]
Maher P. Preventing and treating neurological disorders with the Flavonol Fisetin. Brain Plast 2021; 6(2): 155-66.
[http://dx.doi.org/10.3233/BPL-200104] [PMID: 33782648]
[124]
Hassan SS ul, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13
[125]
Akaishi T, Morimoto T, Shibao M, et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein. Neurosci Lett 2008; 444(3): 280-5.
[http://dx.doi.org/10.1016/j.neulet.2008.08.052] [PMID: 18761054]
[126]
Prakash D, Sudhandiran G. Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. J Nutr Biochem 2015; 26(12): 1527-39.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.017] [PMID: 26411262]
[127]
Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 2017; 54(3): 2269-85.
[http://dx.doi.org/10.1007/s12035-016-9795-4] [PMID: 26944285]
[128]
Kim S, Choi KJ, Cho SJ, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep 2016; 6(1): 24933.
[http://dx.doi.org/10.1038/srep24933] [PMID: 27112200]
[129]
Kimura AM, Tsuji M, Yasumoto T, et al. Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radic Biol Med 2021; 171: 232-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.05.019] [PMID: 34015458]
[130]
Taheri Y, Suleria HAR, Martins N, et al. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complementary Medicine and Therapies 2020; 20(1): 241.
[http://dx.doi.org/10.1186/s12906-020-03033-z] [PMID: 32738903]
[131]
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Multifunction of myricetin on Aβ: Neuroprotection via a conformational change of Aβ and reduction of Aβ via the interference of secretases. J Neurosci Res 2008; 86(2): 368-77.
[http://dx.doi.org/10.1002/jnr.21476] [PMID: 17722071]
[132]
Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, et al. The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 2007; 46(7): 1888-99.
[http://dx.doi.org/10.1021/bi061540x] [PMID: 17253770]
[133]
DeToma AS, Choi JS, Braymer JJ, Lim MH. Myricetin: A naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity. ChemBioChem 2011; 12(8): 1198-201.
[http://dx.doi.org/10.1002/cbic.201000790] [PMID: 21538759]
[134]
Tay WM, da Silva GFZ, Ming LJ. Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu2+-β-amyloid: Not just serving as suicide antioxidants! Inorg Chem 2013; 52(2): 679-90.
[http://dx.doi.org/10.1021/ic301832p] [PMID: 23301941]
[135]
Fiori J, Naldi M, Bartolini M, Andrisano V. Disclosure of a fundamental clue for the elucidation of the myricetin mechanism of action as amyloid aggregation inhibitor by mass spectrometry. Electrophoresis 2012; 33(22): 3380-6.
[http://dx.doi.org/10.1002/elps.201200186] [PMID: 22961751]
[136]
Berhanu WM, Masunov AE. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer. Biophys Chem 2010; 149(1-2): 12-21.
[http://dx.doi.org/10.1016/j.bpc.2010.03.003] [PMID: 20456856]
[137]
Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019; 16(3): 666-74.
[http://dx.doi.org/10.1007/s13311-019-00767-8] [PMID: 31376068]
[138]
Shi C, Zhao L, Zhu B, et al. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against β-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact 2009; 181(1): 115-23.
[http://dx.doi.org/10.1016/j.cbi.2009.05.010] [PMID: 19464278]
[139]
Watanabe CMH, Wolffram S, Ader P, et al. The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba. Proc Natl Acad Sci USA 2001; 98(12): 6577-80.
[http://dx.doi.org/10.1073/pnas.111126298] [PMID: 11381109]
[140]
Xie H, Wang JR, Yau LF, et al. Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils. Molecules 2014; 19(4): 5119-34.
[http://dx.doi.org/10.3390/molecules19045119] [PMID: 24759072]
[141]
Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 2003; 60(9): 1779-92.
[http://dx.doi.org/10.1007/s00018-003-3080-1] [PMID: 14523543]
[142]
Luo Y, Smith JV. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 2004; 64(4): 465-72.
[http://dx.doi.org/10.1007/s00253-003-1527-9] [PMID: 14740187]
[143]
Maclennan K, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 2002; 67(3): 235-57.
[http://dx.doi.org/10.1016/S0301-0082(02)00015-1] [PMID: 12169298]
[144]
Shi C, Liu J, Wu F, Yew D. Ginkgo biloba extract in Alzheimer’s disease: From action mechanisms to medical practice. Int J Mol Sci 2010; 11(1): 107-23.
[http://dx.doi.org/10.3390/ijms11010107] [PMID: 20162004]
[145]
Colciaghi F, Borroni B, Zimmermann M, et al. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol Dis 2004; 16(2): 454-60.
[http://dx.doi.org/10.1016/j.nbd.2004.03.011] [PMID: 15193301]
[146]
Zhang LD, Ma L, Zhang L, et al. Hyperbaric oxygen and ginkgo biloba extract ameliorate cognitive and memory impairment via nuclear factor Kappa-B pathway in rat model of Alzheimer’s Disease. Chin Med J 2015; 128(22): 3088-93.
[http://dx.doi.org/10.4103/0366-6999.169105] [PMID: 26608991]
[147]
Yao ZX, Han Z, Drieu K, Papadopoulos V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J Nutr Biochem 2004; 15(12): 749-56.
[http://dx.doi.org/10.1016/j.jnutbio.2004.06.008] [PMID: 15607648]
[148]
Wu Y, Wu Z, Butko P, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 2006; 26(50): 13102-13.
[http://dx.doi.org/10.1523/JNEUROSCI.3448-06.2006] [PMID: 17167099]
[149]
Ihl R, Bachinskaya N, Korczyn AD, Vakhapova V, Tribanek M, Hoerr R, et al. Efficacy and safety of a once-daily formulation of Ginkgo biloba extract EGb 761 in dementia with neuropsychiatric features: A randomized controlled trial. Int J Geriatr Psychiatry 2011; 26(11): 1186-94.
[http://dx.doi.org/10.1002/gps.2662]
[150]
Hoerr R, Bachinskaya R. Alleviating neuropsychiatric symptoms in dementia: the effects of Ginkgo biloba extract EGb 761&reg. Findings from a randomized controlled trial. Neuropsychiatr Dis Treat 2011; 209.
[http://dx.doi.org/10.2147/NDT.S18741]
[151]
Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 2012; 46(6): 716-23.
[http://dx.doi.org/10.1016/j.jpsychires.2012.03.003] [PMID: 22459264]
[152]
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Flavonols and flavones as BACE-1 inhibitors: Structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta, Gen Subj 2008; 1780(5): 819-25.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.017] [PMID: 18295609]
[153]
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti‐amyloidogenic and fibril‐destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 2003; 87(1): 172-81.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[154]
Fan Q, Liu Y, Wang X, et al. Ginnalin A inhibits aggregation, reverses fibrillogenesis, and alleviates cytotoxicity of amyloid β(1-42). ACS Chem Neurosci 2020; 11(4): 638-47.
[http://dx.doi.org/10.1021/acschemneuro.9b00673] [PMID: 31967782]
[155]
Du WJ, Guo JJ, Gao MT, et al. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci Rep 2015; 5(1): 7992.
[http://dx.doi.org/10.1038/srep07992] [PMID: 25613018]
[156]
Henríquez G, Mendez L, Varela-Ramirez A, Guerrero E, Narayan M. Neuroprotective effect of Brazilin on Amyloid β (25-35)-induced pathology in a human neuroblastoma model. ACS Omega 2020; 5(23): 13785-92.
[http://dx.doi.org/10.1021/acsomega.0c00396] [PMID: 32566844]
[157]
Wiglenda T, Groenke N, Hoffmann W, et al. Sclerotiorin stabilizes the assembly of nonfibrillar abeta42 oligomers with low toxicity, seeding activity, and beta-sheet content. J Mol Biol 2020; 432(7): 2080-98.
[http://dx.doi.org/10.1016/j.jmb.2020.01.033] [PMID: 32061932]
[158]
Rivière C, Papastamoulis Y, Fortin PY, et al. New stilbene dimers against amyloid fibril formation. Bioorg Med Chem Lett 2010; 20(11): 3441-3.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.074] [PMID: 20452207]
[159]
Vion E, Page G, Bourdeaud E, Paccalin M, Guillard J, Rioux Bilan A. Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol Cell Neurosci 2018; 88: 1-6.
[http://dx.doi.org/10.1016/j.mcn.2017.12.003] [PMID: 29223600]
[160]
McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit abeta -induced toxicity. J Biol Chem 2000; 275(24): 18495-502.
[http://dx.doi.org/10.1074/jbc.M906994199] [PMID: 10764800]
[161]
McLaurin J, Kierstead ME, Brown ME, et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 2006; 12(7): 801-8.
[http://dx.doi.org/10.1038/nm1423] [PMID: 16767098]
[162]
Hole KL, Staniaszek LE, Menon Balan G, Mason JM, Brown JT, Williams RJ. Oral (−)-Epicatechin inhibits progressive tau pathology in rTg4510 mice independent of direct actions at GSK3β. Front Neurosci 2021; 15: 697319.
[http://dx.doi.org/10.3389/fnins.2021.697319] [PMID: 34220446]
[163]
Li W, Sperry JB, Crowe A, Trojanowski JQ, Smith AB III, Lee VMY. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J Neurochem 2009; 110(4): 1339-51.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06224.x] [PMID: 19549281]
[164]
Sonawane SK, Uversky VN, Chinnathambi S. Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation. Cell Commun Signal 2021; 19(1): 16.
[http://dx.doi.org/10.1186/s12964-021-00704-3] [PMID: 33579328]
[165]
Sonawane SK, Balmik AA, Boral D, Ramasamy S, Chinnathambi S. Baicalein suppresses Repeat Tau fibrillization by sequestering oligomers. Arch Biochem Biophys 2019; 675: 108119.
[http://dx.doi.org/10.1016/j.abb.2019.108119] [PMID: 31568753]
[166]
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol Res 2018; 130: 241-58.
[http://dx.doi.org/10.1016/j.phrs.2017.12.011] [PMID: 29258915]
[167]
Peterson DW, George RC, Scaramozzino F, et al. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s disease in vitro. J Alzheimers Dis 2009; 17(3): 585-97.
[http://dx.doi.org/10.3233/JAD-2009-1083] [PMID: 19433898]
[168]
Bu XL, Rao PPN, Wang YJ. Anti-amyloid aggregation activity of natural compounds: Implications for Alzheimer’s drug discovery. Mol Neurobiol 2016; 53(6): 3565-75.
[http://dx.doi.org/10.1007/s12035-015-9301-4] [PMID: 26099310]
[169]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[170]
Cascella M, Bimonte S, Muzio MR, Schiavone V, Cuomo A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: An overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer 2017; 12(1): 36.
[http://dx.doi.org/10.1186/s13027-017-0145-6] [PMID: 28642806]
[171]
Renaud J, Martinoli MG. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int J Mol Sci 2019; 20(8): 1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[172]
Hu S, Maiti P, Ma Q, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother 2015; 15(6): 629-37.
[http://dx.doi.org/10.1586/14737175.2015.1044981] [PMID: 26035622]
[173]
Cisternino S, Chapy H, André P, Smirnova M, Debray M, Scherrmann JM. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS J 2013; 15(2): 299-307.
[http://dx.doi.org/10.1208/s12248-012-9434-6] [PMID: 23212563]
[174]
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential role of natural polyphenols against protein aggregation toxicity: In vitro, in vivo, and clinical studies. ACS Chem Neurosci 2020; 11(19): 2915-34.
[http://dx.doi.org/10.1021/acschemneuro.0c00381] [PMID: 32822152]
[175]
Wang Q, Xu J, Rottinghaus GE, et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 2002; 958(2): 439-47.
[http://dx.doi.org/10.1016/S0006-8993(02)03543-6] [PMID: 12470882]
[176]
Puris E, Gynther M, Huttunen J, Auriola S, Huttunen KM. L-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery. Eur J Pharm Sci 2019; 129: 99-109.
[http://dx.doi.org/10.1016/j.ejps.2019.01.002] [PMID: 30625368]
[177]
Blas-Valdivia V, Franco-Colín M, Rojas-Franco P, Chao-Vazquez A, Cano-Europa E. Gallic acid prevents the oxidative and endoplasmic reticulum stresses in the hippocampus of adult-onset hypothyroid rats. Front Pharmacol 2021; 12: 671614.
[http://dx.doi.org/10.3389/fphar.2021.671614] [PMID: 34295248]
[178]
Barbara R, Belletti D, Pederzoli F, et al. Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 2017; 526(1-2): 413-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[179]
Pervin M, Unno K, Nakagawa A, et al. Blood brain barrier permeability of (−)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochem Biophys Rep 2017; 9: 180-6.
[http://dx.doi.org/10.1016/j.bbrep.2016.12.012] [PMID: 28956003]
[180]
Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid Med Cell Longev 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[181]
He W, Abe K, Akaishi T. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo. J Pharmacol Sci 2018; 136(1): 42-5.
[http://dx.doi.org/10.1016/j.jphs.2017.12.008] [PMID: 29317180]
[182]
Ramezani M, Darbandi N, Khodagholi F, Hashemi A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen Res 2016; 11(12): 1976-80.
[http://dx.doi.org/10.4103/1673-5374.197141] [PMID: 28197195]
[183]
Ude C, Schubert-Zsilavecz M, Wurglics M. Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 2013; 52(9): 727-49.
[http://dx.doi.org/10.1007/s40262-013-0074-5] [PMID: 23703577]
[184]
Rahul , Siddique YH. Neurodegenerative diseases and flavonoids: Special reference to kaempferol. CNS Neurol Disord Drug Targets 2021; 20(4): 327-42.
[http://dx.doi.org/10.2174/1871527320666210129122033] [PMID: 33511932]
[185]
Caillaud M, Guillard J, Richard D, et al. Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model. PLoS One 2019; 14(2): e0212663.
[http://dx.doi.org/10.1371/journal.pone.0212663] [PMID: 30785960]
[186]
Faria A, Pestana D, Teixeira D, et al. Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct 2011; 2(1): 39-44.
[http://dx.doi.org/10.1039/C0FO00100G] [PMID: 21773584]
[187]
Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: A review. Aging Dis 2017; 8(6): 850-67.
[http://dx.doi.org/10.14336/AD.2017.0829] [PMID: 29344420]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy