Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Improved Transdermal Delivery of Anti-hypertensive Drug Loaded Nanostructured Lipid Carriers: Statistical Design, Optimization, Depiction and Pharmacokinetic Assessment

Author(s): Ananda Kumar Chettupalli*, Purnachandra Rao Avula and Vivek Chauhan

Volume 19, Issue 7, 2024

Published on: 27 November, 2023

Page: [828 - 845] Pages: 18

DOI: 10.2174/0115748855267831231113112445

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The vasoselective calcium-channel blocker lercanidipine hydrochloride (LCH) is poorly absorbed orally (only 10% bioavailability) owing to its low solubility and hepatic metabolism. Because of the LCH's poor solubility and permeability, bioavailability is low and very variable, stable aqueous liquid formulations are challenging to create, and a uniform distribution of the medication is almost impossible to produce.

Objectives: The purpose of this research was to see whether an approach involving the development of nanostructured lipid carriers (NLCs) might be used to create an effective, innovative oral formulation of LCH. The efficacy of several synthetic and natural liquid lipids was compared using a hot homogenization-ultrasonication strategy.

Methods: Following initial improvements with hot homogenization and ultrasonication, the LCHloaded NLCs formulation was fine-tuned by Box-Behnken statistical analysis. The optimal LCHNLCs composition includes the lipid phase (2-4% w/v) of stearic acid and oleic acid, the surfactants poloxamer 188 (1%) and Tween 80(1%), and other ingredients.

Results: The optimized NLCs formulation was found to have mean vesicle sizes of 128.72 ± 1.59 nm, polydispersity indices of 0.169 ± 0.06, zeta potentials of -36.81 ± 0.42 mV, and entrapment efficiencies of 79.84 ± 0.11%. The optimized NLCs formulation released much more LCH (88.74 ± 4.62) than the LCH-suspension (36.84 ± 0.37%) in in-vitro drug release experiments lasting up to 24 hours. Ex vivo studies on the ability of LCH-NLCs to pass through the gut showed that drug permeation was much better than it was with plain LCH-solution. The in vivo pharmacodynamic analysis demonstrated that, compared to conventional LCH-suspension, NLCs released LCH more slowly and steadily over a longer time period.

Conclusion: These findings provide additional evidence that NLCs have great promise as a drug delivery technology for the treatment of hypertension, just as they show promise as a controlled release formulation for the treatment of LCH.

Keywords: Lercanidipine, nanostructured lipid carriers, hot homogenization, ultrasonication technique, ex vivo gastrointestinal, permeability experiments, Box-Behnken study design, pharmacodynamic research.

Graphical Abstract
[1]
Ding Y, Qiao Y, Wang M, et al. Enhanced neuroprotection of acetyl-11-Keto-β-Boswellic Acid (AKBA)-loaded O-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol Neurobiol 2016; 53(6): 3842-53.
[http://dx.doi.org/10.1007/s12035-015-9333-9] [PMID: 26162321]
[2]
Hashem FM, Al-Sawahli MM, Nasr M, Ahmed OA. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems: Enhancement of oral bioavailability. Drug Des Devel Ther 2015; 9: 3141-52.
[PMID: 26150693]
[3]
Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S. Polymer‐coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol Biosci 2015; 15(10): 1365-74.
[http://dx.doi.org/10.1002/mabi.201500142] [PMID: 26085082]
[4]
Ye YJ, Wang Y, Lou KY, Chen YZ, Chen R, Gao F. The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes. Int J Nanomedicine 2015; 10: 4309-19.
[PMID: 26170666]
[5]
Horn D, Rieger J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 2001; 40(23): 4330-61.
[http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4330:AID-ANIE4330>3.0.CO;2-W] [PMID: 12404417]
[6]
Bakalova R, Lazarova D, Nikolova B, et al. Delivery of size-controlled long-circulating polymersomes in solid tumours, visualized by quantum dots and optical imaging in vivo. Biotechnol Biotechnol Equip 2015; 29(1): 175-80.
[http://dx.doi.org/10.1080/13102818.2014.984894] [PMID: 26019630]
[7]
Jyothi KR, Beloor J, Jo A, et al. Liver-targeted cyclosporine A-encapsulated poly (lactic-co-glycolic) acid nanoparticles inhibit hepatitis C virus replication. Int J Nanomedicine 2015; 10: 903-21.
[PMID: 25673987]
[8]
Wang Q, Sun Y, Zhang Z, Duan Y. Targeted polymeric therapeutic nanoparticles: Design and interactions with hepatocellular carcinoma. Biomaterials 2015; 56: 229-40.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.050] [PMID: 25934295]
[9]
Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B Biointerfaces 2014; 116: 81-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.012] [PMID: 24445002]
[10]
Dharmala K, Yoo JW, Lee CH. Development of Chitosan–SLN Microparticles for chemotherapy: in vitro approach through efflux-transporter modulation. J Control Release 2008; 131(3): 190-7.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.034] [PMID: 18723057]
[11]
Guo W, Li H, Ji G, Zhang G. Ultrasound-assisted production of biodiesel from soybean oil using Brønsted acidic ionic liquid as catalyst. Bioresour Technol 2012; 125: 332-4.
[http://dx.doi.org/10.1016/j.biortech.2012.08.132] [PMID: 23062462]
[12]
Xue M, Zhao Y, Li X, et al. Comparison of toxicokinetic and tissue distribution of triptolide-loaded solid lipid nanoparticles vs free triptolide in rats. Eur J Pharm Sci 2012; 47(4): 713-7.
[http://dx.doi.org/10.1016/j.ejps.2012.05.012] [PMID: 22677813]
[13]
Li X, Nie S, Kong J, Li N, Ju C, Pan W. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm 2008; 363(1-2): 177-82.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.017] [PMID: 18706987]
[14]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[15]
Yuan H, Wang LL, Du YZ, You J, Hu FQ, Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B Biointerfaces 2007; 60(2): 174-9.
[http://dx.doi.org/10.1016/j.colsurfb.2007.06.011] [PMID: 17656075]
[16]
Subhash P, Dinesh B, Ravikumar M. Assessment of Lercanidipine hydrochloride for transdermal delivery: Physiochemical, in-vitro and ex-vivo characterization of matrix type Lercanidipine hydrochloride transdermal patches. Int J Pharm 2012; 3: 249-65.
[17]
Salem HF, El-Menshawe SF, Khallaf RA, Rabea YK. A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: Optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv Transl Res 2020; 10(1): 227-40.
[http://dx.doi.org/10.1007/s13346-019-00676-5] [PMID: 31625026]
[18]
Kallakunta VR, Bandari S, Jukanti R, Veerareddy PR. Oral self emulsifying powder of lercanidipine hydrochloride: Formulation and evaluation. Powder Technol 2012; 221: 375-82.
[http://dx.doi.org/10.1016/j.powtec.2012.01.032]
[19]
Jessica F, Roberto G, Carlo B, Vanni C. Investigation on the photochemical stability of lercanidipine and its determination in tablets by HPLC-UV and LC-ESI-MS/MS. J Pharm Biomed Anal 2006; 41(1): 176-81.
[20]
Pandit SS, Patil AT. Formulation and in vitro evaluation of buoyant controlled release lercanidipine lipospheres. J Microencapsul 2009; 26(7): 635-41.
[http://dx.doi.org/10.3109/02652040802593908] [PMID: 19839799]
[21]
Nitin P, Neelam S, Saima A, Kanchan K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces 2011; 38(7): 327-38.
[22]
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6(3): 231-48.
[http://dx.doi.org/10.1038/nrd2197] [PMID: 17330072]
[23]
Chakraborty S, Shukla D, Mishra B, Singh S. Lipid: An emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 2009; 73(1): 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.001] [PMID: 19505572]
[24]
Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 2010; 5(2): 287-306.
[http://dx.doi.org/10.2217/nnm.09.110] [PMID: 20148639]
[25]
Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm 2010; 7(5): 1388-405.
[http://dx.doi.org/10.1021/mp100149j] [PMID: 20822152]
[26]
Dayal P, Pillay V, Babu RJ, Singh M. Box-Behnken experimental design in the development of a nasal drug delivery system of model drug hydroxyurea: Characterization of viscosity, in vitro drug release, droplet size, and dynamic surface tension. AAPS PharmSciTech 2005; 6(4): E573-85.
[http://dx.doi.org/10.1208/pt060472] [PMID: 16408859]
[27]
Hwang R C R, Kowalski D L. Design of experiments for formulation development Pharmac Technol 2005; 2005(7)
[28]
Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic” design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst 2005; 22(1): 27-105.
[29]
Box GEP, Wilson KB. On the experimental attainment of multifactorial conditions. R Stat Soc 1951; 13: 1-12.
[30]
Boza A, De la Cruz Y, Jordán G, Jáuregui-Haza U, Alemán A, Caraballo I. Statistical optimization of a sustained-release matrix tablet of lobenzarit disodium. Drug Dev Ind Pharm 2000; 26(12): 1303-7.
[http://dx.doi.org/10.1081/DDC-100102313] [PMID: 11147132]
[31]
Gidwani B, Vyas A. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology. Artif Cells Nanomed Biotechnol 2016; 44(2): 571-80.
[http://dx.doi.org/10.3109/21691401.2014.971462] [PMID: 25363752]
[32]
Kim MH, Kim KT, Sohn SY, et al. Formulation and evaluation of nanostructured lipid carriers (NLCs) Of 20(S)-Protopanaxadiol (PPD) by box-behnken design. Int J Nanomedicine 2019; 14: 8509-20.
[http://dx.doi.org/10.2147/IJN.S215835] [PMID: 31749618]
[33]
Qidwai A, Khan S, Md S, et al. Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma. Drug Deliv 2016; 23(4): 1476-85.
[http://dx.doi.org/10.3109/10717544.2016.1165310] [PMID: 26978275]
[34]
Rizwanullah M, Amin S, Ahmad J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J Drug Target 2017; 25(1): 58-74.
[http://dx.doi.org/10.1080/1061186X.2016.1191080] [PMID: 27186665]
[35]
Felimban RI, Tayeb HH, Chaudhary AG, et al. Utilization of a nanostructured lipid carrier encapsulating pitavastatin– Pinus densiflora oil for enhancing cytotoxicity against the gingival carcinoma HGF-1 cell line. Drug Deliv 2023; 30(1): 83-96.
[http://dx.doi.org/10.1080/10717544.2022.2155269] [PMID: 36510636]
[36]
Soni K, Rizwanullah M D, Kohli K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artif cell nanomed biotechnol 2018; 46(sup1): 15-31.
[37]
Ahmad J, Mir S, Kohli K, Amin S. Quality by design approach for self nanoemulsifying system of paclitaxel. Sci Adv Mater 2014; 6(8): 1778-91.
[http://dx.doi.org/10.1166/sam.2014.1884]
[38]
Ahmad J, Mir SR, Kohli K, Amin S. Effect of oil and co-surfactant on the formation of Solutol HS 15 based colloidal drug carrier by Box–Behnken statistical design. Colloids Surf A Physicochem Eng Asp 2014; 453: 68-77.
[http://dx.doi.org/10.1016/j.colsurfa.2014.04.008]
[39]
Patil GB, Patil ND, Deshmukh PK, Patil PO, Bari SB. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach. Artif Cells Nanomed Biotechnol 2016; 44(1): 12-9.
[http://dx.doi.org/10.3109/21691401.2014.909820] [PMID: 24866725]
[40]
Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm 2007; 335(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.004] [PMID: 17161566]
[41]
Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm 2003; 257(1-2): 153-60.
[http://dx.doi.org/10.1016/S0378-5173(03)00135-2] [PMID: 12711170]
[42]
Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 2004; 95(3): 627-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.005] [PMID: 15023472]
[43]
Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull 2010; 58(5): 650-5.
[http://dx.doi.org/10.1248/cpb.58.650] [PMID: 20460791]
[44]
Souto EB, Wissing SA, Barbosa CM, Müller RH. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm 2004; 58(1): 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.015] [PMID: 15207541]
[45]
Limón D, Amirthalingam E, Rodrigues M, et al. Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. Eur J Pharm Biopharm 2015; 96: 421-36.
[http://dx.doi.org/10.1016/j.ejpb.2015.09.007] [PMID: 26409201]
[46]
Parida P, Mishra SC, Sahoo S, Behera A, Nayak BP. Development and characterization of ethylcellulose based microsphere for sustained release of nifedipine. J Pharm Anal 2016; 6(5): 341-4.
[http://dx.doi.org/10.1016/j.jpha.2014.02.001] [PMID: 29404002]
[47]
Charde S, Mudgal M, Kumar L, Saha R. Development and evaluation of buccoadhesive controlled release tablets of lercanidipine. AAPS PharmSciTech 2008; 9(1): 182-90.
[http://dx.doi.org/10.1208/s12249-007-9031-7] [PMID: 18446480]
[48]
Raman KV, Suresh B, Raju J. Oral self emulsifying powder of lercanidipine hydrochloride: Formulation and evaluation. Powder Technol 2012; 221: 375-82.
[49]
Neupane YR, Srivastava M, Ahmad N, Kumar N, Bhatnagar A, Kohli K. Lipid based nanocarrier system for the potential oral delivery of decitabine: Formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm 2014; 477(1-2): 601-12.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.001] [PMID: 25445972]
[50]
Cirri M, Maestrini L, Maestrelli F, et al. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv 2018; 25(1): 1910-21.
[http://dx.doi.org/10.1080/10717544.2018.1529209] [PMID: 30451015]
[51]
Ahmad J, Mir SR, Kohli K, et al. Solid-nanoemulsion preconcentrate for oral delivery of paclitaxel: Formulation design, biodistribution, and γ scintigraphy imaging. BioMed Res Int 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/984756] [PMID: 25114933]
[52]
Shi F, Zhao Y, Firempong CK, Xu X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm Biol 2016; 54(10): 2320-8.
[http://dx.doi.org/10.3109/13880209.2016.1155630] [PMID: 26986932]
[53]
Balakumar K, Raghavan CV. selvan NT, prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces 2013; 112: 337-43.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.025] [PMID: 24012665]
[54]
Reaven GM, Ho H, Hoffmann BB. Somatostatin inhibition of fructose-induced hypertension. Hypertension 1989; 14(2): 117-20.
[http://dx.doi.org/10.1161/01.HYP.14.2.117] [PMID: 2569446]
[55]
Reaven GM, Ho H, Hoffman BB. Attenuation of fructose-induced hypertension in rats by exercise training. Hypertension 1988; 12(2): 129-32.
[http://dx.doi.org/10.1161/01.HYP.12.2.129] [PMID: 3410522]
[56]
Buñag RD. Validation in awake rats of a tail-cuff method for measuring systolic pressure. J Appl Physiol 1973; 34(2): 279-82.
[http://dx.doi.org/10.1152/jappl.1973.34.2.279] [PMID: 4686367]
[57]
Tan SW, Billa N, Roberts CR, Burley JC. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2010; 372(1-3): 73-9.
[http://dx.doi.org/10.1016/j.colsurfa.2010.09.030]
[58]
Liu J, Gong T, Wang C, Zhong Z, Zhang Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: Preparation and characterization. Int J Pharm 2007; 340(1-2): 153-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.009] [PMID: 17428627]
[59]
Rahman Z, Zidan AS, Khan MA. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur J Pharm Biopharm 2010; 76(1): 127-37.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.003] [PMID: 20470882]
[60]
Moghddam SMM, Ahad A, Aqil M, Imam SS, Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach. Artif Cells Nanomed Biotechnol 2017; 45(3): 617-24.
[http://dx.doi.org/10.3109/21691401.2016.1167699] [PMID: 27050533]
[61]
Mishra A, Imam SS, Aqil M, et al. Carvedilol nano lipid carriers: Formulation, characterization and in-vivo evaluation. Drug Deliv 2016; 23(4): 1486-94.
[http://dx.doi.org/10.3109/10717544.2016.1165314] [PMID: 26978072]
[62]
Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 2000; 199(2): 167-77.
[http://dx.doi.org/10.1016/S0378-5173(00)00378-1] [PMID: 10802410]
[63]
Swidan SA, Ghonaim HM, Samy AM, Ghorab MM. Efficacy and in vitro cytotoxicity of nanostructured lipid carriers for paclitaxel delivery. J Appl Pharm Sci 2016; 6: 018-26.
[http://dx.doi.org/10.7324/JAPS.2016.60903]
[64]
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9-10): 635-41.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[65]
Bramini M, Ye D, Hallerbach A, et al. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 2014; 8(5): 4304-12.
[66]
Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int J Mol Sci 2014; 15(2): 1812-25.
[http://dx.doi.org/10.3390/ijms15021812] [PMID: 24469316]
[67]
Waghule T, Rapalli VK, Singhvi G, et al. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2019; 52: 303-15.
[http://dx.doi.org/10.1016/j.jddst.2019.04.026]
[68]
Khare A, Singh I, Pawar P, Grover K. Design and evaluation of voriconazole loaded solid lipid nanoparticles for ophthalmic application. J Drug Deliv 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/6590361]
[69]
Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull 2014; 62(8): 793-8.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[70]
Liu X, Wang Z, Feng R, Hu Y, Huang G. A novel approach for systematic delivery of a hydrophobic anti-leukemia agent tamibarotene mediated by nanostructured lipid carrier. J Biomed Nanotechnol 2013; 9(9): 1586-93.
[http://dx.doi.org/10.1166/jbn.2013.1656] [PMID: 23980506]
[71]
Liu Y, Wang Y, Zhuang D, Yang J, Yang J. Bionanoparticles of amphiphilic copolymers polyacrylate bearing cholesterol and ascorbate for drug delivery. J Colloid Interface Sci 2012; 377(1): 197-206.
[http://dx.doi.org/10.1016/j.jcis.2012.04.004] [PMID: 22542008]
[72]
Shete HK, Selkar N, Vanage GR, Patravale VB. Tamoxifen nanostructured lipid carriers: Enhanced in vivo antitumor efficacy with reduced adverse drug effects. Int J Pharm 2014; 468(1-2): 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.056] [PMID: 24704438]
[73]
Shishu K. Kamalpreet, Maheshwari M. Development and evaluation of novel microemulsion based oral formulations of 5-fluorouracil using non-everted rat intestine sac model. Drug Dev Ind Pharm 2012; 38(3): 294-300.
[http://dx.doi.org/10.3109/03639045.2011.602407] [PMID: 21864111]
[74]
Akula S, Gurram AK, Devireddy SR, Deshpande PB. Evaluation of surfactant effect on self micro emulsifying drug delivery system (SMEDDS) of lercanidipine hydrochloride: Formulation and evaluation. J Pharm Innov 2015; 10(4): 374-87.
[http://dx.doi.org/10.1007/s12247-015-9233-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy