Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances on the Synthesis of Orally Active Antiviral Drug Molnupiravir

Author(s): Tanmoy Sahoo and Basi V. Subba Reddy*

Volume 27, Issue 20, 2023

Published on: 21 November, 2023

Page: [1754 - 1761] Pages: 8

DOI: 10.2174/0113852728268800231031113104

Open Access Journals Promotions 2
conference banner
Abstract

Molnupiravir is one of the simple orally active antiviral drugs, sold under the brand name Lagevrio. Initially, this drug was used to treat the influenza virus but later on, used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is the first orally active and direct-acting antiviral drug and is highly effective against SARS-CoV- 2. In this review, we discuss different synthetic strategies for the synthesis of molnupiravir, which will help for the further development of novel routes.

Keywords: Antiviral, citidine, uridine, d-ribose molnupiravir, ribonucleoside, influenza virus.

Graphical Abstract
[1]
Aleccia, J. Daily pill to treat COVID could be just months away. 2021. Available from: https://abcnews.go.com/Health/daily-pill-treat-covid-months/story?id=80304573
[2]
Halford, B. An emerging antiviral takes aim at COVID-19. 2020. Available from: https://cen.acs.org/pharmaceuticals/drug-development/emerging-antiviral-takes-aim-COVID-19/98/web/2020/05
[3]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[4]
(a) Chavda, V.P.; Balar, P.; Vaghela, D.; Solanki, H.K.; Vaishnav, A.; Hala, V.; Vora, L. Omicron variant of SARS-CoV-2: An Indian perspective of vaccination and management. Vaccines, 2023, 11, 160.;
(b) Banerjee, S.; Balar, P.; Vaghela, D.; Solanki, H.K.; Vaishnav, A.; Hala, V.; Vora, L. Quinazolines: An illustrated review. J. Adv. Pharm. Educ. Res., 2013, 3, 136-151.
[5]
Chavda, V.P.; Yao, Q.; Vora, L.K.; Apostolopoulos, V.; Patel, C.A.; Bezbaruah, R.; Patel, A.B.; Chen, Z.S. Fast-track development of vaccines for SARS-CoV-2: The shots that saved the world. Front. Immunol., 2022, 13, 961198.
[http://dx.doi.org/10.3389/fimmu.2022.961198] [PMID: 36263030]
[6]
Coronavirus, W.H.O. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/
[7]
Bian, L.; Gao, F.; Zhang, J.; He, Q.; Mao, Q.; Xu, M.; Liang, Z. Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Rev. Vaccines, 2021, 20(4), 365-373.
[http://dx.doi.org/10.1080/14760584.2021.1903879] [PMID: 33851875]
[8]
Maurya, R.; Mishra, P.; Swaminathan, A.; Ravi, V.; Saifi, S.; Kanakan, A.; Mehta, P.; Devi, P.; Praveen, S.; Budhiraja, S.; Tarai, B.; Sharma, S.; Khyalappa, R.J.; Joshi, M.G.; Pandey, R. SARS-CoV-2 mutations and COVID-19 clinical outcome: Mutation global frequency dynamics and structural modulation hold the key. Front. Cell. Infect. Microbiol., 2022, 12, 868414.
[http://dx.doi.org/10.3389/fcimb.2022.868414] [PMID: 35386683]
[9]
Akkiz, H. implications of the novel mutations in the SARS-CoV-2 genome for transmission, disease severity, and the vaccine development. Front. Med., 2021, 8, 636532.
[http://dx.doi.org/10.3389/fmed.2021.636532] [PMID: 34026780]
[10]
Abu-Zaied, M.A.; Elgemeie, G.H.; Mahmoud, N.M. Anti-covid-19 drug analogues: Synthesis of novel pyrimidine thioglycosides as antiviral agents against SARS-COV-2 and avian influenza H5N1 viruses. ACS Omega, 2021, 6(26), 16890-16904.
[http://dx.doi.org/10.1021/acsomega.1c01501] [PMID: 34250348]
[11]
Sezer, A.; Halilović-Alihodžić, M.; Vanwieren, A.R.; Smajkan, A.; Karić, A.; Djedović, H.; Šutković, J. A review on drug repurposing in COVID-19: From antiviral drugs to herbal alternatives. J. Genet. Eng. Biotechnol., 2022, 20(1), 78.
[http://dx.doi.org/10.1186/s43141-022-00353-0] [PMID: 35608704]
[12]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[13]
Sharma, A.; Ahmed, S.; Kaur, J.; Chawla, R.; Rejeeth, C. Exploring status of emergency drugs and vaccine development in COVID-19 pandemic: An update. Virusdisease, 2021, 32(2), 198-210.
[http://dx.doi.org/10.1007/s13337-021-00684-5] [PMID: 33969152]
[14]
Khan, Z.; Karataş, Y.; Rahman, H. Anti COVID-19 drugs: Need for more clinical evidence and global action. Adv. Ther., 2020, 37(6), 2575-2579.
[http://dx.doi.org/10.1007/s12325-020-01351-9] [PMID: 32350686]
[15]
Passi, I.; Salwan, S.; Kumar, B. US-FDA approved drugs in 2020 and 2021: A review. Mini Rev. Med. Chem., 2023, 23(12), 1273-1297.
[http://dx.doi.org/10.2174/1389557523666221208104530] [PMID: 36503454]
[16]
Goel, B.; Bhardwaj, N.; Tripathi, N.; Jain, S.K. Drug discovery of small molecules for the treatment of COVID-19: A review on clinical studies. Mini Rev. Med. Chem., 2021, 21(12), 1431-1456.
[http://dx.doi.org/10.2174/1389557521666201228145755] [PMID: 33371848]
[17]
Chaudhry, F.; Munir, R.; Malik, N. N-heterocycles as privileged scaffolds in FDA approved different NMEs of 2021: A review. Lett. Org. Chem., 2023, 20(4), 287-299.
[http://dx.doi.org/10.2174/1570178620666221026095145]
[18]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[19]
Tian, F.; Chen, Z.; Feng, Q. Nirmatrelvir-ritonavir compared with other antiviral drugs for the treatment of COVID‐19 patients: A systematic review and meta‐analysis. J. Med. Virol., 2023, 95(4), e28732.
[http://dx.doi.org/10.1002/jmv.28732] [PMID: 37183808]
[20]
Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India, 2020, 76(4), 370-376.
[http://dx.doi.org/10.1016/j.mjafi.2020.08.004] [PMID: 32895599]
[21]
Fischer, W.A., II; Eron, J.J., Jr; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R.; Duke, E.R.; Azizad, M.M.; Borroto-Esoda, K.; Wohl, D.A.; Coombs, R.W.; James Loftis, A.; Alabanza, P.; Lipansky, F.; Painter, W.P. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med., 2022, 14(628), eabl7430.
[http://dx.doi.org/10.1126/scitranslmed.abl7430] [PMID: 34941423]
[22]
Teli, D.; Balar, P.; Patel, K.; Sharma, A.; Chavda, V.; Vora, L. Molnupiravir: A versatile prodrug against sars-cov-2 variants. Metabolites, 2023, 13(2), 309.
[http://dx.doi.org/10.3390/metabo13020309] [PMID: 36837928]
[23]
Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov., 2018, 17(8), 559-587.
[http://dx.doi.org/10.1038/nrd.2018.46] [PMID: 29700501]
[24]
Hacker, M.; Messer, W.S.; Bachmann, K.A. Elimination (Metabolism and Excretion). In: Pharmacology: Principles and Practice; Academic Press, 2009; pp. 216-217.
[25]
Jornada, D.; dos Santos Fernandes, G.; Chiba, D.; de Melo, T.; dos Santos, J.; Chung, M. The prodrug approach: A successful tool for improving drug solubility. Molecules, 2015, 21(1), 42.
[http://dx.doi.org/10.3390/molecules21010042] [PMID: 26729077]
[26]
Markovic, M.; Ben-Shabat, S.; Dahan, A. Prodrugs for improved drug delivery: Lessons learned from recently developed and marketed products. Pharmaceutics, 2020, 12(11), 1031.
[http://dx.doi.org/10.3390/pharmaceutics12111031] [PMID: 33137942]
[27]
Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother., 2021, 65(5), e02428-20.
[http://dx.doi.org/10.1128/AAC.02428-20] [PMID: 33649113]
[28]
Toots, M.; Yoon, J.J.; Cox, R.M.; Hart, M.; Sticher, Z.M.; Makhsous, N.; Plesker, R.; Barrena, A.H.; Reddy, P.G.; Mitchell, D.G.; Shean, R.C.; Bluemling, G.R.; Kolykhalov, A.A.; Greninger, A.L.; Natchus, M.G.; Painter, G.R.; Plemper, R.K. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med., 2019, 11(515), eaax5866.
[http://dx.doi.org/10.1126/scitranslmed.aax5866] [PMID: 31645453]
[29]
Yoon, J.J.; Toots, M.; Lee, S.; Lee, M.E.; Ludeke, B.; Luczo, J.M.; Ganti, K.; Cox, R.M.; Sticher, Z.M.; Edpuganti, V.; Mitchell, D.G.; Lockwood, M.A.; Kolykhalov, A.A.; Greninger, A.L.; Moore, M.L.; Painter, G.R.; Lowen, A.C.; Tompkins, S.M.; Fearns, R.; Natchus, M.G.; Plemper, R.K. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob. Agents Chemother., 2018, 62(8), e00766-18.
[http://dx.doi.org/10.1128/AAC.00766-18] [PMID: 29891600]
[30]
Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; Shazam Hussain, M.; Jansen, O.; Jayaraman, M.V.; Khalessi, A.A.; Kluck, B.W.; Lavine, S.; Meyers, P.M.; Ramee, S.; Rüfenacht, D.A.; Schirmer, C.M.; Vorwerk, D. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke, 2018, 13(6), 612-632.
[PMID: 29786478]
[31]
Kabinger, F.; Stiller, C.; Schmitzova, J. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol., 2021, 28, 740-746.
[http://dx.doi.org/10.1038/s41594-021-00651-0]
[32]
Gordon, C.J.; Tchesnokov, E.P.; Schinazi, R.F.; Götte, M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J. Biol. Chem., 2021, 297(1), 100770.
[http://dx.doi.org/10.1016/j.jbc.2021.100770] [PMID: 33989635]
[33]
Yip, A.J.W.; Low, Z.Y.; Chow, V.T.K.; Lal, S.K. Repurposing molnupiravir for COVID-19: The mechanisms of antiviral activity. Viruses, 2022, 14(6), 1345.
[http://dx.doi.org/10.3390/v14061345] [PMID: 35746815]
[34]
Toots, M.; Yoon, J.J.; Hart, M.; Natchus, M.G.; Painter, G.R.; Plemper, R.K. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl. Res., 2020, 218, 16-28.
[http://dx.doi.org/10.1016/j.trsl.2019.12.002] [PMID: 31945316]
[35]
Painter, G.R.; Bowen, R.A.; Bluemling, G.R.; DeBergh, J.; Edpuganti, V.; Gruddanti, P.R.; Guthrie, D.B.; Hager, M.; Kuiper, D.L.; Lockwood, M.A.; Mitchell, D.G.; Natchus, M.G.; Sticher, Z.M.; Kolykhalov, A.A. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Res., 2019, 171, 104597.
[http://dx.doi.org/10.1016/j.antiviral.2019.104597] [PMID: 31494195]
[36]
Wang, Z.; Yang, L. Broad‐spectrum prodrugs with anti‐SARS‐CoV‐2 activities: Strategies, benefits, and challenges. J. Med. Virol., 2022, 94(4), 1373-1390.
[http://dx.doi.org/10.1002/jmv.27517] [PMID: 34897729]
[37]
Painter, G. R.; Bluemling, G. R.; Natchus, M. G.; Guthrie, D. N4- hydroxycytidine and derivatives and anti-viral uses related thereto. W.O. Patent 2019113462A1, 2019.
[38]
Steiner, A.; Znidar, D.; Ötvös, S.B.; Snead, D.R.; Dallinger, D.; Kappe, C.O. A high‐yielding synthesis of EIDD‐2801 from uridine. Eur. J. Org. Chem., 2020, 2020(43), 6736-6739.
[http://dx.doi.org/10.1002/ejoc.202001340] [PMID: 33664631]
[39]
Dey, R.; Nayak, S.; Das, P.; Yadav, S. Short synthesis of molnupiravir (EIDD-2801) via a thionated uridine intermediate. ACS Omega, 2021, 6(42), 28366-28372.
[http://dx.doi.org/10.1021/acsomega.1c04550] [PMID: 34723033]
[40]
Fier, P.S.; Xu, Y.; Poirier, M.; Brito, G.; Zheng, M.; Bade, R.; Sirota, E.; Stone, K.; Tan, L.; Humphrey, G.R.; Chang, D.; Bothe, J.; Zhang, Y.; Bernardoni, F.; Castro, S.; Zompa, M.A.; Taylor, J.; Sirk, K.M.; Diaz-Santana, A.; Diribe, I.; Emerson, K.M.; Krishnamurthi, B.; Zhao, R.; Ward, M.; Xiao, C.; Ouyand, H.; Zhan, J.; Morris, W.J. Development of a robust manufacturing route for molnupiravir, an antiviral for the treatment of COVID-19. Org. Process Res. Dev., 2021, 25(12), 2806-2815.
[http://dx.doi.org/10.1021/acs.oprd.1c00400] [PMID: 35095257]
[41]
Pereira, V.R.D.; Bezerra, M.A.M.; Gomez, M.R.B.P.; Martins, G.M.; da Silva, A.D.; de Oliveira, K.T.; de Souza, R.O.M.A.; Amarante, G.W. Concise two-step chemical synthesis of molnupiravir. RSC Advances, 2022, 12(46), 30120-30124.
[http://dx.doi.org/10.1039/D2RA05064A] [PMID: 36329948]
[42]
Vasudevan, N.; Ahlqvist, G.P.; McGeough, C.P.; Paymode, D.J.; Cardoso, F.S.P.; Lucas, T.; Dietz, J.P.; Opatz, T.; Jamison, T.F.; Gupton, F.B.; Snead, D.R. A concise route to MK-4482 (EIDD-2801) from cytidine. Chem. Commun., 2020, 56(87), 13363-13364.
[http://dx.doi.org/10.1039/D0CC05944G] [PMID: 33030468]
[43]
Snead, D.R.; Gopalsamuthiram, V.; Williams, C.; Noble, J.; Jamison, T.F.; Gupton, B.F. A concise route to MK-4482 (EIDD-2801) from cytidine: Part 2. Synlett, 2021, 32(3), 326-328.
[http://dx.doi.org/10.1055/a-1275-2848]
[44]
Ahlqvist, G.P.; McGeough, C.P.; Senanayake, C.; Armstrong, J.D.; Yadaw, A.; Roy, S.; Ahmad, S.; Snead, D.R.; Jamison, T.F. Progress toward a large-scale synthesis of molnupiravir (MK-4482, EIDD-2801) from cytidine. ACS Omega, 2021, 6(15), 10396-10402.
[http://dx.doi.org/10.1021/acsomega.1c00772] [PMID: 34056192]
[45]
Burke, A.J.; Birmingham, W.R.; Zhuo, Y.; Thorpe, T.W.; Zucoloto da Costa, B.; Crawshaw, R.; Rowles, I.; Finnigan, J.D.; Young, C.; Holgate, G.M.; Muldowney, M.P.; Charnock, S.J.; Lovelock, S.L.; Turner, N.J.; Green, A.P. An engineered cytidine deaminase for biocatalytic production of a key intermediate of the COVID-19 antiviral molnupiravir. J. Am. Chem. Soc., 2022, 144(9), 3761-3765.
[http://dx.doi.org/10.1021/jacs.1c11048] [PMID: 35224970]
[46]
Hu, T.; Xie, Y.; Zhu, F.; Gong, X.; Liu, Y.; Xue, H.; Aisa, H.A.; Shen, J. “One-Pot” synthesis of molnupiravir from cytidine. Org. Process Res. Dev., 2022, 26(2), 358-364.
[http://dx.doi.org/10.1021/acs.oprd.1c00419]
[47]
Liu, Z.; Yang, J.; Liu, F. New routes to antiviral molnupiravir against SARS-CoV-2 infection. Youji Huaxue, 2022, 42(9), 2988-2993.
[http://dx.doi.org/10.6023/cjoc202203044]
[48]
Venkatanarayana, P.; Kolli, D.; Seelama, N.V.; Ramakrishna, D.S. Synthesis of molnupiravir (MK-4482, EIDD-2801): A promising oral drug for the treatment of COVID-19 starting from cytidine. Nucleosides Nucleotides Nucleic Acids, 2023, 42(6), 427-435.
[http://dx.doi.org/10.1080/15257770.2022.2153140] [PMID: 36472346]
[49]
Benkovics, T.; McIntosh, J.; Silverman, S.; Kong, J.; Maligres, P.; Itoh, T.; Yang, H.; Huffman, M.; Verma, D.; Pan, W.; Ho, H.I.; Vroom, J.; Knight, A.; Hurtak, J.; Morris, W.; Strotman, N.; Murphy, G.; Maloney, K.; Fier, P. Evolving to an ideal synthesis of molnupiravir, an investigational treatment for COVID-19. ChemRxiv, 2020, 2020, 13472373.
[http://dx.doi.org/10.26434/chemrxiv.13472373.v1]
[50]
Ahmed, A.; Ahmed, Q.N.; Mukherjee, D. Conversion of N-acyl amidines to amidoximes: A convenient synthetic approach to molnupiravir (EIDD-2801) from ribose. RSC Advances, 2021, 11(57), 36143-36147.
[http://dx.doi.org/10.1039/D1RA06912H] [PMID: 35492778]
[51]
Sahoo, T.; Subba Reddy, B.V. Concise synthesis of antiviral drug, molnupiravir by direct coupling of fully protected d-Ribose with cytosine. Tetrahedron Lett., 2022, 97, 153783.
[http://dx.doi.org/10.1016/j.tetlet.2022.153783]

© 2024 Bentham Science Publishers | Privacy Policy