Research Article

硒、锌及其联合补充对肥胖大鼠心脏代谢生物标志物的影响——比较它们在能量限制和高脂饮食方法中的作用

卷 24, 期 10, 2024

发表于: 22 January, 2024

页: [1307 - 1315] 页: 9

弟呕挨: 10.2174/0115665240268180231113045836

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

介绍:体内的脂肪分布决定了患心脏病和糖尿病等心脏代谢问题的风险。一些膳食补充剂,如硒和锌,具有溶脂和抗血管生成功能,这可能是降低心脏代谢并发症风险的有效策略。本研究在热量限制(CR)和高脂饮食(HFD)两种营养模型中,评价了锌(Zn)、硒(Se)及其联合补充对雄性Wistar大鼠心脏代谢危险因素的影响。 方法与材料:体内的脂肪分布决定了患心脏病和糖尿病等心脏代谢问题的风险。一些膳食补充剂,如硒和锌,具有溶脂和抗血管生成功能,这可能是降低心脏代谢并发症风险的有效策略。本研究在热量限制(CR)和高脂饮食(HFD)两种营养模型中,评价了锌(Zn)、硒(Se)及其联合补充对雄性Wistar大鼠心脏代谢危险因素的影响。 结果:结果显示,饲粮添加量显著改善了猪的脂质状况(P <0.001)。葡萄糖稳态指数在研究组的比较也显示出显著差异。HFD组血清葡萄糖水平高于干预组(P <0.001)。此外,接受两种补充剂组合的组的血脂和血糖指数的改善率比单独接受锌和硒的组表现出更好的趋势。然而,只有葡萄糖稳态指标的数值才有统计学意义(P <0.001)。 结论:尽管肥胖是一个多因素的疾病,控制其他危险因素,锌和硒及其联合补充可以为治疗肥胖引起的葡萄糖和脂质稳态紊乱提供有希望的解决方案。

关键词: 葡萄糖稳态,血脂,肥胖,抗氧化剂,心脏代谢生物标志物,高脂肪饮食。

« Previous
[1]
Min QQ, Qin LQ, Sun ZZ, Zuo WT, Zhao L, Xu JY. Effects of metformin combined with lactoferrin on lipid accumulation and metabolism in mice fed with high-fat diet. Nutrients 2018; 10(11): 1628.
[http://dx.doi.org/10.3390/nu10111628] [PMID: 30400147]
[2]
Basen-Engquist K, Chang M. Obesity and cancer risk: Recent review and evidence. Curr Oncol Rep 2011; 13(1): 71-6.
[http://dx.doi.org/10.1007/s11912-010-0139-7] [PMID: 21080117]
[3]
Huang P, Li S, Shao M, et al. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice. Nutr Metab 2010; 7(1): 59.
[http://dx.doi.org/10.1186/1743-7075-7-59] [PMID: 20633301]
[4]
Park S, Park N-Y, Valacchi G, Lim Y. Calorie restriction with a high-fat diet effectively attenuated inflammatory response and oxidative stress-related markers in obese tissues of the high diet fed rats. Mediators of inflammation 2012; 2012
[http://dx.doi.org/10.1155/2012/984643]
[5]
Rayman MP. The importance of selenium to human health. Lancet 2000; 356(9225): 233-41.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[6]
Wang Y, Gao X, Pedram P, et al. Significant beneficial association of high dietary selenium intake with reduced body fat in the CODING study. Nutrients 2016; 8(1): 24.
[http://dx.doi.org/10.3390/nu8010024] [PMID: 26742059]
[7]
Xu R, Chen C, Zhou Y, Zhang X, Wan Y. Fingernail selenium levels in relation to the risk of obesity in Chinese children. Medicine 2018; 97(9): e0027.
[http://dx.doi.org/10.1097/MD.0000000000010027] [PMID: 29489649]
[8]
Seale LA, Gilman CL, Hashimoto AC, Ogawa-Wong AN, Berry MJ. Diet-induced obesity in the selenocysteine lyase knockout mouse. Antioxid Redox Signal 2015; 23(10): 761-74.
[http://dx.doi.org/10.1089/ars.2015.6277] [PMID: 26192035]
[9]
McNeill JH, Delgatty HLM, Battell ML. Insulinlike effects of sodium selenate in streptozocin-induced diabetic rats. Diabetes 1991; 40(12): 1675-8.
[http://dx.doi.org/10.2337/diab.40.12.1675] [PMID: 1756907]
[10]
Mueller AS, Pallauf J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 2006; 17(8): 548-60.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.006] [PMID: 16443359]
[11]
Hara T, Takeda T, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 2017; 67(2): 283-301.
[http://dx.doi.org/10.1007/s12576-017-0521-4] [PMID: 28130681]
[12]
Ghayour-Mobarhan M, Mouhebati M, Esmailie H, et al. Micronutrient intake and the presence of the metabolic syndrome. N Am J Med Sci 2013; 5(6): 377-85.
[http://dx.doi.org/10.4103/1947-2714.114171] [PMID: 23923113]
[13]
Hashemipour M, Kelishadi R, Shapouri J, et al. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones 2009; 8(4): 279-85.
[http://dx.doi.org/10.14310/horm.2002.1244] [PMID: 20045801]
[14]
Kelishadi R, Hashemipour M, Adeli K, et al. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord 2010; 8(6): 505-10.
[http://dx.doi.org/10.1089/met.2010.0020] [PMID: 21028969]
[15]
Ranasinghe P, Wathurapatha WS, Ishara MH, et al. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr Metab 2015; 12(1): 26.
[http://dx.doi.org/10.1186/s12986-015-0023-4] [PMID: 26244049]
[16]
Costarelli L, Muti E, Malavolta M, et al. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem 2010; 21(5): 432-7.
[http://dx.doi.org/10.1016/j.jnutbio.2009.02.001] [PMID: 19427184]
[17]
Council NR In: Guide for the care and use of laboratory animals. 2010.
[18]
Mousavi SN, Faghihi A, Motaghinejad M, et al. Zinc and selenium co-supplementation reduces some lipid peroxidation and angiogenesis markers in a rat model of NAFLD-Fed high fat diet. Biol Trace Elem Res 2018; 181(2): 288-95.
[http://dx.doi.org/10.1007/s12011-017-1059-2] [PMID: 28577233]
[19]
Niroumand S, Khajedaluee M, Khadem-Rezaiyan M, et al. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med J Islam Repub Iran 2015; 29: 240.
[PMID: 26793631]
[20]
Guo CH, Chen PC, Hsu GS, Wang CL. Zinc supplementation alters plasma aluminum and selenium status of patients undergoing dialysis: a pilot study. Nutrients 2013; 5(4): 1456-70.
[http://dx.doi.org/10.3390/nu5041456] [PMID: 23609777]
[21]
Afridi HI, Kazi TG, Kazi N, et al. Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet 2009; 280(3): 415-23.
[http://dx.doi.org/10.1007/s00404-009-0955-x] [PMID: 19169697]
[22]
Farvid MS, Siassi F, Jalali M, Hosseini M, Saadat N. The impact of vitamin and/or mineral supplementation on lipid profiles in type 2 diabetes. Diabetes Res Clin Pract 2004; 65(1): 21-8.
[http://dx.doi.org/10.1016/j.diabres.2003.11.009] [PMID: 15163474]
[23]
Viktorínová A, Tošerová E, Križko M, Ďuračková Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism 2009; 58(10): 1477-82.
[http://dx.doi.org/10.1016/j.metabol.2009.04.035] [PMID: 19592053]
[24]
Nunes FLS, Lima SCVC, Lyra CO, et al. The impact of essential and toxic elements on cardiometabolic risk factors in adults and older people. J Trace Elem Med Biol 2022; 72: 126991.
[http://dx.doi.org/10.1016/j.jtemb.2022.126991] [PMID: 35597099]
[25]
Kadhim HM, Ismail SH, Hussein KI, et al. Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin. J Pineal Res 2006; 41(2): 189-93.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00353.x] [PMID: 16879326]
[26]
Al-Salmi FA, Hamza RZ. Efficacy of vanadyl sulfate and selenium tetrachloride as anti-diabetic agents against hyperglycemia and oxidative stress induced by diabetes mellitus in male rats. Curr Issues Mol Biol 2021; 44(1): 94-104.
[http://dx.doi.org/10.3390/cimb44010007] [PMID: 35723386]
[27]
Liu Y, Zhao H, Zhang Q, et al. Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J Nutr 2012; 142(8): 1410-6.
[http://dx.doi.org/10.3945/jn.112.159020] [PMID: 22739382]
[28]
Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 2013; 65: 1538-47.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.016] [PMID: 23872396]
[29]
Hudish LI, Reusch JEB, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019; 129(10): 4001-8.
[http://dx.doi.org/10.1172/JCI129188] [PMID: 31424428]
[30]
Erion K, Corkey BE. β-cell failure or β-cell abuse? Front Endocrinol 2018; 9: 532.
[http://dx.doi.org/10.3389/fendo.2018.00532] [PMID: 30271382]
[31]
Retondario A, Souza AM, Bricarello LP, et al. Selenium intake is not associated with the metabolic syndrome in Brazilian adolescents: An analysis of the study of cardiovascular risk factors in adolescents. Br J Nutr 2022; 127(9): 1404-14.
[http://dx.doi.org/10.1017/S0007114521002385] [PMID: 34176526]
[32]
Wongdokmai R, Shantavasinkul PC, Chanprasertyothin S, et al. The involvement of selenium in type 2 diabetes development related to obesity and low grade inflammation. Diabetes Metab Syndr Obes 2021; 14: 1669-80.
[http://dx.doi.org/10.2147/DMSO.S303146] [PMID: 33883916]
[33]
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox homeostasis in pancreatic β-cells: from development to failure. Antioxidants 2021; 10(4): 526.
[http://dx.doi.org/10.3390/antiox10040526] [PMID: 33801681]
[34]
Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46(11): 1733-42.
[http://dx.doi.org/10.2337/diab.46.11.1733] [PMID: 9356019]
[35]
Stancill JS, Broniowska KA, Oleson BJ, Naatz A, Corbett JA. Pancreatic β-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. J Biol Chem 2019; 294(13): 4843-53.
[http://dx.doi.org/10.1074/jbc.RA118.006219] [PMID: 30659092]
[36]
Merry TL, Tran M, Stathopoulos M, et al. High-fat-fed obese glutathione peroxidase 1-deficient mice exhibit defective insulin secretion but protection from hepatic steatosis and liver damage. Antioxid Redox Signal 2014; 20(14): 2114-29.
[http://dx.doi.org/10.1089/ars.2013.5428] [PMID: 24252128]
[37]
Guo S, Dai C, Guo M, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013; 123(8): 3305-16.
[http://dx.doi.org/10.1172/JCI65390] [PMID: 23863625]
[38]
Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 2011; 14(12): 2327-36.
[http://dx.doi.org/10.1089/ars.2010.3526] [PMID: 21194350]
[39]
Wang X, Zhang W, Chen H, et al. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett 2014; 224(1): 16-23.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.005] [PMID: 24140496]
[40]
Campbell SC, Aldibbiat A, Marriott CE, et al. Selenium stimulates pancreatic beta‐cell gene expression and enhances islet function. FEBS Lett 2008; 582(15): 2333-7.
[http://dx.doi.org/10.1016/j.febslet.2008.05.038] [PMID: 18538137]
[41]
Steinbrenner H, Hotze AL, Speckmann B, et al. Localization and regulation of pancreatic selenoprotein P. J Mol Endocrinol 2013; 50(1): 31-42.
[http://dx.doi.org/10.1530/JME-12-0105] [PMID: 23125459]
[42]
Li T, Chen K, Liu G, et al. Calorie restriction prevents the development of insulin resistance and impaired lipid metabolism in gestational diabetes offspring. Pediatr Res 2017; 81(4): 663-71.
[http://dx.doi.org/10.1038/pr.2016.273] [PMID: 28024145]
[43]
Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: A randomized controlled trial in non-obese humans. Aging 2016; 8(7): 1416-31.
[http://dx.doi.org/10.18632/aging.100994] [PMID: 27410480]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy