Review Article

动脉粥样硬化中miRNA与PCKS9的关系

卷 31, 期 42, 2024

发表于: 16 November, 2023

页: [6926 - 6956] 页: 31

弟呕挨: 10.2174/0109298673262124231102042914

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

心血管疾病是全球死亡的主要原因。动脉粥样硬化是CVD的主要病因,是一种慢性免疫炎症性疾病,具有复杂的多因素病理生理,包括氧化应激、免疫炎症级联增强、内皮功能障碍和血栓形成。动脉粥样硬化的初始事件是内皮下低密度脂蛋白(LDL)的积累,随后巨噬细胞定位于血管壁上的脂肪沉积物,形成富含脂质的巨噬细胞(泡沫细胞),分泌参与斑块形成的化合物。鉴于泡沫细胞是动脉粥样硬化病理生理的关键罪魁祸首之一,因此研究人员特别关注如何有效地治疗巨噬细胞胆固醇代谢失调,减少泡沫细胞的形成和/或迫使其降解。前蛋白转化酶枯草溶菌9 (PCSK9)是一种分泌性丝氨酸蛋白酶,已成为脂质代谢途径的重要调节因子。PCSK9的激活导致LDL受体(LDLR)的降解,增加循环中的LDL胆固醇(LDL-C)水平。PCSK9通路失调已被确定为动脉粥样硬化的机制之一。此外,研究人员还研究了microRNAs (miRNAs)作为动脉粥样硬化病理生理和脂质代谢失调的重要表观遗传因素。本文综述了PCSK9在动脉粥样硬化中的作用以及各种miRNA参与调控PCSK9相关基因表达的最新发现。我们还讨论了基于PCSK9抑制的PCSK9通路靶向治疗干预,以及治疗剂对miRNA水平的操纵。

关键词: 动脉粥样硬化、心血管疾病、血脂异常、miRNA、PCSK9、治疗干预、基因编辑。

[1]
Rotllan, N. The underlying pathology of atherosclerosis: Different players. Int. J. Mol. Sci., 2022, 23(6), 3235.
[http://dx.doi.org/10.3390/ijms23063235] [PMID: 35328656]
[2]
Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: recent developments. Cell, 2022, 185(10), 1630-1645.
[http://dx.doi.org/10.1016/j.cell.2022.04.004] [PMID: 35504280]
[3]
Klisic, A.; Kavaric, N.; Vujcic, S.; Mihajlovic, M.; Zeljkovic, A.; Ivanisevic, J.; Spasojevic-Kalimanovska, V.; Ninic, A.; Kotur-Stevuljevic, J.; Vekic, J. Inverse association between serum endocan levels and small LDL and HDL particles in patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(15), 8127-8135.
[http://dx.doi.org/10.26355/eurrev_202008_22499] [PMID: 32767341]
[4]
Salekeen, R.; Haider, A. N.; Akhter, F.; Billah, M. M.; Islam, M. E.; Didarul Islam, K. M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. Int. J. Cardiol. Cardiovasc. Risk Prev., 2022, 14, 200143.
[http://dx.doi.org/10.1016/j.ijcrp.2022.200143]
[5]
Shao, W.; Wang, S.; Wang, X.; Yao, L.; Yuan, X.; Huang, D.; Lv, B.; Ye, Y.; Xue, H. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging, 2022, 14(5), 2418-2431.
[http://dx.doi.org/10.18632/aging.203951] [PMID: 35288486]
[6]
Javadifar, A.; Rastgoo, S.; Banach, M.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci., 2021, 22(5), 2529.
[http://dx.doi.org/10.3390/ijms22052529] [PMID: 33802600]
[7]
Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism, 2019, 92, 71-81.
[http://dx.doi.org/10.1016/j.metabol.2018.11.005] [PMID: 30447223]
[8]
Khalifeh, M.; Santos, R.D.; Oskuee, R.K.; Badiee, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog. Lipid Res., 2023, 89, 101197.
[http://dx.doi.org/10.1016/j.plipres.2022.101197] [PMID: 36400247]
[9]
Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7(1), 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[10]
Yurtseven, E.; Ural, D.; Baysal, K.; Tokgözoğlu, L. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb., 2020, 27(9), 909-918.
[http://dx.doi.org/10.5551/jat.55400] [PMID: 32713931]
[11]
D'Ardes, D.; Santilli, F.; Guagnano, M. T.; Bucci, M.; Cipollone, F. From endothelium to lipids, through microRNAs and PCSK9: A fascinating travel across atherosclerosis. High Blood Press Cardiovasc. Prev., 2020, 27(>1), 1-8.
[http://dx.doi.org/10.1007/s40292-019-00356-y]
[12]
Ricci, C.; Ruscica, M. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep., 2018, 8(1), 2267.
[http://dx.doi.org/10.1038/s41598-018-20425-x]
[13]
Ferri, N.; Tibolla, G.; Pirillo, A.; Cipollone, F.; Mezzetti, A.; Pacia, S.; Corsini, A.; Catapano, A.L. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis, 2012, 220(2), 381-386.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.11.026] [PMID: 22176652]
[14]
Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; Sabatine, M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 2016, 375(22), 2144-2153.
[http://dx.doi.org/10.1056/NEJMoa1604304] [PMID: 27959767]
[15]
Khan, S.U.; Yedlapati, S.H.; Lone, A.N.; Hao, Q.; Guyatt, G.; Delvaux, N.; Bekkering, G.E.T.; Vandvik, P.O.; Riaz, I.B.; Li, S.; Aertgeerts, B.; Rodondi, N. PCSK9 inhibitors and ezetimibe with or without statin therapy for cardiovascular risk reduction: A systematic review and network meta-analysis. BMJ, 2022, 377, e069116.
[http://dx.doi.org/10.1136/bmj-2021-069116] [PMID: 35508321]
[16]
Banerjee, Y.; Pantea Stoian, A.; Cicero, A. F. G. Inclisiran: A small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf., 2022, 21(1), 9-20.
[http://dx.doi.org/10.1080/14740338.2022.1988568]
[17]
Maulucci, G.; Cipriani, F.; Russo, D.; Casavecchia, G.; Di Staso, C.; Di Martino, L.; Ruggiero, A.; Di Biase, M.; Brunetti, N.D. Improved endothelial function after short-term therapy with evolocumab. J. Clin. Lipidol., 2018, 12(3), 669-673.
[http://dx.doi.org/10.1016/j.jacl.2018.02.004] [PMID: 29544724]
[18]
Cicero, A.F.G.; Toth, P.P.; Fogacci, F.; Virdis, A.; Borghi, C. Improvement in arterial stiffness after short-term treatment with PCSK9 inhibitors. Nutr. Metab. Cardiovasc. Dis., 2019, 29(5), 527-529.
[http://dx.doi.org/10.1016/j.numecd.2019.01.010] [PMID: 30954414]
[19]
Klisic, A.; Radoman Vujacic, I.; Munjas, J.; Ninic, A.; Kotur-Stevuljevic, J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch. Med. Sci., 2022, 18(4), 870-880.
[http://dx.doi.org/10.5114/aoms/146796] [PMID: 35832702]
[20]
Xiang, Y.; Mao, L.; Zuo, M. L.; Song, G. L.; Tan, L. M.; Yang, Z. B. The role of MicroRNAs in hyperlipidemia: From pathogenesis to therapeutical application. Mediators Inflamm., 2022, 2022, 3101900.
[http://dx.doi.org/10.1155/2022/3101900]
[21]
Giglio, R. V.; Nikolic, D.; Volti, G. L. Liraglutide increases serum levels of microRNA-27b, -130a and -210 in patients with type 2 diabetes mellitus: A novel epigenetic effect. Metabolites, 2020, 10(10), 391.
[http://dx.doi.org/10.3390/metabo10100391]
[22]
Signorelli, S.S.; Volsi, G.L.; Pitruzzella, A.; Fiore, V.; Mangiafico, M.; Vanella, L.; Parenti, R.; Rizzo, M.; Volti, G.L. Circulating miR-130a, miR-27b, and miR-210 in patients with peripheral artery disease and their potential relationship with oxidative stress. Angiology, 2016, 67(10), 945-950.
[http://dx.doi.org/10.1177/0003319716638242] [PMID: 26980776]
[23]
Macvanin, M.T.; Zafirovic, S.; Obradovic, M.; Isenovic, E.R. Editorial: Non-coding RNA in diabetes and cardiovascular diseases. Front. Endocrinol., 2023, 14, 1149857.
[http://dx.doi.org/10.3389/fendo.2023.1149857] [PMID: 36814579]
[24]
Macvanin, M.; Obradovic, M.; Zafirovic, S.; Stanimirovic, J.; Isenovic, E.R. The role of miRNAs in metabolic diseases. Curr. Med. Chem., 2023, 30(17), 1922-1944.
[http://dx.doi.org/10.2174/0929867329666220801161536] [PMID: 35927902]
[25]
Macvanin, M.T.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front. Endocrinol., 2023, 14, 1124613.
[http://dx.doi.org/10.3389/fendo.2023.1124613] [PMID: 36950696]
[26]
Aryal, B.; Rotllan, N.; Fernández-Hernando, C. Noncoding RNAs and atherosclerosis. Curr. Atheroscler. Rep., 2014, 16(5), 407.
[http://dx.doi.org/10.1007/s11883-014-0407-3] [PMID: 24623179]
[27]
Jackson, A.O.; Regine, M.A.; Subrata, C.; Long, S. Molecular mechanisms and genetic regulation in atherosclerosis. Int. J. Cardiol. Heart Vasc., 2018, 21, 36-44.
[http://dx.doi.org/10.1016/j.ijcha.2018.09.006] [PMID: 30276232]
[28]
Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812.
[http://dx.doi.org/10.1172/jci.insight.143812] [PMID: 33119548]
[29]
Krittanawong, C.; Khawaja, M.; Rosenson, R.S.; Amos, C.I.; Nambi, V.; Lavie, C.J.; Virani, S.S. Association of PCSK9 variants with the risk of atherosclerotic cardiovascular disease and variable responses to PCSK9 inhibitor therapy. Curr. Probl. Cardiol., 2022, 47(7), 101043.
[http://dx.doi.org/10.1016/j.cpcardiol.2021.101043] [PMID: 34780866]
[30]
Jeong, H.J.; Lee, H.S.; Kim, K.S.; Kim, Y.K.; Yoon, D.; Park, S.W. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res., 2008, 49(2), 399-409.
[http://dx.doi.org/10.1194/jlr.M700443-JLR200] [PMID: 17921436]
[31]
Cao, G.; Qian, Y.W.; Kowala, M.; Konrad, R. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(4), 238-243.
[http://dx.doi.org/10.2174/187153008786848286] [PMID: 19075777]
[32]
Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[33]
Topper, J.N.; Cai, J.; Falb, D.; Gimbrone, M.A., Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci., 1996, 93(19), 10417-10422.
[http://dx.doi.org/10.1073/pnas.93.19.10417] [PMID: 8816815]
[34]
Ridker, P.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J., 2016, 37(22), 1720-1722.
[http://dx.doi.org/10.1093/eurheartj/ehw024] [PMID: 26908943]
[35]
Libby, P. Inflammation in atherosclerosis. Nature, 2002, 420(6917), 868-874.
[http://dx.doi.org/10.1038/nature01323] [PMID: 12490960]
[36]
Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533.
[http://dx.doi.org/10.1038/s41586-021-03392-8] [PMID: 33883728]
[37]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[38]
Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R., Jr; Lerman, A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation, 2000, 101(9), 948-954.
[http://dx.doi.org/10.1161/01.CIR.101.9.948] [PMID: 10704159]
[39]
Schächinger, V.; Britten, M.B.; Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 2000, 101(16), 1899-1906.
[http://dx.doi.org/10.1161/01.CIR.101.16.1899] [PMID: 10779454]
[40]
Félétou, M.; Vanhoutte, P.M. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture). Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H985-H1002.
[http://dx.doi.org/10.1152/ajpheart.00292.2006] [PMID: 16632549]
[41]
Landmesser, U.; Drexler, H. The clinical significance of endothelial dysfunction. Curr. Opin. Cardiol., 2005, 20(6), 547-551.
[http://dx.doi.org/10.1097/01.hco.0000179821.11071.79] [PMID: 16234629]
[42]
Zago, A.S.; Zanesco, A. Nitric oxide, cardiovascular disease and physical exercise. Arq. Bras. Cardiol., 2006, 87(6), e264-e270.
[http://dx.doi.org/10.1590/S0066-782X2006001900029] [PMID: 17262101]
[43]
Flammer, A.J.; Lüscher, T.F. Three decades of endothelium research: From the detection of NO to the everyday implementation of endothelial function measurements in cardiovascular diseases. Swiss Med. Wkly., 2010, 140, w13122.
[http://dx.doi.org/10.4414/smw.2010.13122] [PMID: 21120736]
[44]
Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell, 2015, 161(1), 161-172.
[http://dx.doi.org/10.1016/j.cell.2015.01.036] [PMID: 25815993]
[45]
Gisterå, A.; Klement, M.L.; Polyzos, K.A.; Mailer, R.K.W.; Duhlin, A.; Karlsson, M.C.I.; Ketelhuth, D.F.J.; Hansson, G.K. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation, 2018, 138(22), 2513-2526.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034076] [PMID: 29997115]
[46]
Kruth, H.S. Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol., 2002, 13(5), 483-488.
[http://dx.doi.org/10.1097/00041433-200210000-00003] [PMID: 12352011]
[47]
Witztum, J.L.; Berliner, J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol., 1998, 9(5), 441-448.
[http://dx.doi.org/10.1097/00041433-199810000-00008] [PMID: 9812198]
[48]
Dichtl, W.; Nilsson, L.; Goncalves, I.; Ares, M.P.S.; Banfi, C.; Calara, F.; Hamsten, A.; Eriksson, P.; Nilsson, J. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res., 1999, 84(9), 1085-1094.
[http://dx.doi.org/10.1161/01.RES.84.9.1085] [PMID: 10325246]
[49]
Kranzhöfer, R.; Schmidt, J.; Pfeiffer, C.A.H.; Hagl, S.; Libby, P.; Kübler, W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 1999, 19(7), 1623-1629.
[http://dx.doi.org/10.1161/01.ATV.19.7.1623] [PMID: 10397679]
[50]
Yudkin, J.S.; Stehouwer, C.D.A.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 972-978.
[http://dx.doi.org/10.1161/01.ATV.19.4.972] [PMID: 10195925]
[51]
Karabulut, A. The role of microbiologic agents in the progression of the atherosclerosis: A comprehensive review. J. Saudi Heart Assoc., 2020, 32(3), 440-450.
[http://dx.doi.org/10.37616/2212-5043.1198] [PMID: 33299789]
[52]
Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front. Immunol., 2020, 11, 551758.
[http://dx.doi.org/10.3389/fimmu.2020.551758] [PMID: 33117340]
[53]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[54]
Obradovic, M.; Zaric, B.; Sudar-Milovanovic, E.; Ilincic, B.; Stokic, E.; Perovic, M.; Isenovic, E.R. PCSK9 and hypercholesterolemia: Therapeutic approach. Curr. Drug Targets, 2018, 19(9), 1058-1067.
[http://dx.doi.org/10.2174/1389450119666171205101401] [PMID: 29210646]
[55]
Davies, M.J. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation, 1996, 94(8), 2013-2020.
[http://dx.doi.org/10.1161/01.CIR.94.8.2013] [PMID: 8873680]
[56]
de Boer, O.; van der Wal, A.C.; Teeling, P.; Becker, A.E. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: A prominent role for neovascularization? Cardiovasc. Res., 1999, 41(2), 443-449.
[http://dx.doi.org/10.1016/S0008-6363(98)00255-7] [PMID: 10341843]
[57]
Seidah, N. G.; Prat, A. The multifaceted biology of PCSK9. Endocr. Rev., 2022, 43(3), 558-582.
[http://dx.doi.org/10.1210/endrev/bnab035]
[58]
Banach, M.; Rizzo, M.; Obradovic, M.; Montalto, G.; Rysz, J.; Mikhailidis, D.P.; Isenovic, E.R. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr. Pharm. Des., 2013, 19(21), 3869-3877.
[http://dx.doi.org/10.2174/13816128113199990303] [PMID: 23286435]
[59]
Piper, D. E.; Jackson, S.; Liu, Q.; Romanow, W. G.; Shetterly, S.; Thibault, S. T.; Shan, B.; Walker, N. P. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552.
[http://dx.doi.org/10.1016/j.str.2007.04.004]
[60]
Salowe, S.P.; Zhang, L.; Zokian, H.J.; Gesell, J.J.; Zink, D.L.; Wiltsie, J.; Ai, X.; Kavana, M.; Pinto, S. In vitro assays for the discovery of PCSK9 autoprocessing inhibitors. SLAS Discov., 2016, 21(10), 1034-1041.
[http://dx.doi.org/10.1177/1087057116657312] [PMID: 27412534]
[61]
Korneva, V.; Kuznetsova, T.; Julius, U. The state of the problem of achieving extremely low LDL levels. Curr. Pharm. Des., 2021, 27(37), 3841-3857.
[http://dx.doi.org/10.2174/1381612827999210111182030] [PMID: 33430743]
[62]
Shapiro, M.D.; Tavori, H.; Fazio, S. PCSK9: From basic science discoveries to clinical trials. Circ. Res., 2018, 122(10), 1420-1438.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311227] [PMID: 29748367]
[63]
Seidah, N.G.; Garçon, D. Expanding biology of PCSK9: Roles in atherosclerosis and beyond. Curr. Atheroscler. Rep., 2022, 24(10), 821-830.
[http://dx.doi.org/10.1007/s11883-022-01057-z] [PMID: 35904732]
[64]
Chorba, J.S.; Shokat, K.M. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J. Biol. Chem., 2014, 289(42), 29030-29043.
[http://dx.doi.org/10.1074/jbc.M114.594861] [PMID: 25210046]
[65]
Lin, X.L.; Xiao, L.L.; Tang, Z.H.; Jiang, Z.S.; Liu, M.H. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed. Pharmacother., 2018, 104, 36-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.024] [PMID: 29758414]
[66]
Sun, L.; Yang, X.; Li, Q.; Zeng, P.; Liu, Y.; Liu, L.; Chen, Y.; Yu, M.; Ma, C.; Li, X.; Li, Y.; Zhang, R.; Zhu, Y.; Miao, Q.R.; Han, J.; Duan, Y. Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in apoe-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2017, 37(7), 1290-1300.
[http://dx.doi.org/10.1161/ATVBAHA.117.309630] [PMID: 28546220]
[67]
Schulz, R.; Schlüter, K.D.; Laufs, U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res. Cardiol., 2015, 110(2), 4.
[http://dx.doi.org/10.1007/s00395-015-0463-z] [PMID: 25600226]
[68]
Soskić, S.S.; Dobutović, B.D.; Sudar, E.M.; Obradović, M.M.; Nikolić, D.M.; Zarić, B.L.; Stojanović, S.Đ.; Stokić, E.J.; Mikhailidis, D.P.; Isenović, E.R. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology, 2011, 62(7), 523-534.
[http://dx.doi.org/10.1177/0003319711401012] [PMID: 21467121]
[69]
Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.027] [PMID: 28870631]
[70]
Winnik, S.; Auwerx, J.; Sinclair, D.A.; Matter, C.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur. Heart J., 2015, 36(48), 3404-3412.
[http://dx.doi.org/10.1093/eurheartj/ehv290] [PMID: 26112889]
[71]
Luquero, A.; Badimon, L.; Borrell-Pages, M. PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-cholesterol regulation. Front. Cardiovasc. Med., 2021, 8, 639727.
[http://dx.doi.org/10.3389/fcvm.2021.639727] [PMID: 33834043]
[72]
Stanimirovic, J.; Obradovic, M.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Pitt, S. J.; Stewart, A. J.; Isenovic, E. R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide : Biol. Chem., 2016, 54, 51-59.
[http://dx.doi.org/10.1016/j.niox.2016.02.007]
[73]
Seidah, N.G.; Pasquato, A.; Andréo, U. How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses, 2021, 13(7), 1229.
[http://dx.doi.org/10.3390/v13071229] [PMID: 34202098]
[74]
Liu, X.; Bao, X.; Hu, M.; Chang, H.; Jiao, M.; Cheng, J.; Xie, L.; Huang, Q.; Li, F.; Li, C. Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature, 2020, 588(7839), 693-698.
[http://dx.doi.org/10.1038/s41586-020-2911-7]
[75]
Coppinger, C.; Movahed, M.R.; Azemawah, V.; Peyton, L.; Gregory, J.; Hashemzadeh, M. A comprehensive review of PCSK9 inhibitors. J. Cardiovasc. Pharmacol. Ther., 2022, 27, 10742484221100107.
[http://dx.doi.org/10.1177/10742484221100107] [PMID: 35593194]
[76]
Tomic Naglic, D.; Manojlovic, M.; Pejakovic, S.; Stepanovic, K.; Prodanovic Simeunovic, J. Lipoprotein(a): Role in atherosclerosis and new treatment options. Biomol. Biomed., 2023, 23(4), 575-583.
[http://dx.doi.org/10.17305/bb.2023.8992]
[77]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[78]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[79]
Chen, H.; Chen, X. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation. Front. Cardiovasc. Med., 2023, 10, 1138787.
[http://dx.doi.org/10.3389/fcvm.2023.1138787] [PMID: 37200976]
[80]
Hao, Y.; Yang, Y.; Wang, Y.; Li, J. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int. Heart J., 2022, 63(4), 669-677.
[http://dx.doi.org/10.1536/ihj.22-052] [PMID: 35831153]
[81]
Blom, D.J.; Koren, M.J.; Roth, E.; Monsalvo, M.L.; Djedjos, C.S.; Nelson, P.; Elliott, M.; Wasserman, S.M.; Ballantyne, C.M.; Holman, R.R. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes. Metab., 2017, 19(1), 98-107.
[http://dx.doi.org/10.1111/dom.12788] [PMID: 27619750]
[82]
Giugliano, R.P.; Mach, F.; Zavitz, K.; Kurtz, C.; Im, K.; Kanevsky, E.; Schneider, J.; Wang, H.; Keech, A.; Pedersen, T.R.; Sabatine, M.S.; Sever, P.S.; Robinson, J.G.; Honarpour, N.; Wasserman, S.M.; Ott, B.R. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med., 2017, 377(7), 633-643.
[http://dx.doi.org/10.1056/NEJMoa1701131] [PMID: 28813214]
[83]
Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; Valettas, N.; Velianou, J.L.; Lee, S.F.; Ferdous, T.; Nauman, S.; Nguyen, H.; McCready, T.; McQueen, M.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial. EuroIntervention, 2022, 18(11), e888-e896.
[http://dx.doi.org/10.4244/EIJ-D-22-00735] [PMID: 36349701]
[84]
Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; Amini, P.; Deckarm, O.; Iglesias, J.F.; Räber, L.; Heg, D.; Mach, F. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J. Am. Coll. Cardiol., 2019, 74(20), 2452-2462.
[http://dx.doi.org/10.1016/j.jacc.2019.08.010] [PMID: 31479722]
[85]
Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; Radu Juul Jensen, M.D.; Zanchin, C.; Stortecky, S.; Spirk, D.; Siontis, G.C.M.; Saleh, L.; Matter, C.M.; Daemen, J.; Mach, F.; Heg, D.; Windecker, S.; Engstrøm, T.; Lang, I.M.; Koskinas, K.C.; Ambühl, M.; Bär, S.; Frenk, A.; Morf, L.U.; Inderkum, A.; Leuthard, S.; Kavaliauskaite, R.; Rexhaj, E.; Shibutani, H.; Mitter, V.R.; Kaiser, C.; Mayr, M.; Eberli, F.R.; O’Sullivan, C.J.; Templin, C.; von Eckardstein, A.; Ghandilyan, A.; Pawar, R.; Jonker, H.; Hofbauer, T.; Goliasch, G.; Bang, L.; Sørensen, R.; Tovar Forero, M.N.; Degrauwe, S.; Ten Cate, T. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction. JAMA, 2022, 327(18), 1771-1781.
[http://dx.doi.org/10.1001/jama.2022.5218] [PMID: 35368058]
[86]
Gaba, P.; O’Donoghue, M.L.; Park, J.G.; Wiviott, S.D.; Atar, D.; Kuder, J.F.; Im, K.; Murphy, S.A.; De Ferrari, G.M.; Gaciong, Z.A.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; Mach, F.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Giugliano, R.P.; Sabatine, M.S. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: An analysis of fourier-ole. Circulation, 2023, 147(16), 1192-1203.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.063399] [PMID: 36779348]
[87]
Kaufman, T.M.; Warden, B.A.; Minnier, J.; Miles, J.R.; Duell, P.B.; Purnell, J.Q.; Wojcik, C.; Fazio, S.; Shapiro, M.D. Application of PCSK9 inhibitors in practice. Circ. Res., 2019, 124(1), 32-37.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314191] [PMID: 30605414]
[88]
O’Donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; Abbasi, S.; Sabatine, M.S. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation, 2022, 146(15), 1109-1119.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.061620] [PMID: 36031810]
[89]
Ferrari, F.; Stein, R.; Motta, M.T.; Moriguchi, E.H. PCSK9 inhibitors: Clinical relevance, molecular mechanisms, and safety in clinical practice. Arq. Bras. Cardiol., 2019, 112(4), 453-460.
[http://dx.doi.org/10.5935/abc.20190029] [PMID: 30843929]
[90]
Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543.
[http://dx.doi.org/10.1210/jc.2009-0141] [PMID: 19351729]
[91]
Tóth, Š.; Fedačko, J.; Pekárová, T.; Hertelyová, Z.; Katz, M.; Mughees, A.; Kuzma, J.; Štefanič, P.; Kopolovets, I.; Pella, D. Elevated circulating PCSK9 concentrations predict subclinical atherosclerotic changes in low risk obese and non-obese patients. Cardiol. Ther., 2017, 6(2), 281-289.
[http://dx.doi.org/10.1007/s40119-017-0092-8] [PMID: 28623549]
[92]
Sotler, T.; Šebeštjen, M. PCSK9 as an atherothrombotic risk factor. Int. J. Mol. Sci., 2023, 24(3), 1966.
[http://dx.doi.org/10.3390/ijms24031966]
[93]
Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 2018, 8(3), 80.
[http://dx.doi.org/10.3390/biom8030080] [PMID: 30142970]
[94]
Barale, C.; Melchionda, E.; Morotti, A. PCSK9 biology and its role in atherothrombosis. Int. J. Mol. Sci., 2021, 22(11), 5880.
[http://dx.doi.org/10.3390/ijms22115880]
[95]
Xia, X.; Peng, Z.; Gu, H.; Wang, M.; Wang, G.; Zhang, D. Regulation of PCSK9 expression and function: mechanisms and therapeutic implications. Front. Cardiovasc. Med., 2021, 8, 764038.
[http://dx.doi.org/10.3389/fcvm.2021.764038] [PMID: 34782856]
[96]
Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci., 2015, 52(2), 70-85.
[http://dx.doi.org/10.3109/10408363.2014.992063] [PMID: 25537066]
[97]
Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res., 2018, 114(8), 1145-1153.
[http://dx.doi.org/10.1093/cvr/cvy079] [PMID: 29617722]
[98]
Wu, N.Q.; Shi, H.W.; Li, J.J. Proprotein convertase subtilisin/kexin type 9 and inflammation: An updated review. Front. Cardiovasc. Med., 2022, 9, 763516.
[http://dx.doi.org/10.3389/fcvm.2022.763516] [PMID: 35252378]
[99]
Shapiro, M.D.; Fazio, S. PCSK9 and atherosclerosis - lipids and beyond. J. Atheroscler. Thromb., 2017, 24(5), 462-472.
[http://dx.doi.org/10.5551/jat.RV17003] [PMID: 28302950]
[100]
Xu, B.; Li, S.; Fang, Y.; Zou, Y.; Song, D.; Zhang, S.; Cai, Y. Proprotein convertase subtilisin/kexin type 9 promotes gastric cancer metastasis and suppresses apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. Front. Oncol., 2021, 10, 609663.
[http://dx.doi.org/10.3389/fonc.2020.609663] [PMID: 33489919]
[101]
Guijarro-Muñoz, I.; Compte, M.; Álvarez-Cienfuegos, A.; Álvarez-Vallina, L.; Sanz, L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J. Biol. Chem., 2014, 289(4), 2457-2468.
[http://dx.doi.org/10.1074/jbc.M113.521161] [PMID: 24307174]
[102]
Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210.
[http://dx.doi.org/10.1111/joim.12758] [PMID: 29617044]
[103]
Cammisotto, V.; Pastori, D.; Nocella, C.; Bartimoccia, S.; Castellani, V.; Marchese, C.; Sili Scavalli, A.; Ettorre, E.; Viceconte, N.; Violi, F.; Pignatelli, P.; Carnevale, R. PCSK9 regulates Nox2-mediated platelet activation via CD36 receptor in patients with atrial fibrillation. Antioxidants, 2020, 9(4), 296.
[http://dx.doi.org/10.3390/antiox9040296] [PMID: 32252393]
[104]
Camera, M.; Rossetti, L.; Barbieri, S.S.; Zanotti, I.; Canciani, B.; Trabattoni, D.; Ruscica, M.; Tremoli, E.; Ferri, N. PCSK9 as a positive modulator of platelet activation. J. Am. Coll. Cardiol., 2018, 71(8), 952-954.
[http://dx.doi.org/10.1016/j.jacc.2017.11.069] [PMID: 29471945]
[105]
Ochoa, E.; Iriondo, M.; Manzano, C.; Fullaondo, A.; Villar, I.; Ruiz-Irastorza, G.; Zubiaga, A.M.; Estonba, A. LDLR and PCSK9 are associated with the presence of antiphospholipid antibodies and the development of thrombosis in aPLA carriers. PLoS One, 2016, 11(1), e0146990.
[http://dx.doi.org/10.1371/journal.pone.0146990] [PMID: 26820623]
[106]
Zulkapli, R.; Muid, S.A.; Wang, S.M.; Nawawi, H. PCSK9 inhibitors reduce PCSK9 and early atherogenic biomarkers in stimulated human coronary artery endothelial cells. Int. J. Mol. Sci., 2023, 24(6), 5098.
[http://dx.doi.org/10.3390/ijms24065098] [PMID: 36982171]
[107]
Feingold, K.R.; Moser, A.; Shigenaga, J.K.; Grunfeld, C. Inflammation stimulates niacin receptor (GPR109A/HCA2) expression in adipose tissue and macrophages. J. Lipid Res., 2014, 55(12), 2501-2508.
[http://dx.doi.org/10.1194/jlr.M050955] [PMID: 25320346]
[108]
Shah, P.K. Inflammation and plaque vulnerability. Cardiovasc. Drugs Ther., 2009, 23(1), 31-40.
[http://dx.doi.org/10.1007/s10557-008-6147-2] [PMID: 18949542]
[109]
Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[110]
Wu, C.Y.; Tang, Z.H.; Jiang, L.; Li, X.F.; Jiang, Z.S.; Liu, L.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway. Mol. Cell. Biochem., 2012, 359(1-2), 347-358.
[http://dx.doi.org/10.1007/s11010-011-1028-6] [PMID: 21847580]
[111]
Li, J.; Liang, X.; Wang, Y.; Xu, Z.; Li, G. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol. Med. Rep., 2017, 16(2), 1817-1825.
[http://dx.doi.org/10.3892/mmr.2017.6803] [PMID: 28656218]
[112]
Li, S.; Guo, Y.L.; Xu, R.X.; Zhang, Y.; Zhu, C.G.; Sun, J.; Qing, P.; Wu, N.Q.; Jiang, L.X.; Li, J.J. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis, 2014, 234(2), 441-445.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.001] [PMID: 24769476]
[113]
Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; Goldbourt, U.; Willeit, J.; Kiechl, S.; Yarnell, J.W.; Sweetnam, P.M.; Elwood, P.C.; Cushman, M.; Psaty, B.M.; Tracy, R.P.; Tybjaerg-Hansen, A.; Haverkate, F.; de Maat, M.P.; Fowkes, F.G.; Lee, A.J.; Smith, F.B.; Salomaa, V.; Harald, K.; Rasi, R.; Vahtera, E.; Jousilahti, P.; Pekkanen, J.; D’Agostino, R.; Kannel, W.B.; Wilson, P.W.; Tofler, G.; Arocha-Piñango, C.L.; Rodriguez-Larralde, A.; Nagy, E.; Mijares, M.; Espinosa, R.; Rodriquez-Roa, E.; Ryder, E.; Diez-Ewald, M.P.; Campos, G.; Fernandez, V.; Torres, E.; Marchioli, R.; Valagussa, F.; Rosengren, A.; Wilhelmsen, L.; Lappas, G.; Eriksson, H.; Cremer, P.; Nagel, D.; Curb, J.D.; Rodriguez, B.; Yano, K.; Salonen, J.T.; Nyyssönen, K.; Tuomainen, T.P.; Hedblad, B.; Lind, P.; Loewel, H.; Koenig, W.; Meade, T.W.; Cooper, J.A.; De Stavola, B.; Knottenbelt, C.; Miller, G.J.; Cooper, J.A.; Bauer, K.A.; Rosenberg, R.D.; Sato, S.; Kitamura, A.; Naito, Y.; Palosuo, T.; Ducimetiere, P.; Amouyel, P.; Arveiler, D.; Evans, A.E.; Ferrieres, J.; Juhan-Vague, I.; Bingham, A.; Schulte, H.; Assmann, G.; Cantin, B.; Lamarche, B.; Després, J.P.; Dagenais, G.R.; Tunstall-Pedoe, H.; Woodward, M.; Ben-Shlomo, Y.; Davey Smith, G.; Palmieri, V.; Yeh, J.L.; Rudnicka, A.; Ridker, P.; Rodeghiero, F.; Tosetto, A.; Shepherd, J.; Ford, I.; Robertson, M.; Brunner, E.; Shipley, M.; Feskens, E.J.; Kromhout, D.; Dickinson, A.; Ireland, B.; Juzwishin, K.; Kaptoge, S.; Lewington, S.; Memon, A.; Sarwar, N.; Walker, M.; Wheeler, J.; White, I.; Wood, A. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA, 2005, 294(14), 1799-1809.
[http://dx.doi.org/10.1001/jama.294.14.1799] [PMID: 16219884]
[114]
Zhang, Y.; Zhu, C.G.; Xu, R.X.; Li, S.; Guo, Y.L.; Sun, J.; Li, J.J. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J. Clin. Lipidol., 2014, 8(5), 494-500.
[http://dx.doi.org/10.1016/j.jacl.2014.07.001] [PMID: 25234562]
[115]
Taechalertpaisarn, J.; Zhao, B.; Liang, X.; Burgess, K. Small molecule inhibitors of the PCSK9·LDLR interaction. J. Am. Chem. Soc., 2018, 140(9), 3242-3249.
[http://dx.doi.org/10.1021/jacs.7b09360]
[116]
Londregan, A.T.; Wei, L.; Xiao, J.; Lintner, N.G.; Petersen, D.; Dullea, R.G.; McClure, K.F.; Bolt, M.W.; Warmus, J.S.; Coffey, S.B.; Limberakis, C.; Genovino, J.; Thuma, B.A.; Hesp, K.D.; Aspnes, G.E.; Reidich, B.; Salatto, C.T.; Chabot, J.R.; Cate, J.H.D.; Liras, S.; Piotrowski, D.W. Small molecule proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Hit to lead optimization of systemic agents. J. Med. Chem., 2018, 61(13), 5704-5718.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00650] [PMID: 29878763]
[117]
Pettersen, D.; Fjellström, O. Small molecule modulators of PCSK9 - A literature and patent overview. Bioorg. Med. Chem. Lett., 2018, 28(7), 1155-1160.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.046] [PMID: 29519739]
[118]
Ahamad, S.; Mathew, S.; Khan, W.A.; Mohanan, K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov. Today, 2022, 27(5), 1332-1349.
[http://dx.doi.org/10.1016/j.drudis.2022.01.014] [PMID: 35121175]
[119]
Lintner, N. G.; McClure, K. F.; Petersen, D.; Londregan, A. T.; Piotrowski, D. W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P. M.; Maguire, B. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882.
[http://dx.doi.org/10.1371/journal.pbio.2001882]
[120]
Petersen, D.N.; Hawkins, J.; Ruangsiriluk, W.; Stevens, K.A.; Maguire, B.A.; O’Connell, T.N.; Rocke, B.N.; Boehm, M.; Ruggeri, R.B.; Rolph, T.; Hepworth, D.; Loria, P.M.; Carpino, P.A. A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation. Cell Chem. Biol., 2016, 23(11), 1362-1371.
[http://dx.doi.org/10.1016/j.chembiol.2016.08.016] [PMID: 27746128]
[121]
McClure, K.F.; Piotrowski, D.W.; Petersen, D.; Wei, L.; Xiao, J.; Londregan, A.T.; Kamlet, A.S.; Dechert-Schmitt, A.M.; Raymer, B.; Ruggeri, R.B.; Canterbury, D.; Limberakis, C.; Liras, S.; DaSilva-Jardine, P.; Dullea, R.G.; Loria, P.M.; Reidich, B.; Salatto, C.T.; Eng, H.; Kimoto, E.; Atkinson, K.; King-Ahmad, A.; Scott, D.; Beaumont, K.; Chabot, J.R.; Bolt, M.W.; Maresca, K.; Dahl, K.; Arakawa, R.; Takano, A.; Halldin, C. Liver-targeted small-molecule inhibitors of proprotein convertase subtilisin/kexin type 9 synthesis. Angew. Chem. Int. Ed., 2017, 56(51), 16218-16222.
[http://dx.doi.org/10.1002/anie.201708744] [PMID: 29073340]
[122]
Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong-Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955.
[http://dx.doi.org/10.1074/jbc.M113.514067] [PMID: 24225950]
[123]
Schroeder, C.I.; Swedberg, J.E.; Withka, J.M.; Rosengren, K.J.; Akcan, M.; Clayton, D.J.; Daly, N.L.; Cheneval, O.; Borzilleri, K.A.; Griffor, M.; Stock, I.; Colless, B.; Walsh, P.; Sunderland, P.; Reyes, A.; Dullea, R.; Ammirati, M.; Liu, S.; McClure, K.F.; Tu, M.; Bhattacharya, S.K.; Liras, S.; Price, D.A.; Craik, D.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem. Biol., 2014, 21(2), 284-294.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.014] [PMID: 24440079]
[124]
Zhang, Y.; Ultsch, M.; Skelton, N. J.; Burdick, D. J.; Beresini, M. H.; Li, W.; Kong-Beltran, M.; Peterson, A.; Quinn, J.; Chiu, C. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat. Struct. Mol. Biol., 2017, 24(10), 848-856.
[http://dx.doi.org/10.1038/nsmb.3453]
[125]
Evison, B.J.; Palmer, J.T.; Lambert, G.; Treutlein, H.; Zeng, J.; Nativel, B.; Chemello, K.; Zhu, Q.; Wang, J.; Teng, Y.; Tang, W.; Xu, Y.; Rathi, A.K.; Kumar, S.; Suchowerska, A.K.; Parmar, J.; Dixon, I.; Kelly, G.E.; Bonnar, J. A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove. Bioorg. Med. Chem., 2020, 28(6), 115344.
[http://dx.doi.org/10.1016/j.bmc.2020.115344] [PMID: 32051094]
[126]
Min, D.K.; Lee, H.S.; Lee, N.; Lee, C.J.; Song, H.J.; Yang, G.E.; Yoon, D.; Park, S.W. In silico screening of chemical libraries to develop inhibitors that hamper the interaction of PCSK9 with the LDL receptor. Yonsei Med. J., 2015, 56(5), 1251-1257.
[http://dx.doi.org/10.3349/ymj.2015.56.5.1251] [PMID: 26256967]
[127]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[128]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[129]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[130]
Forman, J.J.; Legesse-Miller, A.; Coller, H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci., 2008, 105(39), 14879-14884.
[http://dx.doi.org/10.1073/pnas.0803230105] [PMID: 18812516]
[131]
Zhou, H.; Rigoutsos, I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA, 2014, 20(9), 1431-1439.
[http://dx.doi.org/10.1261/rna.045757.114] [PMID: 24984703]
[132]
Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; Zhang, H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA, 2014, 20(12), 1878-1889.
[http://dx.doi.org/10.1261/rna.045633.114] [PMID: 25336585]
[133]
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[134]
Siomi, H.; Siomi, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell, 2010, 38(3), 323-332.
[http://dx.doi.org/10.1016/j.molcel.2010.03.013] [PMID: 20471939]
[135]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[136]
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63.
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040]
[137]
Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017] [PMID: 17612493]
[138]
Doench, J.G.; Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev., 2004, 18(5), 504-511.
[http://dx.doi.org/10.1101/gad.1184404] [PMID: 15014042]
[139]
Wang, R.; Dong, L.D.; Meng, X.B.; Shi, Q.; Sun, W.Y. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques. Biochem. Biophys. Res. Commun., 2015, 464(2), 574-579.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.010] [PMID: 26159918]
[140]
Raitoharju, E.; Lyytikäinen, L.P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; Laaksonen, R.; Lehtimäki, T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis, 2011, 219(1), 211-217.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.020] [PMID: 21820659]
[141]
Cipollone, F.; Felicioni, L.; Sarzani, R.; Ucchino, S.; Spigonardo, F.; Mandolini, C.; Malatesta, S.; Bucci, M.; Mammarella, C.; Santovito, D.; de Lutiis, F.; Marchetti, A.; Mezzetti, A.; Buttitta, F. A unique microRNA signature associated with plaque instability in humans. Stroke, 2011, 42(9), 2556-2563.
[http://dx.doi.org/10.1161/STROKEAHA.110.597575] [PMID: 21817153]
[142]
Faccini, J.; Ruidavets, J.B.; Cordelier, P.; Martins, F.; Maoret, J.J.; Bongard, V.; Ferrières, J.; Roncalli, J.; Elbaz, M.; Vindis, C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci. Rep., 2017, 7(1), 42916.
[http://dx.doi.org/10.1038/srep42916] [PMID: 28205634]
[143]
Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Circulating microRNAs in patients with coronary artery disease. Circ. Res., 2010, 107(5), 677-684.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215566] [PMID: 20595655]
[144]
Weber, M.; Baker, M.B.; Patel, R.S.; Quyyumi, A.A.; Bao, G.; Searles, C.D. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol. Res. Pract., 2011, 2011, 1-5.
[http://dx.doi.org/10.4061/2011/532915] [PMID: 21785714]
[145]
Zhu, G.; Yang, L.; Guo, R.; Liu, H.; Shi, Y.; Ye, J.; Yang, Z. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the gensini score. Coron. Artery Dis., 2014, 25(4), 304-310.
[http://dx.doi.org/10.1097/MCA.0000000000000088] [PMID: 24525789]
[146]
Zeller, T.; Keller, T.; Ojeda, F.; Reichlin, T.; Twerenbold, R.; Tzikas, S.; Wild, P.S.; Reiter, M.; Czyz, E.; Lackner, K.J.; Munzel, T.; Mueller, C.; Blankenberg, S. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J., 2014, 35(31), 2106-2114.
[http://dx.doi.org/10.1093/eurheartj/ehu151] [PMID: 24727883]
[147]
Liu, K.; Xuekelati, S.; Zhou, K.; Yan, Z.; Yang, X.; Inayat, A.; Wu, J.; Guo, X. Expression profiles of six atherosclerosis-associated microRNAs that cluster in patients with hyperhomocysteinemia: A clinical study. DNA Cell Biol., 2018, 37(3), 189-198.
[http://dx.doi.org/10.1089/dna.2017.3845] [PMID: 29461880]
[148]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[149]
Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[150]
Boon, R.A. Endothelial microRNA tells smooth muscle cells to proliferate. Circ. Res., 2013, 113(1), 7-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301636] [PMID: 23788500]
[151]
Jaé, N.; Dimmeler, S. Noncoding RNAs in vascular diseases. Circ. Res., 2020, 126(9), 1127-1145.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315938] [PMID: 32324505]
[152]
Fasolo, F.; Di Gregoli, K.; Maegdefessel, L.; Johnson, J.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res., 2019, 115(12), 1732-1756.
[http://dx.doi.org/10.1093/cvr/cvz203] [PMID: 31389987]
[153]
Fang, Y.; Davies, P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 979-987.
[http://dx.doi.org/10.1161/ATVBAHA.111.244053] [PMID: 22267480]
[154]
Loyer, X.; Potteaux, S.; Vion, A.C.; Guérin, C.L.; Boulkroun, S.; Rautou, P.E.; Ramkhelawon, B.; Esposito, B.; Dalloz, M.; Paul, J.L.; Julia, P.; Maccario, J.; Boulanger, C.M.; Mallat, Z.; Tedgui, A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res., 2014, 114(3), 434-443.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302213] [PMID: 24255059]
[155]
Hosen, M.R.; Goody, P.R.; Zietzer, A.; Nickenig, G.; Jansen, F. MicroRNAs as master regulators of atherosclerosis: From pathogenesis to novel therapeutic options. Antioxid. Redox Signal., 2020, 33(9), 621-644.
[http://dx.doi.org/10.1089/ars.2020.8107] [PMID: 32408755]
[156]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[157]
Self-Fordham, J.B.; Naqvi, A.R.; Uttamani, J.R.; Kulkarni, V.; Nares, S. MicroRNA: Dynamic regulators of macrophage polarization and plasticity. Front. Immunol., 2017, 8, 1062.
[http://dx.doi.org/10.3389/fimmu.2017.01062] [PMID: 28912781]
[158]
Curtale, G.; Rubino, M.; Locati, M. MicroRNAs as molecular switches in macrophage activation. Front. Immunol., 2019, 10, 799.
[http://dx.doi.org/10.3389/fimmu.2019.00799] [PMID: 31057539]
[159]
Zhang, Y.; Zhang, M.; Zhong, M.; Suo, Q.; Lv, K. Expression profiles of miRNAs in polarized macrophages. Int. J. Mol. Med., 2013, 31(4), 797-802.
[http://dx.doi.org/10.3892/ijmm.2013.1260] [PMID: 23443577]
[160]
Park, Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med., 2014, 46(6), e99.
[http://dx.doi.org/10.1038/emm.2014.38] [PMID: 24903227]
[161]
Kuchibhotla, S.; Vanegas, D.; Kennedy, D.J.; Guy, E.; Nimako, G.; Morton, R.E.; Febbraio, M. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res., 2008, 78(1), 185-196.
[http://dx.doi.org/10.1093/cvr/cvm093] [PMID: 18065445]
[162]
Li, B.R.; Xia, L.Q.; Liu, J.; liao, L.L.; Zhang, Y.; Deng, M.; Zhong, H.J.; Feng, T.T.; He, P.P.; Ouyang, X.P. miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 384-389.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.150] [PMID: 28965954]
[163]
Chen, T.; Huang, Z.; Wang, L.; Wang, Y.; Wu, F.; Meng, S.; Wang, C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res., 2009, 83(1), 131-139.
[http://dx.doi.org/10.1093/cvr/cvp121] [PMID: 19377067]
[164]
Banerjee, S.; Cui, H.; Xie, N.; Tan, Z.; Yang, S.; Icyuz, M.; Thannickal, V.J.; Abraham, E.; Liu, G. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem., 2013, 288(49), 35428-35436.
[http://dx.doi.org/10.1074/jbc.M112.426866] [PMID: 24151079]
[165]
Yang, K.; He, Y.S.; Wang, X.Q.; Lu, L.; Chen, Q.J.; Liu, J.; Sun, Z.; Shen, W.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett., 2011, 585(6), 854-860.
[http://dx.doi.org/10.1016/j.febslet.2011.02.009] [PMID: 21329689]
[166]
Zhang, M.; Wu, J.F.; Chen, W.J.; Tang, S.L.; Mo, Z.C.; Tang, Y.Y.; Li, Y.; Wang, J.L.; Liu, X.Y.; Peng, J.; Chen, K.; He, P.P.; Lv, Y.C.; Ouyang, X.P.; Yao, F.; Tang, D.P.; Cayabyab, F.S.; Zhang, D.W.; Zheng, X.L.; Tian, G.P.; Tang, C.K. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis, 2014, 234(1), 54-64.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.02.008] [PMID: 24608080]
[167]
Xie, W.; Li, L.; Zhang, M.; Cheng, H.P.; Gong, D.; Lv, Y.C.; Yao, F.; He, P.P.; Ouyang, X.P.; Lan, G.; Liu, D.; Zhao, Z.W.; Tan, Y.L.; Zheng, X.L.; Yin, W.D.; Tang, C.K. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One, 2016, 11(6), e0157085.
[http://dx.doi.org/10.1371/journal.pone.0157085] [PMID: 27257686]
[168]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.023] [PMID: 26318398]
[169]
Canfrán-Duque, A.; Lin, C.S.; Goedeke, L.; Suárez, Y.; Fernández-Hernando, C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol., 2016, 36(6), 1076-1084.
[http://dx.doi.org/10.1161/ATVBAHA.116.307028] [PMID: 27079881]
[170]
Nishiga, M.; Horie, T.; Kuwabara, Y.; Nagao, K.; Baba, O.; Nakao, T.; Nishino, T.; Hakuno, D.; Nakashima, Y.; Nishi, H.; Nakazeki, F.; Ide, Y.; Koyama, S.; Kimura, M.; Hanada, R.; Nakamura, T.; Inada, T.; Hasegawa, K.; Conway, S.J.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol. Circ. Res., 2017, 120(5), 835-847.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309528] [PMID: 27920122]
[171]
Karunakaran, D.; Thrush, A.B.; Nguyen, M.A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Pezacki, J.P.; Moore, K.J.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Harper, M.E.; Rayner, K.J. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-mir33 in atherosclerosis. Circ. Res., 2015, 117(3), 266-278.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305624] [PMID: 26002865]
[172]
Ouimet, M.; Ediriweera, H.N.; Gundra, U.M.; Sheedy, F.J.; Ramkhelawon, B.; Hutchison, S.B.; Rinehold, K.; van Solingen, C.; Fullerton, M.D.; Cecchini, K.; Rayner, K.J.; Steinberg, G.R.; Zamore, P.D.; Fisher, E.A.; Loke, P.; Moore, K.J. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest., 2015, 125(12), 4334-4348.
[http://dx.doi.org/10.1172/JCI81676] [PMID: 26517695]
[173]
Rayner, K.J.; Suárez, Y.; Dávalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A.; Moore, K.J.; Fernández-Hernando, C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 328(5985), 1570-1573.
[http://dx.doi.org/10.1126/science.1189862] [PMID: 20466885]
[174]
Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[175]
Goedeke, L.; Rotllan, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; Horton, J.D.; Lasunción, M.A.; Näär, A.M.; Suárez, Y.; Fernández-Hernando, C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med., 2015, 21(11), 1280-1289.
[http://dx.doi.org/10.1038/nm.3949] [PMID: 26437365]
[176]
de Aguiar Vallim, T.Q.; Tarling, E.J.; Kim, T.; Civelek, M.; Baldán, Á.; Esau, C.; Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res., 2013, 112(12), 1602-1612.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300648] [PMID: 23519696]
[177]
Ramírez, C.M.; Goedeke, L.; Rotllan, N.; Yoon, J.H.; Cirera-Salinas, D.; Mattison, J.A.; Suárez, Y.; de Cabo, R.; Gorospe, M.; Fernández-Hernando, C. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol., 2013, 33(15), 2891-2902.
[http://dx.doi.org/10.1128/MCB.00016-13] [PMID: 23716591]
[178]
Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067.
[http://dx.doi.org/10.1161/ATVBAHA.116.308916] [PMID: 28428217]
[179]
Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317914] [PMID: 33593073]
[180]
Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ Res., 2022, 131(11), 77-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.320296]
[181]
Canfrán-Duque, A.; Ramírez, C.M.; Goedeke, L.; Lin, C.S.; Fernández-Hernando, C. microRNAs and HDL life cycle. Cardiovasc. Res., 2014, 103(3), 414-422.
[http://dx.doi.org/10.1093/cvr/cvu140] [PMID: 24895349]
[182]
Najafi-Shoushtari, S.H.; Kristo, F.; Li, Y.; Shioda, T.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569.
[http://dx.doi.org/10.1126/science.1189123] [PMID: 20466882]
[183]
Marquart, T.J.; Allen, R.M.; Ory, D.S.; Baldán, Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci., 2010, 107(27), 12228-12232.
[http://dx.doi.org/10.1073/pnas.1005191107] [PMID: 20566875]
[184]
Sidorkiewicz, M. Is microRNA-33 an appropriate target in the treatment of atherosclerosis? Nutrients, 2023, 15(4), 902.
[http://dx.doi.org/10.3390/nu15040902] [PMID: 36839260]
[185]
Horie, T.; Baba, O.; Kuwabara, Y.; Chujo, Y.; Watanabe, S.; Kinoshita, M.; Horiguchi, M.; Nakamura, T.; Chonabayashi, K.; Hishizawa, M.; Hasegawa, K.; Kume, N.; Yokode, M.; Kita, T.; Kimura, T.; Ono, K. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc., 2012, 1(6), e003376.
[http://dx.doi.org/10.1161/JAHA.112.003376] [PMID: 23316322]
[186]
Ramírez, C.M.; Rotllan, N.; Vlassov, A.V.; Dávalos, A.; Li, M.; Goedeke, L.; Aranda, J.F.; Cirera-Salinas, D.; Araldi, E.; Salerno, A.; Wanschel, A.; Zavadil, J.; Castrillo, A.; Kim, J.; Suárez, Y.; Fernández-Hernando, C. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res., 2013, 112(12), 1592-1601.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300626] [PMID: 23519695]
[187]
Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; Sethupathy, P.; Barter, P.J.; Remaley, A.T.; Rye, K.A. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun., 2014, 5(1), 3292.
[http://dx.doi.org/10.1038/ncomms4292] [PMID: 24576947]
[188]
Rossi-Herring, G.; Belmonte, T.; Rivas-Urbina, A.; Benítez, S.; Rotllan, N.; Crespo, J.; Llorente-Cortés, V.; Sánchez-Quesada, J.L.; de Gonzalo-Calvo, D. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile. Biomed. Pharmacother., 2023, 162, 114623.
[http://dx.doi.org/10.1016/j.biopha.2023.114623] [PMID: 37023624]
[189]
Zhang, X.; Price, N.L.; Fernández-Hernando, C. Non-coding RNAs in lipid metabolism. Vascul. Pharmacol., 2019, 114, 93-102.
[http://dx.doi.org/10.1016/j.vph.2018.06.011] [PMID: 29929012]
[190]
Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897.
[http://dx.doi.org/10.1172/JCI63455] [PMID: 22820290]
[191]
Agbu, P.; Carthew, R.W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol., 2021, 22(6), 425-438.
[http://dx.doi.org/10.1038/s41580-021-00354-w] [PMID: 33772227]
[192]
Naeli, P.; Mirzadeh Azad, F.; Malakootian, M.; Seidah, N.G.; Mowla, S.J. Post-transcriptional regulation of PCSK9 by miR-191, miR-222, and miR-224. Front. Genet., 2017, 8, 189.
[http://dx.doi.org/10.3389/fgene.2017.00189] [PMID: 29230236]
[193]
Bai, J.; Na, H.; Hua, X.; Wei, Y.; Ye, T.; Zhang, Y.; Jian, G.; Zeng, W.; Yan, L.; Tang, Q. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget, 2017, 8(4), 6929-6939.
[http://dx.doi.org/10.18632/oncotarget.14322] [PMID: 28036293]
[194]
Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81.
[http://dx.doi.org/10.3389/fcvm.2020.00081] [PMID: 32528976]
[195]
Chandra, A.; Sharma, K.; Pratap, K.; Singh, V.; Saini, N. Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model. Life Sci., 2021, 264, 118633.
[http://dx.doi.org/10.1016/j.lfs.2020.118633] [PMID: 33190783]
[196]
Wang, N.; He, L. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356.
[http://dx.doi.org/10.1371/journal.pone.0225356]
[197]
Shibata, C.; Kishikawa, T.; Otsuka, M.; Ohno, M.; Yoshikawa, T.; Takata, A.; Yoshida, H.; Koike, K. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression. Biochem. Biophys. Res. Commun., 2013, 438(1), 230-235.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.064] [PMID: 23891753]
[198]
Menon, B.; Gulappa, T.; Menon, K.M.J. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries. Endocrinology, 2015, 156(9), 3370-3380.
[http://dx.doi.org/10.1210/en.2015-1121] [PMID: 26125464]
[199]
Irani, S.; Pan, X.; Peck, B.C.E.; Iqbal, J.; Sethupathy, P.; Hussain, M.M. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. J. Biol. Chem., 2016, 291(35), 18397-18409.
[http://dx.doi.org/10.1074/jbc.M116.728451] [PMID: 27365390]
[200]
Li, X.; Feng, S.; Luo, Y.; Long, K.; Lin, Z.; Ma, J.; Jiang, A.; Jin, L.; Tang, Q.; Li, M.; Wang, X. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells. In vitro Cell. Dev. Biol. Anim., 2018, 54(2), 99-110.
[http://dx.doi.org/10.1007/s11626-017-0225-3] [PMID: 29322359]
[201]
Ataei, S.; Ganjali, S.; Banach, M.; Karimi, E.; Sahebkar, A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with PCSK9/LDLR pathway. Arch. Med. Sci., 2022, 19(1), 203-208.
[http://dx.doi.org/10.5114/aoms/152000] [PMID: 36817686]
[202]
van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298.
[http://dx.doi.org/10.3389/fcvm.2021.667298] [PMID: 34322524]
[203]
Los, B.; Borges, J.B.; Oliveira, V.F.; Freitas, R.C.C.; Dagli-Hernandez, C.; Bortolin, R.H.; Gonçalves, R.M.; Faludi, A.A.; Rodrigues, A.C.; Bastos, G.M.; Jannes, C.E.; Pereira, A.C.; Hirata, R.D.C.; Hirata, M.H. Functional analysis of PCSK9 3′UTR variants and mRNA–miRNA interactions in patients with familial hypercholesterolemia. Epigenomics, 2021, 13(10), 779-791.
[http://dx.doi.org/10.2217/epi-2020-0462] [PMID: 33899508]
[204]
Gupta, N.; Fisker, N.; Asselin, M.C.; Lindholm, M.; Rosenbohm, C.; Ørum, H.; Elmén, J.; Seidah, N.G.; Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010, 5(5), e10682.
[http://dx.doi.org/10.1371/journal.pone.0010682] [PMID: 20498851]
[205]
Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem., 2015, 290(7), 4047-4058.
[http://dx.doi.org/10.1074/jbc.M114.597229] [PMID: 25540198]
[206]
Ni, Y.G.; Di Marco, S.; Condra, J.H.; Peterson, L.B.; Wang, W.; Wang, F.; Pandit, S.; Hammond, H.A.; Rosa, R.; Cummings, R.T.; Wood, D.D.; Liu, X.; Bottomley, M.J.; Shen, X.; Cubbon, R.M.; Wang, S.; Johns, D.G.; Volpari, C.; Hamuro, L.; Chin, J.; Huang, L.; Zhao, J.Z.; Vitelli, S.; Haytko, P.; Wisniewski, D.; Mitnaul, L.J.; Sparrow, C.P.; Hubbard, B.; Carfí, A.; Sitlani, A. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res., 2011, 52(1), 78-86.
[http://dx.doi.org/10.1194/jlr.M011445] [PMID: 20959675]
[207]
Banerjee, Y.; Santos, R.D.; Al-Rasadi, K.; Rizzo, M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis, 2016, 248, 62-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.018] [PMID: 26987067]
[208]
Chan, J.C.Y.; Piper, D.E.; Cao, Q.; Liu, D.; King, C.; Wang, W.; Tang, J.; Liu, Q.; Higbee, J.; Xia, Z.; Di, Y.; Shetterly, S.; Arimura, Z.; Salomonis, H.; Romanow, W.G.; Thibault, S.T.; Zhang, R.; Cao, P.; Yang, X.P.; Yu, T.; Lu, M.; Retter, M.W.; Kwon, G.; Henne, K.; Pan, O.; Tsai, M.M.; Fuchslocher, B.; Yang, E.; Zhou, L.; Lee, K.J.; Daris, M.; Sheng, J.; Wang, Y.; Shen, W.D.; Yeh, W.C.; Emery, M.; Walker, N.P.C.; Shan, B.; Schwarz, M.; Jackson, S.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci., 2009, 106(24), 9820-9825.
[http://dx.doi.org/10.1073/pnas.0903849106] [PMID: 19443683]
[209]
Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; Lisbon, E.; Gutierrez, M.; Webb, C.; Wu, R.; Du, Y.; Kranz, T.; Gasparino, E.; Swergold, G.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med., 2012, 366(12), 1108-1118.
[http://dx.doi.org/10.1056/NEJMoa1105803] [PMID: 22435370]
[210]
Liang, H.; Chaparro-Riggers, J.; Strop, P.; Geng, T.; Sutton, J.E.; Tsai, D.; Bai, L.; Abdiche, Y.; Dilley, J.; Yu, J.; Wu, S.; Chin, S.M.; Lee, N.A.; Rossi, A.; Lin, J.C.; Rajpal, A.; Pons, J.; Shelton, D.L. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther., 2012, 340(2), 228-236.
[http://dx.doi.org/10.1124/jpet.111.187419] [PMID: 22019884]
[211]
Park, S.W.; Moon, Y.A.; Horton, J.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem., 2004, 279(48), 50630-50638.
[http://dx.doi.org/10.1074/jbc.M410077200] [PMID: 15385538]
[212]
Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801.
[http://dx.doi.org/10.1074/jbc.M805971200] [PMID: 18799458]
[213]
Gouni-Berthold, I.; Berthold, H.K. Antisense oligonucleotides for the treatment of dyslipidemia. Curr. Pharm. Des., 2011, 17(9), 950-960.
[http://dx.doi.org/10.2174/138161211795428830] [PMID: 21418033]
[214]
Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Röhl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; de Fougerolles, A.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Manoharan, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci., 2008, 105(33), 11915-11920.
[http://dx.doi.org/10.1073/pnas.0805434105] [PMID: 18695239]
[215]
Ni, Y.G.; Condra, J.H.; Orsatti, L.; Shen, X.; Di Marco, S.; Pandit, S.; Bottomley, M.J.; Ruggeri, L.; Cummings, R.T.; Cubbon, R.M.; Santoro, J.C.; Ehrhardt, A.; Lewis, D.; Fisher, T.S.; Ha, S.; Njimoluh, L.; Wood, D.D.; Hammond, H.A.; Wisniewski, D.; Volpari, C.; Noto, A.; Lo Surdo, P.; Hubbard, B.; Carfí, A.; Sitlani, A. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem., 2010, 285(17), 12882-12891.
[http://dx.doi.org/10.1074/jbc.M110.113035] [PMID: 20172854]
[216]
Akram, O.N.; Bernier, A.; Petrides, F.; Wong, G.; Lambert, G. Beyond LDL cholesterol, a new role for PCSK9. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1279-1281.
[http://dx.doi.org/10.1161/ATVBAHA.110.209007] [PMID: 20554949]
[217]
Squizzato, A.; Suter, M.B.; Nerone, M.; Giugliano, R.P.; Dentali, F.; Maresca, A.M.; Campiotti, L.; Grandi, A.M.; Guasti, L. PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: A systematic review and a meta-analysis. Intern. Emerg. Med., 2017, 12(7), 1043-1053.
[http://dx.doi.org/10.1007/s11739-017-1708-7] [PMID: 28695455]
[218]
Banach, M.; Penson, P.E.; Vrablik, M.; Bunc, M.; Dyrbus, K.; Fedacko, J.; Gaita, D.; Gierlotka, M.; Jarai, Z.; Magda, S.L.; Margetic, E.; Margoczy, R.; Durak-Nalbantic, A.; Ostadal, P.; Pella, D.; Trbusic, M.; Udroiu, C.A.; Vlachopoulos, C.; Vulic, D.; Fras, Z.; Dudek, D.; Reiner, Ž. Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol. Res., 2021, 166, 105499.
[http://dx.doi.org/10.1016/j.phrs.2021.105499] [PMID: 33607265]
[219]
Rallidis, L.S.; Skoumas, I.; Liberopoulos, E.N.; Vlachopoulos, C.; Kiouri, E.; Koutagiar, I.; Anastasiou, G.; Kosmas, N.; Elisaf, M.S.; Tousoulis, D.; Iliodromitis, E. PCSK9 inhibitors in clinical practice: Novel directions and new experiences. Hellenic J. Cardiol., 2020, 61(4), 241-245.
[http://dx.doi.org/10.1016/j.hjc.2019.10.003] [PMID: 31783124]
[220]
Han, Y.; Chen, J.; Chopra, V.K.; Zhang, S.; Su, G.; Ma, C.; Huang, Z.; Ma, Y.; Yao, Z.; Yuan, Z.; Zhao, Q.; Kuanprasert, S.; Baccara-Dinet, M.T.; Manvelian, G.; Li, J.; Chen, R. ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand. J. Clin. Lipidol., 2020, 14(1), 98-108.e8.
[http://dx.doi.org/10.1016/j.jacl.2019.10.015] [PMID: 31882376]
[221]
Cho, L.; Dent, R.; Stroes, E.S.G.; Stein, E.A.; Sullivan, D.; Ruzza, A.; Flower, A.; Somaratne, R.; Rosenson, R.S. Persistent safety and efficacy of evolocumab in patients with statin intolerance: A subset analysis of the OSLER open-label extension studies. Cardiovasc. Drugs Ther., 2018, 32(4), 365-372.
[http://dx.doi.org/10.1007/s10557-018-6817-7] [PMID: 30073585]
[222]
Watts, G.F.; Chan, D.C.; Dent, R.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Burrows, S.; R Barrett, P.H. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation, 2017, 135(4), 338-351.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025080] [PMID: 27941065]
[223]
Rane, P. B.; Patel, J.; Harrison, D. J.; Shepherd, J.; Leith, A.; Bailey, H.; Piercy, J. Patient characteristics and real-world treatment patterns among early users of PCSK9 inhibitors. Am. J. Cardiovasc. Drugs., 2018, 18(2), 103-108.
[http://dx.doi.org/10.1007/s40256-017-0246-z]
[224]
Arrieta, A.; Hong, J.C.; Khera, R.; Virani, S.S.; Krumholz, H.M.; Nasir, K. Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers. JAMA Cardiol., 2017, 2(12), 1369-1374.
[http://dx.doi.org/10.1001/jamacardio.2017.3655] [PMID: 29049467]
[225]
Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548.
[http://dx.doi.org/10.1016/j.jacc.2014.03.019] [PMID: 24694531]
[226]
Koba, S.; Inoue, I.; Cyrille, M.; Lu, C.; Inomata, H.; Shimauchi, J.; Kajinami, K. Evolocumab vs. ezetimibe in statin-intolerant hyperlipidemic Japanese patients: Phase 3 GAUSS-4 trial. J. Atheroscler. Thromb., 2020, 27(5), 471-484.
[http://dx.doi.org/10.5551/jat.50963] [PMID: 31748467]
[227]
Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceška, R.; Lepor, N.; Ballantyne, C.M.; Gouni-Berthold, I.; Elliott, M.; Brennan, D.M.; Wasserman, S.M.; Somaratne, R.; Scott, R.; Stein, E.A. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance. JAMA, 2016, 315(15), 1580-1590.
[http://dx.doi.org/10.1001/jama.2016.3608] [PMID: 27039291]
[228]
Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769.
[http://dx.doi.org/10.1016/j.jacl.2015.08.006] [PMID: 26687696]
[229]
Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 341-350.
[http://dx.doi.org/10.1016/S0140-6736(14)61374-X] [PMID: 25282520]
[230]
Kastelein, J.J.P.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), ehv370.
[http://dx.doi.org/10.1093/eurheartj/ehv370] [PMID: 26330422]
[231]
Cupido, A.J.; Reeskamp, L.F.; Kastelein, J.J.P. Novel lipid modifying drugs to lower LDL cholesterol. Curr. Opin. Lipidol., 2017, 28(4), 367-373.
[http://dx.doi.org/10.1097/MOL.0000000000000428] [PMID: 28445176]
[232]
Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68.
[http://dx.doi.org/10.1016/S0140-6736(13)61914-5] [PMID: 24094767]
[233]
Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[234]
Gaudet, D.; Kereiakes, D.J.; McKenney, J.M.; Roth, E.M.; Hanotin, C.; Gipe, D.; Du, Y.; Ferrand, A.C.; Ginsberg, H.N.; Stein, E.A. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol., 2014, 114(5), 711-715.
[http://dx.doi.org/10.1016/j.amjcard.2014.05.060] [PMID: 25060413]
[235]
Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. PCSK9 and diabetes: Is there a link? Drug Discov. Today, 2017, 22(6), 883-895.
[http://dx.doi.org/10.1016/j.drudis.2017.01.006] [PMID: 28111330]
[236]
Roth, E.M.; Taskinen, M.R.; Ginsberg, H.N.; Kastelein, J.J.P.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.049] [PMID: 25037695]
[237]
Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging, 2022, 23(2), 217-228.
[http://dx.doi.org/10.1093/ehjci/jeab034] [PMID: 33637979]
[238]
Wu, Z.; Gao, L.; Lin, Z. Can proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors regress coronary atherosclerotic plaque? A systematic review and meta-analysis. Am. J. Transl. Res., 2023, 15(1), 452-465.
[PMID: 36777825]
[239]
Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients. JAMA, 2016, 316(22), 2373-2384.
[http://dx.doi.org/10.1001/jama.2016.16951] [PMID: 27846344]
[240]
Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Kassahun, H.; Ruzza, A.; Ma, Y.; Somaratne, R.; Raal, F.J. Long-term low-density lipoprotein cholesterol–lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia. JAMA Cardiol., 2017, 2(6), 598-607.
[http://dx.doi.org/10.1001/jamacardio.2017.0747] [PMID: 28291870]
[241]
Durairaj, A.; Sabates, A.; Nieves, J.; Moraes, B.; Baum, S. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and its inhibitors: A review of physiology, biology, and clinical data. Curr. Treat. Options Cardiovasc. Med., 2017, 19(8), 58.
[http://dx.doi.org/10.1007/s11936-017-0556-0] [PMID: 28639183]
[242]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[243]
Turgeon, R.D.; Tsuyuki, R.T.; Gyenes, G.T.; Pearson, G.J. Cardiovascular efficacy and safety of PCSK9 inhibitors: Systematic review and meta-analysis including the ODYSSEY outcomes trial. Can. J. Cardiol., 2018, 34(12), 1600-1605.
[http://dx.doi.org/10.1016/j.cjca.2018.04.002] [PMID: 30527147]
[244]
Tavori, H.; Giunzioni, I.; Fazio, S. PCSK9 inhibition to reduce cardiovascular disease risk. Curr. Opin. Endocrinol. Diabetes Obes., 2015, 22(2), 126-132.
[http://dx.doi.org/10.1097/MED.0000000000000137] [PMID: 25692926]
[245]
Rallidis, L.S.; Fountoulaki, K.; Anastasiou-Nana, M. Managing the underestimated risk of statin-associated myopathy. Int. J. Cardiol., 2012, 159(3), 169-176.
[http://dx.doi.org/10.1016/j.ijcard.2011.07.048] [PMID: 21813193]
[246]
Trpkovic, A.; Stanimirovic, J.; Rizzo, M.; Resanovic, I.; Soskic, S.; Jevremovic, D.; Isenovic, E.R. High-sensitivity C-reactive protein and statin initiation. Angiology, 2015, 66(6), 503-507.
[http://dx.doi.org/10.1177/0003319714543000] [PMID: 25053677]
[247]
Jellinger, P. S.; Handelsman, Y.; Rosenblit, P. D.; Bloomgarden, Z. T.; Fonseca, V. A.; Garber, A. J.; Grunberger, G.; Guerin, C. K.; Bell, D. S. H.; Mechanick, J. I. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(S2), 1-87.
[http://dx.doi.org/10.4158/EP171764.APPGL]
[248]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[249]
Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2010, 55(11), 1121-1126.
[http://dx.doi.org/10.1016/j.jacc.2009.10.042] [PMID: 20223367]
[250]
Zhang, X.L.; Zhu, Q.Q.; Zhu, L.; Chen, J.Z.; Chen, Q.H.; Li, G.N.; Xie, J.; Kang, L.N.; Xu, B. Safety and efficacy of anti-PCSK9 antibodies: A meta-analysis of 25 randomized, controlled trials. BMC Med., 2015, 13(1), 123.
[http://dx.doi.org/10.1186/s12916-015-0358-8] [PMID: 26099511]
[251]
Nishikido, T. Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc. Diabetol., 2023, 22(1), 20.
[http://dx.doi.org/10.1186/s12933-023-01752-4] [PMID: 36717882]
[252]
Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; Kastelein, J.J.P. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med., 2020, 382(16), 1507-1519.
[http://dx.doi.org/10.1056/NEJMoa1912387] [PMID: 32187462]
[253]
Casula, M.; Olmastroni, E.; Boccalari, M.T.; Tragni, E.; Pirillo, A.; Catapano, A.L. Cardiovascular events with PCSK9 inhibitors: An updated meta-analysis of randomised controlled trials. Pharmacol. Res., 2019, 143, 143-150.
[http://dx.doi.org/10.1016/j.phrs.2019.03.021] [PMID: 30926528]
[254]
Gouni-Berthold, I.; Descamps, O. S.; Fraass, U.; Hartfield, E.; Allcott, K. Systematic review of published phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia. Br. J. Clin. Pharmacol., 2016, 82(6), 1412-1443.
[http://dx.doi.org/10.1111/bcp.13066]
[255]
Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; Banerjee, S.; Brilakis, E.S. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc., 2017, 6(12), e006910.
[http://dx.doi.org/10.1161/JAHA.117.006910] [PMID: 29223954]
[256]
AlTurki, A.; Marafi, M.; Dawas, A.; Dube, M.P.; Vieira, L.; Sherman, M.H.; Gregoire, J.; Thanassoulis, G.; Tardif, J.C.; Huynh, T. Meta-analysis of randomized controlled trials assessing the impact of proprotein convertase subtilisin/kexin type 9 antibodies on mortality and cardiovascular outcomes. Am. J. Cardiol., 2019, 124(12), 1869-1875.
[http://dx.doi.org/10.1016/j.amjcard.2019.09.011] [PMID: 31679643]
[257]
Choi, H.D.; Kim, J.H. An updated meta-analysis for safety evaluation of alirocumab and evolocumab as PCSK9 inhibitors. Cardiovasc. Ther., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/7362551] [PMID: 36704607]
[258]
Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Hannam, S.; Aronow, W.S.; Rysz, J.; Banach, M. Statins and dilated cardiomyopathy: Do we have enough data? Expert Opin. Investig. Drugs, 2011, 20(3), 315-323.
[http://dx.doi.org/10.1517/13543784.2011.550570] [PMID: 21210757]
[259]
Wierzbicki, A.S.; Hardman, T.C.; Viljoen, A. Inhibition of pro-protein convertase subtilisin kexin 9 [corrected] (PCSK-9) as a treatment for hyperlipidaemia. Expert Opin. Investig. Drugs, 2012, 21(5), 667-676.
[http://dx.doi.org/10.1517/13543784.2012.679340] [PMID: 22493980]
[260]
Lambert, G.; Charlton, F.; Rye, K.A.; Piper, D.E. Molecular basis of PCSK9 function. Atherosclerosis, 2009, 203(1), 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.010] [PMID: 18649882]
[261]
Tibolla, G.; Norata, G.D.; Artali, R.; Meneghetti, F.; Catapano, A.L. Proprotein convertase subtilisin/kexin type 9 (PCSK9): From structure–function relation to therapeutic inhibition. Nutr. Metab. Cardiovasc. Dis., 2011, 21(11), 835-843.
[http://dx.doi.org/10.1016/j.numecd.2011.06.002] [PMID: 21943799]
[262]
Qian, Y.W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498.
[http://dx.doi.org/10.1194/jlr.M700071-JLR200] [PMID: 17449864]
[263]
Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005.
[http://dx.doi.org/10.1172/JCI29383] [PMID: 17080197]
[264]
Nassoury, N.; Blasiole, D.A.; Tebon Oler, A.; Benjannet, S.; Hamelin, J.; Poupon, V.; McPherson, P.S.; Attie, A.D.; Prat, A.; Seidah, N.G. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic, 2007, 8(6), 718-732.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00562.x] [PMID: 17461796]
[265]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[266]
Fisher, T.S.; Surdo, P.L.; Pandit, S.; Mattu, M.; Santoro, J.C.; Wisniewski, D.; Cummings, R.T.; Calzetta, A.; Cubbon, R.M.; Fischer, P.A.; Tarachandani, A.; De Francesco, R.; Wright, S.D.; Sparrow, C.P.; Carfi, A.; Sitlani, A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J. Biol. Chem., 2007, 282(28), 20502-20512.
[http://dx.doi.org/10.1074/jbc.M701634200] [PMID: 17493938]
[267]
Alborn, W.E.; Cao, G.; Careskey, H.E.; Qian, Y.W.; Subramaniam, D.R.; Davies, J.; Conner, E.M.; Konrad, R.J. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin. Chem., 2007, 53(10), 1814-1819.
[http://dx.doi.org/10.1373/clinchem.2007.091280] [PMID: 17702855]
[268]
Cariou, B.; Le May, C.; Costet, P. Clinical aspects of PCSK9. Atherosclerosis, 2011, 216(2), 258-265.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.018] [PMID: 21596380]
[269]
Sullivan, D.; Olsson, A.G.; Scott, R.; Kim, J.B.; Xue, A.; Gebski, V.; Wasserman, S.M.; Stein, E.A. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: The GAUSS randomized trial. JAMA, 2012, 308(23), 2497-2506.
[http://dx.doi.org/10.1001/jama.2012.25790] [PMID: 23128163]
[270]
Troutt, J.S.; Alborn, W.E.; Cao, G.; Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res., 2010, 51(2), 345-351.
[http://dx.doi.org/10.1194/jlr.M000620] [PMID: 19738285]
[271]
Chernogubova, E.; Strawbridge, R.; Mahdessian, H.; Mälarstig, A.; Krapivner, S.; Gigante, B.; Hellénius, M.L.; de Faire, U.; Franco-Cereceda, A.; Syvänen, A.C.; Troutt, J.S.; Konrad, R.J.; Eriksson, P.; Hamsten, A.; van ’t Hooft, F.M. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1526-1534.
[http://dx.doi.org/10.1161/ATVBAHA.111.240549] [PMID: 22460556]
[272]
Basak, A.; Palmer-Smith, H.; Mishra, P. Proprotein convertase subtilisin kexin9 (PCSK9): A novel target for cholesterol regulation. Protein Pept. Lett., 2012, 19(6), 575-585.
[http://dx.doi.org/10.2174/092986612800494020] [PMID: 22519528]
[273]
Levenson, A.E.; Shah, A.S.; Khoury, P.R.; Kimball, T.R.; Urbina, E.M.; de Ferranti, S.D.; Maahs, D.M.; Dolan, L.M.; Wadwa, R.P.; Biddinger, S.B. Obesity and type 2 diabetes are associated with elevated PCSK9 levels in young women. Pediatr. Diabetes, 2017, 18(8), 755-760.
[http://dx.doi.org/10.1111/pedi.12490] [PMID: 28093849]
[274]
Xu, L.; Zhao, G.; Zhu, H.; Wang, S. Peroxisome proliferator-activated receptor-γ antagonizes LOX-1-mediated endothelial injury by transcriptional activation of miR-590-5p. PPAR Res., 2019, 2019, 2715176.
[http://dx.doi.org/10.1155/2019/2715176]
[275]
Jiang, H.; Fan, C.; Lu, Y.; Cui, X.; Liu, J. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med., 2021, 48(1), 130.
[http://dx.doi.org/10.3892/ijmm.2021.4963] [PMID: 34013364]
[276]
Zhao, J.; Cui, L.; Sun, J.; Xie, Z.; Zhang, L.; Ding, Z.; Quan, X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell. Signal., 2020, 76, 109781.
[http://dx.doi.org/10.1016/j.cellsig.2020.109781] [PMID: 32947021]
[277]
Ren, K.; Jiang, T.; Zhou, H. F.; Liang, Y.; Zhao, G. J. apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol. Biochem., 2018, 47(5), 2170-2184.
[http://dx.doi.org/10.1159/000491528]
[278]
Yuan, X.; Chen, J.; Dai, M. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-κB pathway. Int. J. Mol. Med., 2016, 38(6), 1871-1878.
[http://dx.doi.org/10.3892/ijmm.2016.2778] [PMID: 27748840]
[279]
Bai, Y.; Liu, X.; Chen, Q.; Chen, T.; Jiang, N.; Guo, Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p. Sci. Rep., 2021, 11(1), 19637.
[http://dx.doi.org/10.1038/s41598-021-98916-7] [PMID: 34608195]
[280]
Abdollahi, E.; Keyhanfar, F.; Delbandi, A.A.; Falak, R.; Hajimiresmaiel, S.J.; Shafiei, M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol., 2022, 918, 174715.
[http://dx.doi.org/10.1016/j.ejphar.2021.174715] [PMID: 35026193]
[281]
Cao, G.; Xuan, X.; Zhang, R.; Hu, J.; Dong, H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med., 2021, 8, 760140.
[http://dx.doi.org/10.3389/fcvm.2021.760140] [PMID: 34805315]
[282]
Wu, Z.; Asokan, A.; Samulski, R. J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol. Ther., 2006, 14(3), 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009]
[283]
Grieger, J.C.; Samulski, R.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps. J. Virol., 2005, 79(15), 9933-9944.
[http://dx.doi.org/10.1128/JVI.79.15.9933-9944.2005] [PMID: 16014954]
[284]
Dong, J.Y.; Fan, P.D.; Frizzell, R.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther., 1996, 7(17), 2101-2112.
[http://dx.doi.org/10.1089/hum.1996.7.17-2101] [PMID: 8934224]
[285]
Athanasopoulos, T.; Munye, M.M.; Yáñez-Muñoz, R.J. Nonintegrating gene therapy vectors. Hematol. Oncol. Clin. North Am., 2017, 31(5), 753-770.
[http://dx.doi.org/10.1016/j.hoc.2017.06.007] [PMID: 28895845]
[286]
Zhen, S.; Li, X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther., 2020, 27(7-8), 515-527.
[http://dx.doi.org/10.1038/s41417-019-0141-7] [PMID: 31676843]
[287]
Qi, Y.; Song, H.; Xiao, H.; Cheng, G.; Yu, B.; Xu, F.J. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small, 2018, 14(42), 1803061.
[http://dx.doi.org/10.1002/smll.201803061] [PMID: 30238691]
[288]
Zhang, X.; Xu, C.; Gao, S.; Li, P.; Kong, Y.; Li, T.; Li, Y.; Xu, F. J. CRISPR/Cas9 delivery mediated with hydroxyl-rich nanosystems for gene editing in aorta. Adv. Sci., 2019, 6(12), 1900386.
[http://dx.doi.org/10.1002/advs.201900386]
[289]
Charbe, N.B.; Lagos, C.F.; Ortiz, C.A.V.; Tambuwala, M.; Palakurthi, S.S.; Zacconi, F.C. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study. Biomed. Pharmacother., 2022, 153, 113428.
[http://dx.doi.org/10.1016/j.biopha.2022.113428] [PMID: 36076548]
[290]
Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet., 2022, 23(5), 265-280.
[http://dx.doi.org/10.1038/s41576-021-00439-4] [PMID: 34983972]
[291]
Vartak, T.; Kumaresan, S.; Brennan, E. Decoding microRNA drivers in atherosclerosis. Biosci. Rep., 2022, 42(7), BSR20212355.
[http://dx.doi.org/10.1042/BSR20212355]
[292]
Segal, M.; Slack, F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov., 2020, 15(9), 987-991.
[http://dx.doi.org/10.1080/17460441.2020.1765770] [PMID: 32421364]
[293]
Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D. W.; Borrós, S. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanoparticles conjugated with vcam-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), e2001894.
[http://dx.doi.org/10.1002/adhm.202001894]
[294]
Kamaly, N.; Fredman, G.; Subramanian, M.; Gadde, S.; Pesic, A.; Cheung, L.; Fayad, Z.A.; Langer, R.; Tabas, I.; Cameron Farokhzad, O. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl. Acad. Sci., 2013, 110(16), 6506-6511.
[http://dx.doi.org/10.1073/pnas.1303377110] [PMID: 23533277]
[295]
Kamaly, N.; Fredman, G.; Fojas, J.J.R.; Subramanian, M.; Choi, W.I.I.; Zepeda, K.; Vilos, C.; Yu, M.; Gadde, S.; Wu, J.; Milton, J.; Carvalho Leitao, R.; Rosa Fernandes, L.; Hasan, M.; Gao, H.; Nguyen, V.; Harris, J.; Tabas, I.; Farokhzad, O.C. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano, 2016, 10(5), 5280-5292.
[http://dx.doi.org/10.1021/acsnano.6b01114] [PMID: 27100066]
[296]
Fredman, G.; Kamaly, N.; Spolitu, S.; Milton, J.; Ghorpade, D.; Chiasson, R.; Kuriakose, G.; Perretti, M.; Farokhzad, O.; Tabas, I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med., 2015, 7(275), 275ra20.
[http://dx.doi.org/10.1126/scitranslmed.aaa1065] [PMID: 25695999]
[297]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[298]
Yaman, S.O.; Orem, A.; Yucesan, F.B.; Kural, B.V.; Orem, C. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia. Life Sci., 2021, 264, 118585.
[http://dx.doi.org/10.1016/j.lfs.2020.118585] [PMID: 33058914]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy