Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Design of Dendritic Foldamers as Catalysts for Organic Synthesis

Author(s): Sherlymole P. Baby, Smitha George and Sreekumar Krishnapillai*

Volume 11, Issue 3, 2024

Published on: 10 November, 2023

Page: [214 - 231] Pages: 18

DOI: 10.2174/0122133372274680231105072522

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Multistranded foldamers mimic biopolymer architecture, through the assembly and folding of intrinsically flexible polymeric chains attached to polyol core have been synthesised here. The synthesised dendritic motifs possess helical cavities with properly arranged active sites. As these cavities are large enough to accommodate guest molecules, their application as synthetic foldamer catalyst were investigated in Knoevenagel and Mannich reactions.

Methods: It is presumed to be the potentiality of dendritic foldamers to form reverse micelle in the interior of helical motif containing many reactive sites.

Results: Inside the dendritic foldamer, the substrates are adequately concentrated, work together in cooperation for ligand-binding, and stabilize the transition state as in enzymes that helps to accelerate the reaction rate many times greater than in bulk solution.

Conclusion: An unrivalled reaction rate and high yield of products were obtained within a short time in both Knoevenagel and Mannich reactions by using dendritic foldamers as catalysts.

Keywords: Dendrimer, hyperbranched polymer, dendritic foldamer, nanosized cavities, reverse micelle, Organocatalysis, Knoevenagel condensation, Mannich reaction.

Graphical Abstract
[1]
Lechtenberg, B.C.; Rajput, A.; Sanishvili, R.; Dobaczewska, M.K.; Ware, C.F.; Mace, P.D.; Riedl, S.J. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature, 2016, 529(7587), 546-550.
[http://dx.doi.org/10.1038/nature16511] [PMID: 26789245]
[2]
Boettiger, A.N.; Bintu, B.; Moffitt, J.R.; Wang, S.; Beliveau, B.J.; Fudenberg, G.; Imakaev, M.; Mirny, L.A.; Wu, C.; Zhuang, X. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature, 2016, 529(7586), 418-422.
[http://dx.doi.org/10.1038/nature16496] [PMID: 26760202]
[3]
Rivas-Pardo, J.A.; Eckels, E.C.; Popa, I.; Kosuri, P.; Linke, W.A.; Fernández, J.M. Work done by titin protein folding assists muscle contraction. Cell Rep., 2016, 14(6), 1339-1347.
[http://dx.doi.org/10.1016/j.celrep.2016.01.025] [PMID: 26854230]
[4]
Pan, T.; Sosnick, T. RNA folding during transcription. Annu. Rev. Biophys. Biomol. Struct., 2006, 35(1), 161-175.
[http://dx.doi.org/10.1146/annurev.biophys.35.040405.102053] [PMID: 16689632]
[5]
Patel, V.; Zhang, X.; Tautiva, N.; Nyabera, A.; Owa, O.; Baidya, M.; Sung, H.; Taunk, P.; Abdollahi, S.; Charles, S.; Gonnella, R.; Gadi, N.; Duong, K.; Fawver, J.; Ran, C.; Jalonen, T.; Murray, I. Small molecules and Alzheimer’s disease: Misfolding, metabolism and imaging. Curr. Alzheimer Res., 2015, 12(5), 445-461.
[http://dx.doi.org/10.2174/1567205012666150504145646] [PMID: 25938871]
[6]
Wilson, C.J.; Bommarius, A.S.; Champion, J.A.; Chernoff, Y.O.; Lynn, D.G.; Paravastu, A.K.; Liang, C.; Hsieh, M.C.; Heemstra, J.M. Biomolecular assemblies: Moving from observation to predictive design. Chem. Rev., 2018, 118(24), 11519-11574.
[http://dx.doi.org/10.1021/acs.chemrev.8b00038] [PMID: 30281290]
[7]
Horne, W.S.; Price, J.L.; Keck, J.L.; Gellman, S.H. Helix bundle quaternary structure from α/β-peptide foldamers. J. Am. Chem. Soc., 2007, 129(14), 4178-4180.
[http://dx.doi.org/10.1021/ja070396f] [PMID: 17362016]
[8]
George, K.L.; Horne, W.S. Foldamer tertiary structure through sequence-guided protein backbone alteration. Acc. Chem. Res., 2018, 51(5), 1220-1228.
[http://dx.doi.org/10.1021/acs.accounts.8b00048] [PMID: 29672021]
[9]
Tew, G.N.; Scott, R.W.; Klein, M.L.; DeGrado, W.F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res., 2010, 43(1), 30-39.
[http://dx.doi.org/10.1021/ar900036b] [PMID: 19813703]
[10]
Guseva, E.; Zuckermann, R.N.; Dill, K.A. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers. Proc. Natl. Acad. Sci. USA, 2017, 114(36), E7460-E7468.
[http://dx.doi.org/10.1073/pnas.1620179114] [PMID: 28831002]
[11]
Bouillère, F.; Thétiot-Laurent, S.; Kouklovsky, C.; Alezra, V. Foldamers containing γ-amino acid residues or their analogues: structural features and applications. Amino Acids, 2011, 41(3), 687-707.
[http://dx.doi.org/10.1007/s00726-011-0893-3] [PMID: 21455734]
[12]
Juwarker, H.; Suk, J.; Jeong, K.S. Foldamers with helical cavities for binding complementary guests. Chem. Soc. Rev., 2009, 38(12), 3316-3325.
[http://dx.doi.org/10.1039/b909034g] [PMID: 20449051]
[13]
Zhang, D.W.; Zhao, X.; Li, Z.T. Aromatic amide and hydrazide foldamer-based responsive host-guest systems. Acc. Chem. Res., 2014, 47(7), 1961-1970.
[http://dx.doi.org/10.1021/ar5000242] [PMID: 24673152]
[14]
Prince, R.B.; Barnes, S.A.; Moore, J.S. Foldamer-based molecular recognition. J. Am. Chem. Soc., 2000, 122(12), 2758-2762.
[http://dx.doi.org/10.1021/ja993830p]
[15]
Gan, Q.; Ferrand, Y.; Bao, C.; Kauffmann, B.; Grélard, A.; Jiang, H.; Huc, I. Helix-rod host-guest complexes with shuttling rates much faster than disassembly. Science, 2011, 331(6021), 1172-1175.
[http://dx.doi.org/10.1126/science.1200143] [PMID: 21385710]
[16]
Leigh, T.; Fernandez-Trillo, P. Helical polymers for biological and medical applications. Nat. Rev. Chem., 2020, 4(6), 291-310.
[http://dx.doi.org/10.1038/s41570-020-0180-5] [PMID: 37127955]
[17]
Collie, G.W.; Bailly, R.; Pulka-Ziach, K.; Lombardo, C.M.; Mauran, L.; Taib-Maamar, N.; Dessolin, J.; Mackereth, C.D.; Guichard, G. Molecular recognition within the cavity of a foldamer helix bundle: Encapsulation of primary alcohols in aqueous conditions. J. Am. Chem. Soc., 2017, 139(17), 6128-6137.
[http://dx.doi.org/10.1021/jacs.7b00181] [PMID: 28234005]
[18]
Müller, M.M.; Windsor, M.A.; Pomerantz, W.C.; Gellman, S.H.; Hilvert, D. A rationally designed aldolase foldamer. Angew. Chem. Int. Ed., 2009, 48(5), 922-925.
[http://dx.doi.org/10.1002/anie.200804996] [PMID: 19090515]
[19]
Smaldone, R.A.; Moore, J.S. Foldamers as reactive sieves: Reactivity as a probe of conformational flexibility. J. Am. Chem. Soc., 2007, 129(17), 5444-5450.
[http://dx.doi.org/10.1021/ja067670a] [PMID: 17419626]
[20]
Reggelin, M.; Doerr, S.; Klussmann, M.; Schultz, M.; Holbach, M. Helically chiral polymers: A class of ligands for asymmetric catalysis. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5461-5466.
[http://dx.doi.org/10.1073/pnas.0307443101] [PMID: 15054138]
[21]
Yu, G.; Jie, K.; Huang, F. Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem. Rev., 2015, 115(15), 7240-7303.
[http://dx.doi.org/10.1021/cr5005315] [PMID: 25716119]
[22]
Cheng, R.P. Gellman, S.H.; DeGrado, W.F. β-Peptides: From structure to function. Chem. Rev., 2001, 101(10), 3219-3232.
[http://dx.doi.org/10.1021/cr000045i] [PMID: 11710070]
[23]
Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev., 2009, 109(11), 6102-6211.
[http://dx.doi.org/10.1021/cr900162q] [PMID: 19905011]
[24]
Maayan, G.; Ward, M.D.; Kirshenbaum, K. Folded biomimetic oligomers for enantioselective catalysis. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13679-13684.
[http://dx.doi.org/10.1073/pnas.0903187106] [PMID: 19667204]
[25]
Guichard, G.; Huc, I. Synthetic foldamers. Chem. Commun., 2011, 47(21), 5933-5941.
[http://dx.doi.org/10.1039/c1cc11137j] [PMID: 21483969]
[26]
Tyrikos-Ergas, T.; Fittolani, G.; Seeberger, P.H.; Delbianco, M. Structural studies using unnatural oligosaccharides: Toward sugar foldamers. Biomacromolecules, 2020, 21(1), 18-29.
[http://dx.doi.org/10.1021/acs.biomac.9b01090] [PMID: 31517479]
[27]
Zhang, J.; Liu, K.; Müllen, K.; Yin, M. Self-assemblies of amphiphilic homopolymers: Synthesis, morphology studies and biomedical applications. Chem. Commun., 2015, 51(58), 11541-11555.
[http://dx.doi.org/10.1039/C5CC03016A] [PMID: 26073994]
[28]
Collie, G.W.; Pulka-Ziach, K.; Lombardo, C.M.; Fremaux, J.; Rosu, F.; Decossas, M.; Mauran, L.; Lambert, O.; Gabelica, V.; Mackereth, C.D.; Guichard, G. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation. Nat. Chem., 2015, 7(11), 871-878.
[http://dx.doi.org/10.1038/nchem.2353] [PMID: 26492006]
[29]
Gilles, G.; Gavin, C.; Karolina, P. Z.; Caterina, L.; Juliette, F. Quaternary Assemblies of Water Soluble Non-peptide Helical Foldamers, Their Use and Production Thereof 2017, 1-97. EP 3138851 A1
[30]
Qiu, J.X.; Petersson, E.J.; Matthews, E.E.; Schepartz, A. Toward β-amino acid proteins: A cooperatively folded β-peptide quaternary structure. J. Am. Chem. Soc., 2006, 128(35), 11338-11339.
[http://dx.doi.org/10.1021/ja063164+] [PMID: 16939241]
[31]
Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem., 2014, 12(22), 3544-3561.
[http://dx.doi.org/10.1039/C4OB00447G] [PMID: 24756480]
[32]
Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev., 2016, 116(22), 13752-13990.
[http://dx.doi.org/10.1021/acs.chemrev.6b00354] [PMID: 27754649]
[33]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[34]
Huang, X.; Liu, Y.; Yung, B.; Xiong, Y.; Chen, X. Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano, 2017, 11(6), 5238-5292.
[http://dx.doi.org/10.1021/acsnano.7b02618] [PMID: 28590117]
[35]
Carpenter, A.W.; de Lannoy, C.F.; Wiesner, M.R. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol., 2015, 49(9), 5277-5287.
[http://dx.doi.org/10.1021/es506351r] [PMID: 25837659]
[36]
Eisenreich, F.; Meijer, E.W.; Palmans, A.R.A. Amphiphilic polymeric nanoparticles for photoredox catalysis in water. Chemistry, 2020, 26(45), 10355-10361.
[http://dx.doi.org/10.1002/chem.202001767] [PMID: 32428312]
[37]
Cervill, J.R.; González, E.; Pomposo, J.A. Advances in single-chain nanoparticles for catalysis applications. J. Nanomater., 2017, 7(341), 1-20.
[38]
Smitha, G.; Sinija, P.S.; Sherlymol, P.B.; Jisha, K.A.; Anjaly, K.J.; Sreekumar, K. Heterogeneous dendronized polymer with peripheral copper moieties: From synthesis to catalysis and comparison with dendrigraft polymer. Polymer , 2017, 120, 100-110.
[http://dx.doi.org/10.1016/j.polymer.2017.05.054]
[39]
Sherly mole, P.B.; George, S.; Shebitha, A.M.; Kannan, V.; Mathew, S.; Asha, K.K.; Sreekumar, K. Amphiphilic dendrimer as reverse micelle: Synthesis, characterization and application as homogeneous organocatalyst. Tetrahedron, 2019, 75(46), 130676.
[http://dx.doi.org/10.1016/j.tet.2019.130676]
[40]
Baby Sherlymole, P.; Ronaldo Anuf, A.; Anjali Krishna, G.; Sreekumar, K. Dendrimer with klecules: Synthesis of bisimidazoles and molecular docking study. ChemistrySelect, 2020, 5(17), 5055-5065.
[http://dx.doi.org/10.1002/slct.202000770]
[41]
Suárez-Picado, E.; Quiñoá, E.; Riguera, R.; Freire, F. Poly(phenylacetylene) amines: A general route to water-soluble helical polyamines. Chem. Mater., 2018, 30(19), 6908-6914.
[http://dx.doi.org/10.1021/acs.chemmater.8b03238]
[42]
Nagai, K.; Maeda, K.; Takeyama, Y.; Sato, T.; Yashima, E. Temperature-induced chiroptical changes in a helical poly(phenylacetylene) bearing N,N-diisopropylaminomethyl groups with chiral acids in water. Chem. Asian J., 2007, 2(10), 1314-1321.
[http://dx.doi.org/10.1002/asia.200700185] [PMID: 17763496]
[43]
Miyagawa, T.; Yamamoto, M.; Muraki, R.; Onouchi, H.; Yashima, E. Supramolecular helical assembly of an achiral cyanine dye in an induced helical amphiphilic poly(phenylacetylene) interior in water. J. Am. Chem. Soc., 2007, 129(12), 3676-3682.
[http://dx.doi.org/10.1021/ja068951l] [PMID: 17343383]
[44]
Stanger, H.E.; Syud, F.A.; Espinosa, J.F.; Giriat, I.; Muir, T.; Gellman, S.H. Length-dependent stability and strand length limits in antiparallel β-sheet secondary structure. Proc. Natl. Acad. Sci. USA, 2001, 98(21), 12015-12020.
[http://dx.doi.org/10.1073/pnas.211536998] [PMID: 11593011]
[45]
Ajayaghosh, A.; George, S.J.; Schenning, A.P.H.J. Hydrogen bonded assemblies of dyes and chromophores. Top. Curr. Chem., 2005, 258, 83-118.
[http://dx.doi.org/10.1007/b135681]
[46]
Lynch, M. The evolution of multimeric protein assemblages. Mol. Biol. Evol., 2012, 29(5), 1353-1366.
[http://dx.doi.org/10.1093/molbev/msr300] [PMID: 22144639]
[47]
Zhu, L.; Wang, S.; Tian, W.; Zhang, Y.; Song, Y.; Zhang, J.; Mu, B.; Peng, C.; Deng, Z.; Ma, H.; Qu, X. Stabilization of multimeric proteins via intersubunit cyclization. Appl. Environ. Microbiol., 2017, 83(18), e01239-e17.
[http://dx.doi.org/10.1128/AEM.01239-17] [PMID: 28710270]
[48]
Gong, B.; Zeng, H.; Zhu, J.; Yua, L.; Han, Y.; Cheng, S.; Furukawa, M.; Parra, R.D.; Kovalevsky, A.Y.; Mills, J.L.; Skrzypczak-Jankun, E.; Martinovic, S.; Smith, R.D.; Zheng, C.; Szyperski, T.; Zeng, X.C. Creating nanocavities of tunable sizes: Hollow helices. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11583-11588.
[http://dx.doi.org/10.1073/pnas.162277099] [PMID: 12177422]
[49]
Sherlymole, P.B.; Sreekumar, K. PAMAM dendrimer and process for preparation thereof. Indian Patent 355580, 2021.
[50]
Kotch, F.W.; Raines, R.T. Self-assembly of synthetic collagen triple helices. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3028-3033.
[http://dx.doi.org/10.1073/pnas.0508783103] [PMID: 16488977]
[51]
Jenkins, C.L.; Raines, R.T. Insights on the conformational stability of collagen. Nat. Prod. Rep., 2002, 19(1), 49-59.
[http://dx.doi.org/10.1039/a903001h] [PMID: 11902439]
[52]
Gellman, S.H. Foldamers: A manifesto. Acc. Chem. Res., 1998, 31(4), 173-180.
[http://dx.doi.org/10.1021/ar960298r]
[53]
Liu, C.Z.; Yan, M.; Wang, H.; Zhang, D.W.; Li, Z.T. Making molecular and macromolecular helical tubes: Covalent and noncovalent approaches. ACS Omega, 2018, 3(5), 5165-5176.
[http://dx.doi.org/10.1021/acsomega.8b00681] [PMID: 31458731]
[54]
Zhang, Z.; Schreiner, P.R. (Thio)urea organocatalysis—What can be learnt from anion recognition? Chem. Soc. Rev., 2009, 38(4), 1187-1198.
[http://dx.doi.org/10.1039/b801793j] [PMID: 19421588]
[55]
Bécart, D.; Diemer, V.; Salaün, A.; Oiarbide, M.; Nelli, Y.R.; Kauffmann, B.; Fischer, L.; Palomo, C.; Guichard, G. Helical oligourea foldamers as powerful hydrogen bonding catalysts for enantioselective C–C bond-forming reactions. J. Am. Chem. Soc., 2017, 139(36), 12524-12532.
[http://dx.doi.org/10.1021/jacs.7b05802]
[56]
Lassila, J.K.; Baker, D.; Herschlag, D. Origins of catalysis by computationally designed retroaldolase enzymes. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 4937-4942.
[http://dx.doi.org/10.1073/pnas.0913638107] [PMID: 20194782]
[57]
Kim, H.J.; Kim, J.K.; Lee, M. Self-assembly of coordination polymers into multi-stranded nanofibers with tunable chirality. Chem. Commun., 2010, 46(9), 1458-1460.
[http://dx.doi.org/10.1039/b921020b] [PMID: 20162147]
[58]
Al-Majid, A.M.; Islam, M.S.; Barakat, A.; Al-Qahtani, N.J.; Yousuf, S.; Iqbal Choudhary, M. Tandem Knoevenagel–Michael reactions in aqueous diethylamine medium: A greener and efficient approach toward bis-dimedone derivatives. Arab. J. Chem., 2017, 10(2), 185-193.
[http://dx.doi.org/10.1016/j.arabjc.2014.04.008]
[59]
Deng, Q.; Xu, J.; Han, P.; Pan, L.; Wang, L.; Zhang, X.; Zou, J-J. Efficient synthesis of high-density aviation biofuel via solvent-free aldol condensation of cyclic ketones and furanic aldehydes. Fuel Process. Technol., 2016, 148, 361-366.
[http://dx.doi.org/10.1016/j.fuproc.2016.03.016]
[60]
Belowich, M.E.; Stoddart, J.F. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41(6), 2003-2024.
[http://dx.doi.org/10.1039/c2cs15305j] [PMID: 22310886]
[61]
Hooley, R.J.; Rebek, J., Jr Chemistry and catalysis in functional cavitands. Chem. Biol., 2009, 16(3), 255-264.
[http://dx.doi.org/10.1016/j.chembiol.2008.09.015] [PMID: 19318207]
[62]
Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P.W.N.M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev., 2014, 43(5), 1734-1787.
[http://dx.doi.org/10.1039/C3CS60037H] [PMID: 24365792]
[63]
Jiao, J.; Li, Z.; Qiao, Z.; Li, X.; Liu, Y.; Dong, J.; Jiang, J.; Cui, Y. Design and self-assembly of hexahedral coordination cages for cascade reactions. Nat. Commun., 2018, 9(1), 4423.
[http://dx.doi.org/10.1038/s41467-018-06872-0] [PMID: 30356038]
[64]
Lee, J.J.; Ford, W.T.; Moore, J.A.; Li, Y. Reactivity of organic anions promoted by a quaternary ammonium ion dendrimer. Macromolecules, 1994, 27(16), 4632-4634.
[http://dx.doi.org/10.1021/ma00094a033]
[65]
Abaee, M.S.; Mojtahedi, M.M.; Zahedi, M.M.; Khanalizadeh, G. Efficient MgBr2.OEt2 - catalyzed Knoevenagel condensation. ARKIVOC, 2006, 2006(15), 48-52.
[http://dx.doi.org/10.3998/ark.5550190.0007.f06]
[66]
Ranu, B.C.; Jana, R. Ionic liquid as catalyst and reaction medium – a simple, efficient and green procedure for knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid. Eur. J. Org. Chem., 2006, 2006(16), 3767-3770.
[http://dx.doi.org/10.1002/ejoc.200600335]
[67]
Mangala, K.; Sreekumar, K. Dendrimer functionalized polysilane: An efficient and recyclable organocatalyst. J. Appl. Polym. Sci., 2015, 132(10), app.41593.
[http://dx.doi.org/10.1002/app.41593]
[68]
Mangala, K.; Sreekumar, K. Polycarbosilane-supported titanium(IV) catalyst for Knoevenagel condensation reaction. Appl. Organomet. Chem., 2013, 27(2), 73-78.
[http://dx.doi.org/10.1002/aoc.2941]
[69]
Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chem., 2010, 12(3), 514-517.
[http://dx.doi.org/10.1039/b918595j]
[70]
MaGee D.I.; Dabiri, M.; Salehi, P.; Torkian, L. Highly efficient one-pot three-component Mannich reaction catalyzed by ZnO-nanoparticles in water. ARKIVOC, 2011, 2011(11), 156-164.
[http://dx.doi.org/10.3998/ark.5550190.0012.b14]
[71]
Manabe, K.; Kobayashi, S. Mannich-type reactions of aldehydes, amines, and ketones in a colloidal dispersion system created by a brønsted acid-surfactant-combined catalyst in water. Org. Lett., 1999, 1(12), 1965-1967.
[http://dx.doi.org/10.1021/ol991113u]
[72]
He, L.; Qin, S.; Chang, T.; Sun, Y.; Zhao, J. Geminal brønsted acid ionic liquids as catalysts for the mannich reaction in water. Int. J. Mol. Sci., 2014, 15(5), 8656-8666.
[http://dx.doi.org/10.3390/ijms15058656] [PMID: 24837832]
[73]
Lu, G.; Cai, C. Mannich reactions catalyzed by perchloric acid in Triton X10 aqueous micelles. Catal. Commun., 2010, 11(8), 745-748.
[http://dx.doi.org/10.1016/j.catcom.2010.02.007]
[74]
Hiba, K.; Sreekumar, K. Multi- arm dendronized polymer as a unimolecular micelle: Synthesis, characterization and application as organocatalyst in the synthesis of N-unsubstituted 1,2,3-triazoles. React. Funct. Polym., 2021, 160, 104827.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104827]
[75]
Hiba, K.; Anjali Krishna, G.; Prathapan, S.; Sreekumar, K. Palladium loaded dendronized polymer as efficient polymeric sustainable catalyst for heck coupling reaction. Catal. Lett., 2021, 152, 41-56.
[76]
Vettukattil, U.; Govindan, A.; James, K.; Anilkumar, A.; Krishnapillai, S. Efficient synthesis of piperidine derivatives using dendrimer based catalytical pockets. J. Heterocycl. Chem., 2021, 58(12), 2348-2358.
[http://dx.doi.org/10.1002/jhet.4361]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy